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Abstract: Lung cancer has a dismal prognosis and novel targeted therapies leave still room 
for major improvements and better outcomes. Immunotherapy targeting immune checkpoint 
(IC) proteins, either as single agents or in combination with chemotherapy, is active but 
responders constitute only approximately 10–15% of non-small cell lung cancer (NSCLC) 
patients. Other effector immune cells such as CAR-T cells or NK cells may help to overcome 
the limitations of the IC inhibitor therapies for lung cancer. NK cells can kill tumor cells 
without previous priming and are present in the circulatory system and lymphoid organs. 
Tissue-residing NK cells differ from peripheral effector cells and, in case of the lung, 
comprise CD56bright CD16-negative populations showing high cytokine release but low 
cytotoxicity in contrast to the circulating CD56dim CD16-positive NK cells exhibiting high 
cytotoxic efficacy. This local attenuation of NK cell killing potency seems due to a specific 
stage of NK differentiation, immunosuppressive factors as well as presence of myeloid- 
derived suppressor cells (MDSCs) and regulatory T cells (TREGs). Improved NK cell-based 
immunotherapies involve IL-2-stimulated effector cells, NK cells expanded with the help of 
cytokines, permanent NK cell lines, induced pluripotent stem cell-derived NK cells and NK 
cells armed with chimeric antigen receptors. Compared to CAR T cell therapy, NK cells 
administration is devoid of graft-versus-host disease (GvHD) and cytokine-release syndrome. 
Although NK cells are clearly active against lung cancer cells, the low-cytotoxicity differ-
entiation state in lung tumors, the presence of immunosuppressive leucocyte populations, 
limited infiltration and adverse conditions of the microenvironment need to be overcome. 
This goal may be achieved in the future using large numbers of activated and armed NK cells 
as provided by novel methods in NK cell isolation, expansion and stimulation of cytotoxic 
activity, including combinations with monoclonal antibodies in antibody-dependent cytotoxi-
city (ADCC). This review discusses the basic characteristics of NK cells and the potential of 
NK cell preparations in cancer therapy. 
Keywords: natural killer cells, immunotherapy, chimeric antigen receptor, antibody- 
dependent cytotoxicity, lung cancer, interleukins

Background
Lymphoid non-T cells that can kill virally infected and tumor cells were described more 
than four decades ago and termed natural killer (NK) cells.1 NK cells can attack tumor 
cells without priming and their activity depends on a range of stimulatory and inhibitory 
receptors.2,3 NK cells comprise about 5–15% of the human peripheral blood mono-
nuclear cells (PBMCs) and are part of the native immune system that screen cell 
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membranes of autologous cells for a reduced expression of 
MHC class I molecules and increased expression of cell stress 
markers.4,5 NK cells mediate the direct and rapid killing of 
freshly isolated human cancer cells from hematopoietic and 
solid tumors.6,7 (Figure 1) NK cells in human peripheral 
blood, bone marrow and various tissues are characterized by 
the absence of T cell receptors (TCR) and the corresponding 
CD3 molecules as well as by the expression of neural cell 
adhesion molecule (NCAM/CD56).8 Human NK cells are 
generated from multilineage CD34+ hematopoietic progeni-
tors in the bone marrow and their maturation occurs at this site 
of origin as well as in the lymphoid organs but not in thymus.9 

In blood, NK cells show a turnover time of approximately 2 
weeks with a doubling within 13.5 days in vivo and in vitro 
cytokine stimulation of peripheral blood NK cells can result in 
expansion with a median of 16 (range 11–30) population 
doublings.10

NK cells are not only present in peripheral blood, lymph 
nodes, spleen, and bone marrow but they can also migrate to 
sites of inflammation in response to distinct chemoattrac-
tants. The majority of CD56dim subpopulation of the 
whole NK cells in peripheral blood (approximately 90%) 
exhibits high expression of the Fc receptor FcRIII (CD16), 
killer cell immunoglobulin-like receptors (KIRs) and per-
forin-mediated cytotoxicity whereas a minor population of 
CD56bright CD16- KIR- CD94/NKG2A+ (approximately 
5–15%) of NK cells is primarily producing cytokines, 

including IFN-γ and TNF-α11–13 These two NK cell popula-
tions have been termed conventional NK cells in contrast to 
distinct tissue-resident NK cell populations localizing to 
liver, lymphoid tissue, bone, lung, kidney, gut and uterine 
tissue as well as distinct adaptive NK cell populations.14 

However, CD56 and CD16 are not specific for NK cells 
and, furthermore, the heterogeneous tissue-resident popula-
tions show expression of adhesion molecules and CD69 and 
may represent an immature NK cell type. Adaptive NK cells 
are observed in connection with viral infections and exhibit 
memory cell-like properties. Overall, a wide diversity of 
receptor expressions of NK cells has been observed and, so 
far, the function of many of these subpopulations has not 
been fully characterized.

