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Purpose: This study aimed to evaluate the in vitro activity of meropenem-vaborbactam 
(MVB) against a collection of carbapenem-resistant Escherichia coli (CREC) isolates and to 
compare the activity with other antibiotics with regard to different separation sites, carba-
penem-resistant mechanisms, and sequence types (STs).
Methods: A total of 58 CREC strains were used as the experimental strains from the First 
Affiliated Hospital of Wenzhou Medical University in southeastern China. The minimum 
inhibitory concentrations of MVB, ceftazidime-avibactam, and tigecycline against all the 
experimental strains were determined by the microdilution broth method.
Results: MVB exhibited higher antimicrobial activity (83% susceptibility) than that of other 
antibiotics, except for colistin and tigecycline. The susceptibility of CREC strains towards 
MVB varied with regard to carbapenem-resistant mechanisms and STs, especially in 
Klebsiella pneumoniae carbapenemase (KPC)-positive isolates and ST8 isolates.
Conclusion: MVB exhibited considerably high activity against KPC-producing and ST8 
CREC isolates. It has the great potential to be an alternative for the treatment of infections 
caused by CREC after determining the type of carbapenemase, the susceptibility to MVB 
and/or STs.
Keywords: meropenem-vaborbactam, carbapenem-resistant Escherichia coli, in vitro 
activity, KPC-producing, ST8

Introduction
The emergence and spread of carbapenem-resistant Enterobacterales (CRE) are 
serious threats,1,2 leading to poor clinical outcomes of conventional antibiotic 
therapy, and especially carbapenem-resistant Escherichia coli (CREC), as one 
class of the most clinically relevant CRE, has become a major threat in hospitals 
worldwide. Resistance in CREC is mainly attributed to the presence of carbapene-
mase encoded by plasmid, which should be closely monitored because of their 
potential trend to spread in both hospital and community settings.3,4 The currently 
available antibiotic options against CREC infections are limited to polymyxins, 
tigecycline, fosfomycin, and aminoglycosides as the mainstays.5,6 Nowadays, in 
clinic context, the CREC infections have raised serious concerns that common 
infections with these “superbugs” may soon be untreatable, which is necessary to 
exploit new and effective anti-CREC therapies.

Meropenem-vaborbactam (MVB), a new antibacterial drug, based on an old 
betalactam molecule with a novel beta/Betalactam inhibitor active on 
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carbapenemases, was approved in August 2017 by the US 
Food and Drug Administration (FDA) for the treatment of 
complicated urine infections caused by Enterobacterales.7 

MVB can slow down the development of bacterial resis-
tance, and hence, is advantageous than meropenem.6,8 

A study reported that MVB exhibits considerable activity 
against class A and C serine beta/Betalactams, including 
Klebsiella pneumoniae carbapenemase (KPC), imipenem- 
hydrolyzing beta/Betalactam carbapenemase, Serratia mar-
cescens enzymes, non-Metallo-carbapenemase-A, and 
Brazilian Klebsiella carbapenemase-1.9 In addition, MVB 
monotherapy showed significant improvement in clinical 
cure rates, lower nephrotoxicity, and lower mortality 
rates.7,8

In recent years, different resistance patterns against 
colistin and fluoroquinolone have been observed in 
E. coli isolates of different sequence types (STs).10–12 

This study aimed to evaluate the in vitro activity of 
MVB against CREC isolates and to compare the activity 
with other antibiotics with regard to different separation 
sites, carbapenem-resistant mechanisms, and STs. This 
study provides important insights for the development of 
new effective therapeutic strategies against CREC 
infections.

Materials and Methods
Bacterial Isolates and Resistance 
Mechanisms
A total of 58 CREC isolates were isolated during our 
previous study13 from different clinical samples collected 
from the First Affiliated Hospital of Wenzhou Medical 
University, Wenzhou, China. These isolates were categor-
ized into 19 different STs, among which the predominant 
was ST8. The isolates were isolated from different clinical 
samples, and most of them were isolated from urine sam-
ples. Various carbapenem-resistant mechanisms were iden-
tified mainly through polymerase chain reaction (PCR) 
and sequencing in our previous study,13 and blaNDM was 
the principal carbapenem-resistant mechanism.

Antimicrobial Susceptibility Testing
Meropenem, vaborbactam, ceftazidime, avibactam, and 
tigecycline were provided by The Medicines Company 
(MedChemExpress, USA). The minimum inhibitory con-
centrations (MICs) of MVB (the fixed concentration of 
vaborbactam: 8 µg/mL),14 ceftazidime-avibactam (CAZ/ 
AVI; the fixed concentration of avibactam: 4 µg/mL), 

and tigecycline were evaluated by the microdilution 
broth method. The results were interpreted on the basis 
of the latest guidelines published by the Clinical and 
Laboratory Standards Institute (CLSI 2019; Pittsburgh, 
PA, USA). Quality control testing was performed by 
using E. coli ATCC 25922, and the quality control results 
were within the specified CLSI limits. All the experiments 
were performed in triplicate.