NK cells can eliminate target cells controlled by sig-
nals derived from activating (eg, NCRs or NKG2D) and 
inhibitory receptors (eg, KIRS or NKG2A).15–17 Normal 
host cells are protected from NK cells attacks through 
inhibitory KIRs, that identify the self-MHC class 
I molecules.15 In particular, the germline-encoded NK 
receptors include the activating receptors NKG2D, 
DNAM-1, the natural killing receptors NKp30, NKp44, 
NKp46, and NKp80, the SLAM-family (Signaling 
Lymphocyte Activating Molecule) receptors for the elim-
ination of hematopoietic tumor cells and the inhibitory 
KIRs.18 The activating signaling molecules promote 
tumor cell killing, cytokine production, immune cell 

Figure 1 NK cells and other immune cells in the tumor microenvironment. NK cells of the CD56dim CD16+ phenotype secrete interferon-γ (IFN-γ), which increases the 
expression of MHC class I of tumor cells, enhancing the presentation of tumor antigens to T cells. Inhibitory checkpoint molecules expressed by NK cells can be blocked 
using specific monoclonal antibodies (ICIs). NK cells of the CD56bright CD16- phenotype recruit dendritic cells (DCs) to the tumor microenvironment (TME) and drive 
their maturation via chemokine ligands CCL5, XCL1 and FMS-related tyrosine kinase 3 ligand (FLT3L). DCs in turn stimulate NK and T cells via membrane-bound IL-15 
(mbIL-15) and 4–1BBL secretion. Eventually, NK cells lyse tumor cells resulting in release of cancer antigens, which are then presented by DCs, to provoke specific T cell 
activation in relation with MHC class I molecules. The immunotherapeutic effect of NK cells includes the removal of immunosuppressive MDSCs.
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activation, and proliferation and the NKpXX receptors, 
when engaged, all trigger alterations of the cellular cal-
cium flux and NK cell-mediated killing and secretion of 
IFN-γ (Figure 1).

The interaction between KIRs and self-MHC mole-
cules governs the maturation of NK cell, a process termed 
“licensing”.11,19,20 As alternative of MHC downregulation, 
cancer cells may be recognized by the overexpression of 
binding molecules for activating NK cell receptors. 
Ligands for the activating NKG2D receptor, such as 
MHC class I polypeptide-related sequence A (MICA), 
MICB and others are presented by cancer cells preferen-
tially in response to cellular stress.21 A separate mechan-
ism known as antibody-dependent cell cytotoxicity 
(ADCC) results in elimination of antibody-coated cell via 
the CD16 FcRIII receptor.22

NK cell-mediated lysis of target cells is mainly achieved 
through the release of the cytotoxic effector perforin and 
granzymes A and B but NK cells also produce a range of 
cytokines, both proinflammatory and immunosuppressive, 
such as IFN-γ, TNF-α and IL10, respectively, as well as 
growth factors such as granulocyte macrophage colony- 
stimulating factor (GM-CSF), granulocyte colony- 
stimulating factor (G-CSF) and IL-3 (Figure 1). CD56dim 
NK cells can produce very rapidly IFN-γ within 2 to 4 hours 
after triggering through NKp46 and NKp30 activating recep-
tors (ARs).12,13 NK cell–derived cytokine production 
impacts dendritic cells, macrophages and neutrophils and 
empower NK cells to regulate subsequent antigen-specific 
T and B cell responses. Activated NK cells lose CD16 
(FcRIII) and CD62 ligand through the disintegrin and metal-
loprotease 17 (ADAM17), and inhibition of this protease 
enhances CD16-mediated NK cell function. Cytokine stimu-
lation also downregulates CD16 and upregulates CD56 
expression. Moreover, certain cytokines can greatly enhance 
the cytotoxicity and cytokine production of the CD162 
CD56bright and CD161 CD56dim NK cell subsets, 
respectively.23,24

In cancer patients, NK cells target cells low/deficient of 
MHC-class I or bearing “altered-self” stress-inducible 
proteins.17,25 Besides tumor cell killing through release 
of perforin and granzyme and secretion of immunoregula-
tory mediators such as nitric oxide (NO) effects cell death 
mediated by TNF-family members such as Fas-L or 
TRAIL. The degree of tumor infiltration of NK cells 
seems to have prognostic value in gastric carcinoma, col-
orectal carcinoma and lung carcinomas, thus indicating 
a protective role of the NK cell infiltrate.26,27 NK cell 

infiltration of tumors depends on their expression of 
heparinase.28 NK cells may further attract T cells to the 
tumor region and elevate inflammatory responses through 
secretion of cytokines and chemokines.29 Furthermore, 
NK cells have been suggested to suppress metastasis 
through elimination of circulating tumor cells (CTCs).30

NK cells seem well suited for anticancer immunother-
apy and cells for clinical administration can be isolated 
from peripheral or umbilical cord blood. Peripheral blood 
NK cells are prepared by leukapheresis and further enriched 
by density gradient centrifugation (Figure 2). Subsequently, 
the combination of T cell depletion with CD56 cell enrich-
ment yields highly purified NK cell populations.31 NK cells 
gained from peripheral blood of healthy persons are typi-
cally in a resting state and can be activated by exposure to 
IL-2. However, supplementation with IL-2 and infusion to 
cancer patients has resulted in severe side effects, such as 
vascular leak syndrome and liver toxicity.32 Studies with 
native autologous NK cells have yielded disappointing 
results. The most efficient NK cell expansion was observed 
with K562 NK target cells co-expressing membrane-bound 
IL-15 (mbIL-15) and 4–1BBL.31 This technique yields 
enough NK to provide cells for at least four infusions at 
50 million cells/per kg from one leukapheresis product 
observing GMP conditions.31 However, many mechanisms 
mediate NK cell suppression in the tumor microenviron-
ment (TME), several of which also impair T cell 
responses.33,34 In case of NK cells, NKG2D ligand release 
can occur by shedding and these soluble ligands prevent NK 
cell-tumor cell interaction and the cytotoxic response.35,36

In summary, NK cells are functional in tumor surveillance 
and can be manipulated by artificial activation techniques to 
present a highly effective anticancer tool against hematopoie-
tic malignancies and, dependent on successful further rearm-
ing and mobilization, against solid tumors in the future.

NK Cells of the Lung
The lungs are frequently challenged by pathogens, envir-
onmental damages and tumors and contain a large popula-
tion of innate immune cells.37,38 Involvement of NK cells 
in lung diseases, such as cancer, chronic obstructive pul-
monary disease (COPD), asthma and infections, has been 
amply reported.39 Chronic inflammation drives the irrever-
sible obstruction of the lung function in COPD and local 
NK cells show hyperresponsiveness in COPD and kill 
autologous lung CD326+ epithelial cells.40 Therefore, tar-
geting NK cells may represent a novel strategy for treating 
COPD. Furthermore, NK cells from cigarette smoke- 
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exposed mice produce higher levels of IFN-γ upon stimu-
lation with cytokines or toll-like receptor (TLR) ligands.41

Lung NK cells account for approximately 10–20% of 
local lymphocytes and have migrated to the lungs from 
bone marrow.42 These cells exhibit the phenotype of the 
CD56dim CD16+ subset and are located in the 
parenchyma.43 Lung NK cells show major differences in 
phenotype and function to those from other tissues and, for 
example, KIR-positive NK cells and differentiated CD57+ 
NKG2A− cells are found in higher numbers in the lungs 
compared to matched peripheral blood.37,38 In vivo, human 
lung NK cells respond poorly to activation by target cells in 
comparison to peripheral blood NK cells, most likely due to 
suppressive effects of alveolar macrophages and soluble 
factors in the fluid of the lower respiratory tract.44 The 
presence of hypofunctional NK cells seems to regulate the 
pulmonary homeostasis in the presence of constantly irrita-
tion by environmental and autologous antigens.

Unlike other tissues, the lung NK cell diversity and its 
acquisition have been very little studied, especially regarding 
the resident lung populations. Although the majority of lung 
NK cells are of a non-tissue-resident phenotype, a small 
CD56bright CD49a+ lung NK cell subset has been found.45 

NK cell diversity occurs for the main resident population 

within the lung, namely CD49a+CD56bright CD16− NK 
cells that can be split into four different resident subpopulations 
according to the residency markers CD69 and CD103.47 The 
CD69+CD103+ subset is the most important as compared to 
single positive or double negative subsets. The respective 
significance of these subsets in terms of ontogeny, differentia-
tion, or functionality remains to be characterized.

The CD16− NK cells in the human lung comprises 
a heterogeneous cell population and the 
CD69+CD49a+CD103− and CD69+CD49a+CD103+ tissue- 
resident NK cells are clearly distinct from other NK cell 
subsets in the lung and other tissues, whereas 
CD69spCD16− NK cells (lacking expression of CD49a 
and/or CD103) largely represent conventional 
CD69−CD16− NK cells.47 Furthermore, lung tissue- 
resident NK cells are functionally competent and constitute 
a first line of defense in the human lung. Protein and gene 
expression signatures of CD16− NK cell subsets correlated 
with distinct patterns of expression of CD69, CD49a, and 
CD103 and corroborated the CD69+CD49a+CD103− and 
CD69+CD49a+CD103+ NK cells as tissue-resident NK 
cells.48 In contrast, CD69spCD16− NK cells are more simi-
lar to CD69−CD16− NK cells and showed lower expression 
of genes associated with tissue-residency.

Figure 2 Isolation, activation and propagation of allogeneic NK cells. Peripheral blood mononuclear cells (PBMCs) are prepared from healthy donors by leukapheresis. 
PBMC depletion of CD3+ T cells, prevents GvHD after infusion and further purification is achieved by positive CD56+ cell selection. These cell preparations are infused or 
activated with IL-2 or a mixture of IL-12, IL-15 and IL-18. Another method for NK cell stimulation involves ex vivo coculture with the K562 cell line expressing membrane- 
bound IL-15 (mbIL-15) and 4–1BBL that is irradiated to abolish expansion. Umbilical cord blood NK cells can be used similar to peripheral blood NK cells or enriched for 
CD34+ hematopoietic progenitors, followed by differentiation to NK cells. NK cells can be gained from induced pluripotent stem cells (iPSCs) via successive hematopoietic 
and NK cell differentiation, followed by stimulation with cells expressing mbIL-21. Before infusion of allogeneic NK cells, patients receive lymphodepleting chemotherapy to 
facilitate temporary engraftment of the infused NK cells.
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On the course of NK cell differentiation less differentiated 
NK cells are hypofunctional but respond stronger to cytokine 
stimulation and more differentiated NK cells exert more potent 
ADCC-dependent cell killing.46,49 The early activation antigen 
CD69 is expressed on a wide range of tissue-resident lympho-
cytes, including T cells and NK cells, and promotes retention 
of the cells in the tissue.38,50 Highly differentiated and hypo-
functional CD69+ CD56dim CD161+ NK cells constitute the 
dominant NK cell population in the human lung. In summary, 
these results indicate that the human lung is mainly populated 
by NK cells migrating between lung and blood, rather than by 
CD69-positive tissue-resident cells. The mechanisms control-
ling this distribution of the lymphocyte populations is not 
known but may comprise changes in the homing of NK 
cells, increased apoptosis of NK cells and increased expansion 
or recruitment of tissue-resident T cells.

NK Cells and NSCLC
Although the incidence of lung cancer is declining, the 
survival rates remain poor due to a lack of early detection 
and only recent progress in targeted cancer therapies that 
are still only feasible for a limited subpopulation of 
patients.51,52 The host of immune cells involved in lung 
cancer include CD4+ and CD8+ T lymphocytes, neutro-
phils, monocytes, macrophages, innate lymphoid cells 
(ILCs), dendritic cells and NK cells. In lung cancer 
patients, peripheral NK cell cytotoxicity and INF-γ pro-
duction was reported to be reduced.53–56 Especially, 
a lower cytotoxic activity in NK cells was observed in 
smokers due to the suppression of the induction of IL-15 
and IL-15-mediated NK cell functions in human 
PBMCs.57 Furthermore, the granzyme B release by NK 
cells from lung cancer tissue is lower compared to adja-
cent normal tissue.58 Additionally, peripheral NK cells of 
NSCLC patients are present in lower cell numbers and 
display a distinctive receptor expression with downregula-
tion of NKp30, NKp80, CD16, DNAM1, KIR2DL1, and 
KIR2DL2, but upregulation of NKp44, NKG2A, CD69, 
and HLA-DR. Furthermore, low levels of IFN-γ and 
CD107a result in impaired cytotoxicity and promotion of 
tumor growth.54,59,60 The CD56bright CD16-NK cell sub-
set is highly enriched in the tumor infiltrate and show 
activation markers, including NKp44, CD69, and HLA- 
DR.59–61 However, the release of soluble factors by 
NSCLC tumor cells inhibit the activity of granzyme 
B and perforin and the induction of IFN-γ in intratumoral 
NK cells and suggest a local inhibition of NK cells by the 

NSCLC TME.62 T cell immune checkpoint molecules 
programmed cell death 1 (PD-1), cytotoxic T lymphocyte 
antigen 4 (CTLA4), lymphocyte activation gene 3 protein 
(LAG3) and TIM3 are expressed by subpopulations of NK 
cells and might reduce NK antitumor responses. In solid 
tumors, vascular supply may be ineffective causing 
hypoxia and low nutrient levels in the TME that may 
impair NK cell metabolism and antitumor cytotoxicity as 
demonstrated in lung experimental animal models.63,64 

Additionally, the CD56bright CD16- NK cells enhance 
protumor neoangiogenesis through secretion of VEGF, 
placental growth factor and IL-8/CXCL8.65

NK Cells and SCLC
Small cell lung cancer (SCLC) is a pulmonary neuroendo-
crine cancer linked to smoking that has a dismal prognosis 
and invariably develops resistance to chemotherapy within 
a short time.66 Despite a high tumor mutational burden, 
immune checkpoint inhibitors show minor prolongation of 
survival in SCLC patients.66,67 In particular, Nivolumab 
(anti-PD1 antibody) was approved for third-line treatment 
and the combination of atezolizumab (anti-PDL1 anti-
body) with carboplatin and etoposide was approved for 
first-line treatment of disseminated SCLC, resulting in 
minor survival gains.68,69 NK cells are critical in suppres-
sing lung tumor growth and while low MHC expression 
would make SCLC resistant to adaptive immunity, this 
should make SCLCs susceptible to NK cell killing.64,70 

In comparison to the peripheral blood NK cells of healthy 
individuals, the NK cells of SCLC patients are present in 
equal cell counts but exhibit lower cytotoxic activity, 
downregulation of NKp46 and perforin expression.55 

Lack of effective NK surveillance seems to contribute to 
SCLC progress, primarily through the reduction of NK- 
activating ligands (NKG2DL). SCLC primary tumors pos-
sess very low levels of NKG2DL mRNA and SCLC lines 
largely fail to express NKG2DL at the protein level.66,71 

Accordingly, restoring NKG2DL in experimental models 
suppressed tumor growth and metastasis in a NK cell- 
dependent manner. Furthermore, histone deacetylase 
(HDAC) inhibitors induced NKG2DL re-expression and 
resulted in tumor suppression by NK and T cells. Actually, 
SCLC and neuroblastoma are the two tumor types with 
lowest NKG2DL-expression. In conclusion, epigenetic 
silencing of NKG2DL results in a defect of NK cell 
activation and immune escape of SCLC and neuroblas-
toma. Poor immune infiltrates in SCLC tumors combined 
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with reduced NK and T cell recognition of the tumor cells 
seem to contribute to immune resistance of SCLCs.72

Suppression of the Activity of Lung NK 
Cells
A majority of NSCLC patients do not benefit from the current 
IC-directed immunotherapy. CD56dim CD16+ NK cells com-
prise the majority of NK cells in human lungs and express 
KIRs and a more differentiated phenotype compared with NK 
cells in the peripheral blood.38,73 However, human lung NK 
cells were hyporesponsive toward target cell stimulation, irre-
spective of priming with IFN-α. NK cells are activated by 
MICA and MICB expressed by stressed tumor cells and are 
recognized by NK cell receptors NKG2D.74 Preclinical studies 
show that NKG2A or TIGIT blockade enhances antitumor 
immunity mediated by NK cells.2 However, the poor infiltra-
tion of NK cells into solid tumors, alterations in activating/ 
inhibitory signals and adverse TME conditions decrease the 
NK-mediated killing. NK cells can be inactivated by different 
cells such as Tregs and MDSCs but also by soluble mediators 
such as adenosine.75,76 Adenosine represents one of the most 
potent immunosuppressive factors in solid tumors that is pro-
duced in the tumor stroma by degradation of extracellular 
ATP.77–79 ATP and ADP are degraded by membrane- 
expressed ectonucleotidases such as CD39 and enhance the 
influx and the suppressive capacity of Tregs and MDSCs in 
solid tumors. NK cells are strongly involved in eliminating 
circulating tumor cells (CTCs), but their activity can be inhib-
ited by soluble factors, such as TGF-β derived from M2 
macrophages.80,81 One approach uses cytokines to selectively 
boost both the number as well as the efficacy of anti-tumor 
functions of peripheral NK cells.82 The gene signature of NK 
cell dysfunction in human NSCLC revealed an altered migra-
tory behavior with downregulation of the sphingosine-1-phos-
phate receptor 1 (S1PR1) and CX3C chemokine receptor 1 
(CX3CR1).83 Additionally, the expression of the immune 
inhibitory molecules CTLA-4 and killer cell lectin like recep-
tor (KLRC1) were elevated in intratumoral NK cells and 
CTLA-4 blockade could partially restore the impaired MHC 
class II expression on dendritic cell (DC). In summary, the 
intratumoral NK dysfunction can be attributed to direct cross-
talk between tumor and NK cells, activated platelets and 
soluble factors, such as TGF-β, prostaglandin E2, indolea-
mine-2,3-dioxygenase, adenosine and IL-10.19,26,54,83 In addi-
tion, a specific migratory signature could explain the exclusion 
of NK cells from the tumor interior. NK cells in NSCLC 
distribute to the intratumoral fibrous septa and to the borders 

between tumor cells and surrounding stroma.54,59 It has been 
suggested that a barrier of extracellular matrix proteins may be 
responsible for the restriction of NK cells primarily to the 
tumor stroma, such preventing direct NK cell–tumor cell 
interactions.84,85 In contradiction, ultrastructural investigations 
demonstrated NK cells are rather flexible and capable of 
extravasation and intratumoral migration.59 CD56bright 
CD162+ NK cells express CCR5 that is known to mediate 
the chemoattraction of specific leukocyte subtypes and explain 
their accumulation in tumor tissues.13 Infiltration of the tumors 
by NK cells was reported to be linked with a favorable prog-
nosis in lung cancer.26,86 However, Platonova et al reported 
that NK cell infiltration lacks any correlation with clinical 
outcomes in NSCLC.47,54 The poor prognostic significance 
of NK cells in NSCLC seems to be associated with the 
intratumoral NK cell dysfunction in patients with intermediate 
or advanced-stage tumors.

Stimulation of NK Cell Migration and 
Cytotoxic Activity
It would be of great importance to target chemokine receptors 
on NK cells to enable them to enter tumor tissues. NK cells 
acquire inhibitory functions within the TME, the reversion of 
which will enable NK cells to activate other immune cells 
and exert antitumor cytotoxic functions.87 In addition, sev-
eral clinical trials based on NK cell checkpoints are ongoing, 
targeting KIR, TIGIT, lymphocyte-activation gene 3, TIM3 
and KLRC1.88 NK cell dysfunction favors tumor progress 
and restoring NK cell functions would represent an important 
potential strategy to inhibit lung cancer. These approaches 
include the activation of NK cells by exposing to interleukins 
such as IL-2, IL-12, IL-15, IL-18, the blockade of inhibitory 
receptors of NK cells by targeting NKG2A, KIR2DL1 and 
KIR2DL2 as well as the enhancement of NK cell glycolysis 
by inhibition of fructose-1,6-bisphosphatase 1 and altering 
the immunosuppressive TME by neutralization of TGF- 
β.37,53 Pilot clinical trials of NK cell-based therapies such 
as administration of cytokines, NK-92 cell lines and allo-
genic NK cell immunotherapy showed promising outcomes 
on the lung cancer survival with less adverse effects. 
However, due to the lack of larger clinical trials, the NK 
cell targeting strategy has not been approved for lung cancer 
treatment so far.

Most of studies regarding NK cell-based immunother-
apy have been performed in hematologic malignancies. 
However, there are increasingly data available that show 
that NK cells can selectively recognize and kill cancer 
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stem cells in solid tumors.89 Furthermore, Kim et al 
showed the essential role of NK cells in prevention of 
lung metastasis.90 Additionally, Zhang et al studied the 
efficacy of adaptive transfer of NK and cytotoxic 
T-lymphocytes mixed effector cells in NSCLC patients.91 

A prolonged overall survival was detectable in patients 
after administration of NK cell-based immunotherapy. In 
a trial of Lin et al, the clinical outcomes of cryosurgery 
combined with allogenic NK cell immunotherapy for the 
treatment of advanced NSCLC were improved with ele-
vated immune functions and quality of life.92

The efficacy of NK cell-based adoptive immunother-
apy was also investigated in SCLC patients. Ding et al 
studied the efficacy and safety of cellular immunotherapy 
with autologous NK, γδT cells and cytokine-induced killer 
cells as maintenance therapy for 29 SCLC patients and 
demonstrated an increased survival of the patients.93 

Importantly, lung cancer-infiltrating NK cells can mainly 
function as producers of relevant cytokines, either bene-
ficial or detrimental for the antitumor immune response, 
and activation can transform CD56bright CD162+ KIR2+ 
NK cells into CD56dim CD161+ KIR1+ NK cells with 
higher cytotoxic activity.94 The switch from a CD56bright 
phenotype to a CD56dim NK cell signature can take place 
in lymph nodes during inflammation and these cells circu-
late into peripheral blood as KIR+CD16+ NK cells with 
low cytotoxic ability. However, the secondary lymphoid 
organ (SLO) NK cells acquire cytotoxic activity upon 
stimulation with IL-2. Malignant NSCLC tumor areas 
show high presence of Tregs and minor NK cell infiltra-
tion, whereas non-malignant regions were oppositely 
populated, containing NK cells with marked cytotoxicity 
ex vivo.95 IL-2 activation of PMBCs exhibit increased 
cytotoxic activity against primary lung cancer cells, that 
is further elevated by IL-12 treatment.96 The adoptive 
transfer of NK cells is a therapeutic strategy currently 
being investigated in various cancer types. For example, 
Krause et al treated a NSCLC patient and 11 colorectal 
cancer patients with autologous transfer of NK cells acti-
vated ex vivo by a peptide derived from heat shock protein 
70 (Hsp70) plus low-dose IL-2.97 The NK cell reinfusion 
revealed minor adverse effects and yielded promising 
immunological alterations.

Adaptive-like CD56dim CD16+ NK cells that were 
found in studies in mice and humans in peripheral blood 
have a distinctive phenotypic and functional profile com-
pared to conventional NK cells.31,98 These cells have a high 
target cell responsiveness, as well as a longer life time and 

a recall potential comparable to that of memory T cells.99 

Whereas adoptive NK cell transfer showed promising activ-
ities in the treatment of hematological malignancies, elim-
ination of solid tumor cells failed due to insufficient 
migration and tumor infiltration.100 Furthermore, a CD49a+ 
KIR+ NKG2C+ CD56bright CD16− adaptive NK cell popu-
lation with features of residency exists in human lung, that is 
distinct from adaptive-like CD56dim CD16+ peripheral 
blood NK cells.43 NK cells with an adaptive-like CD49a+ 
NK cell expansion in the lung proved to be hyperresponsive 
toward cancer cells. Despite their in vivo priming, the pre-
sence of adaptive-like CD49a+ NK cells in the lung did not 
correlate with any clinical parameters.

Immune Checkpoints and NK Cells
At the time of diagnosis, the majority (80%) of lung cancer 
patients present with locally advanced or metastatic disease 
that continues to progress despite chemotherapy.101 Lung 
cancer remains the leading cause of cancer death worldwide 
despite the responses found for immune checkpoint inhibi-
tors (ICIs), including programmed death receptor-1 (PD1) or 
PD ligand 1 (PDL1)-blockade therapy.102 These ICIs has 
achieved marked tumor regression in some patients with 
advanced PD1/PDL1-positive lung cancer; however, lasting 
responses were limited to a 15% subpopulation of 
patients.103 IFN-γ, released by cytotoxic NK and T cells, is 
a critical enhancer of PDL1 expression on tumors and 
a predictor of response to immunotherapies.104 The high 
failure rate of immunotherapy seems to be a consequence 
of low tumor PDL1 expression and the action of further 
immunosuppressive mechanisms in the TME.105

NK cells expanded from induced-pluripotent stem cells 
(iPSCs) increased PDL1 expression of tumor cell lines, 
sensitized non-responding tumors from patients with lung 
cancer to PD1-targeted immunotherapy and killed PDL1- 
patient tumors (Figure 2).102 In contrast, native NK cells, 
that are susceptible to immunosuppression in the TME, 
had no effect on tumor PDL1 expression. Accordingly, 
only combined treatment of expanded NK cells and PD1- 
directed inhibitors resulted in synergistic tumor cell kill of 
initially non-responding patient tumors. A randomized 
control trial in patients with PDL1+ NSCLC found that 
the combination treatment of NK cells with the PD1 inhi-
bitor pembrolizumab was well-tolerated and improved 
overall and progression-free survival in patients compared 
single agent pembrolizumab treatment.106 Importantly, 
during this clinical study no adverse events associated 
with the administration of NK cells were detected.
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Future NK Cell Immunotherapies
Early trials of autologous NK cell therapy from leukapheresis 
have demonstrated potency against several metastatic cancers 
but patients developed vascular leak syndrome due to a high 
level of IL-2.32,107 In contrast, other studies reported that these 
autologous NK cells failed to demonstrate clinical responses 
or efficacy at large.108,109 Adoptive transfer of ex vivo IL-2 
activated NK cells showing better outcomes than the systemic 
administration of IL-2.107,110 The development of novel NK 
cell-mediated immunotherapies presumes a rich source of 
suitable NK cells for adoptive transfer and an enhancement 
of the NK cell cytotoxicity and durability in vivo. Potential 
sources comprise haploidentical NK cells, umbilical cord 
blood NK cells, stem cell-derived NK cells, permanent NK 
cell lines, adaptive NK cells, cytokine-induced memory-like 
NK cells and chimeric antigen receptor (CAR) NK cells 
(Figure 2). Augmentation of the cytotoxicity and persistence 
of NK cells under clinical investigation is promoted by cyto-
kine-based agents, NK cell engager molecules and ICIs.111,112 

Despite some successes, most patients failed to respond to 
unmodified NK cell-based immunotherapy.113

Clonal NK cell lines, such as NK-92, KHYG-1 and YT 
cells, are an alternative source of allogeneic NK cells, and the 
NK-92 cell line has been extensively tested in clinical 
trials.114–116 NK-92 cells are easily expanded with doubling 
times between 24 and 36 hours.115 NK-92 has received FDA 
approval for trials in patients with solid tumors.116 These 
cells are genetically unstable, which requires them to be 
irradiated prior to infusion. Irradiated NK-92 cells have 
been observed to kill tumor cells in patients with cancer, 
although irradiation limits the in vivo persistence of these 
cells to a maximum of 48 hours.117 The results are still short 
of a significant clinical benefit.118 An NK-92- derived pro-
duct (haNK) has been engineered to express a high-affinity 
variant of CD16 as well as endogenous IL-2 in order to 
enhance effector function (Figure 2).119–121 For example, 
Dinutuximab is a product of human-mouse chimeric mAb 
(ch14.18 mAb), which has demonstrated high efficacy 
against GD2-positive neuroblastoma cells in vitro and mela-
noma cells in vivo.122 In MHC-I expressing tumor cells, the 
effector functions of autologous NK cells are often inhibited 
by KIR that can be blocked with the help of anti-KIR 
(IPH2101).123 Stem cell-derived NK cell products from mul-
tiple sources are currently being tested clinically, including 
those originating from umbilical cord blood stem cells or 
iPSCs.124,125 NK cells account for ~5–15% of all lympho-
cytes in peripheral blood, whereas they constitute up to 30% 

of the lymphocytes in umbilical cord blood.126 iPSC-derived 
NK cells were triple gene- modified to express cleavage- 
resistant CD16, a chimeric antigen receptor (CAR) targeting 
CD19 and a membrane-bound IL-15 receptor signaling com-
plex in order to promote their persistence.127 Thus, investiga-
tions to provide highly active modified NK cells in numbers 
sufficient for clinical application are actively pursued.

CAR NK Cells
CAR T cells are derived from autologous T cells and geneti-
cally engineered to express an antibody single-chain variable 
fragment (scFv) targeting a tumor-associated antigen.128 

CAR T cell therapies achieved objective response rates of 
>80% in patients with acute lymphocytic leukemia (ALL) 
and B cell non-Hodgkin lymphoma.129–131 However, the 
drawbacks of CAR T therapy include severe adverse events 
such as GvHD, cytokine-release syndrome and neurological 
toxicities, besides inefficiencies of T cell isolation, modifica-
tion and expansion as well as exorbitant costs.132 CAR NK 
therapy is expected to circumvent some of these problems, 
including the high toxicities. Primary NK cells are not ideal 
sources for the generation of CAR cell products, due to 
difficulties in cell isolation, transduction and expansion. 
However, NK cell expansion could be greatly improved by 
involvement of a K562 leukemia cell line feeder modified to 
express membrane-bound IL-15 (mbIL-15; Figure 2).133 

Denman et al improved this method adding membrane- 
bound 4–1BBL to the K562 cell line resulting in a high 
expansion of NK cells within a short time.134,135 

Nevertheless, current clinical trials of CAR NK cells rely 
mainly on processing of stem cell-derived or progenitor NK 
cells.136 Genetic engineering of NK cells has been performed 
by viral transduction or electroporation of mRNA.3 Many 
clinical trials of CAR NK-92 cells are ongoing, but the 
requirement for irradiation and resulting short persistence 
are limitations to the clinical efficacy of these products. 
NK92-CD16 cells preferentially killed tyrosine kinase inhi-
bitor (TKI)-resistant NSCLC cells when compared with their 
parental NSCLC cells.137 Moreover, NK92-CD16 cell- 
induced cytotoxicity against TKI-resistant NSCLC cells 
was increased in the presence of cetuximab, an EGFR- 
targeting monoclonal antibody. A number of Phase I trials 
of CAR NK cells from various sources, including autologous 
peripheral blood NK cells, umbilical cord blood NK cells, 
NK-92 cells and iPSCs were designed to target diverse 
cancers, such as ALL, B cell malignancies, NSCLC, ovarian 
cancer or glioblastoma, and are currently active.
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CAR NK cells derived from iPSCs, such as the triple- 
gene-modified constructions are described as a promising 
alternative. For example, a tri-specific killer engager 
(TriKE) consists of two scFvs, one targeting CD16 on 
NK cells and the other targeting CD33 on AML cells, 
linked by an IL-15 domain that promotes NK cell survival 
and proliferation.138 Controlled clinical trials with larger 
patient cohorts are required to validate these early results. 
Immunosuppressive factors of the TME, such as low glu-
cose, hypoxia and MDSCs, Treg cells and tumor asso-
ciated macrophages (TAMs) still suppress the antitumor 
functions of CAR-NK cells. Low efficiency of CAR- 
transduction, limited cell expansion and the scarcity of 
suitable targets impede the use of CAR-NK therapy 
despite of reports of therapeutic efficacy and safety.139

The cytokine gene transfer approaches, including inter-
leukins and stem cell factor (SCF), have been shown to 
induce NK cell proliferation and increases survival capa-
city in vivo.140 The use of primary CAR-NK and CAR-NK 
lines in hematological tumors showed high specificity and 
cytotoxicity toward the target cells.141,142 So far, only 
a few clinical trial studies of CAR-NK have been regis-
tered on ClinicalTrials.gov.143 The combination of block-
ing ICIs on CAR-NK cells can lead to a highly efficient 
cancer-redirected cytotoxic activity.144,145 However, hema-
tological cancers are responsible for only 6% of all cancer 
deaths and solid tumor are much more difficult to target by 
NK/CAR NK-based immunotherapy.146

Conclusion
Both the unmodified and the engineered forms of NK cell 
treatment are showing promise in pilot clinical trials in 
patients with cancer.147 This kind of immunotherapy 
seems to combine efficacy, safety, and relative ease of 
effector cell supply. The lung is populated by NK cells at 
a specific differentiation stage releasing cytokines but 
exhibiting low cytotoxicity. Poor tumor infiltration, immu-
nosuppressive factors and cell types as well as hypoxic 
conditions in the TME limit the activity of NK cells. 
Therefore, larger numbers of activated, cytotoxic compe-
tent and armed NK cells will be required for successful 
therapy.
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