Statistical Analysis
Statistical analyses were performed using the SPSS 22.0 
software (IBM, Armonk, NY, USA). The categorical vari-
ables were defined as the number and percentage of sub-
jects. The Chi-square test or Fisher’s exact test was 
performed to evaluate the differences in the categorical 
variables. A p-value of <0.05 was considered statistically 
significant.

Results
Antimicrobial Susceptibility Testing of 
CREC for Commonly Used 
Antimicrobials
The MIC50 and MIC90 values and resistance rates of 
commonly used drugs against CREC are shown in 
Table 1 and our previous study.13 All 58 CREC strains 
exhibited lower susceptibility towards ampicillin (2%), 
ceftriaxone (2%), ceftazidime (7%), ertapenem (0), cipro-
floxacin (0), levofloxacin (0), and gentamicin (14%), com-
pared with the susceptibility towards amikacin (78%), 
fosfomycin (62%) and imipenem (65%). While colistin, 
tigecycline, CAZ/AVI and MVB were the last-line of 
defense drugs for the treatment CREC infection, with 
susceptibility rates of 0, 100%, 60%, and 83%, 
respectively.

MICs of MVB versus MICs of Meropenem
Only 6 CREC strains (6/58, 10.34%) were resistant to 
MVB and all of them contained blaNDM-1 or blaNDM-5. 
The MICs of the remaining 52 strains (52/58, 89.66%) 
were in the range of ≤0.03125/8 µg/mL to 8/8 µg/mL, 
which decreased by 2–128 folds compared with merope-
nem alone. A total of 14 strains (14/58, 24.1%) carrying 
blaKPC-2 were highly susceptible to MVB, and their MICs 
decreased by 4–128 folds. Among the 14 strains, the MICs 
of 7 strains (7/14, 50%) were ≤0.03125/8 µg/mL. The 
MIC50 and MIC90 of the strains carrying blaKPC-2 

decreased by 128-fold and 16-fold, respectively. 
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Table 1 Minimum Inhibitory Concentrations (MICs) of 58 Carbapenem-Resistant Escherichia coli Isolates

Isolates Fold 
Change

MIC (µg/mL)

MEM MVB CAZ/AVI COL TGC

DC-38 4 0.25 0.0625/8 64/4 0.25 0.125

DC-269 2 2 1/8 64/4 0.125 0.25
DC-1918 2 0.25 0.125/8 4/4 0.125 0.125

DC-1960 2 2 1/8 1/4 0.125 0.25

DC-2003 1 0.5 0.5/8 64/4 0.25 0.25
DC-3285 64 4 0.0625/8 0.5/4 0.5 0.25

DC-3737 1 16 16/8 >256/4 16 0.25

DC-3835 128 16 0.125/8 1/4 0.125 0.25
DC-3938 8 2 0.25/8 0.5/4 0.125 0.125

DC-4069 16 16 1/8 8/4 0.25 0.25

DC-4385 16 2 0.125/8 8/4 0.125 0.25
DC-4852 8 1 0.125/8 0.5/4 0.125 0.25

DC-4967 64 2 ≤0.03125/8 <0.12/4 0.25 0.25

DC-5108 64 4 ≤0.03125/8 0.25/4 0.125 0.25
DC-5113 64 16 ≤0.03125/8 1/4 0.5 0.25

DC-5114 64 4 ≤0.03125/8 <0.12/4 0.125 0.25

DC-5127 8 0.125 0.0156/8 <0.12/4 0.25 0.25
DC-5128 1 16 16/8 <0.12/4 0.5 0.25

DC-5147 64 1 0.0156/8 0.5/4 0.25 0.25

DC-5178 2 4 2/8 0.5/4 0.25 0.125
DC-5183 4 4 1/8 0.25/4 0.25 0.25

DC-5208 4 4 1/8 1/4 0.25 <0.0625

DC-6525 2 0.125 0.0625/8 <0.12/4 0.25 0.125
DC-6581 2 8 4/8 1/4 0.125 0.125

DC-6669 2 0.5 0.25/8 1/4 0.25 0.25
DC-6729 1 0.5 0.5/8 >256/4 0.25 0.125

DC-6824 16 2 0.125/8 8/4 0.25 0.25

DC-6834 8 0.25 0.03125/8 1/4 0.25 0.125
DC-6856 64 2 ≤0.03125/8 0.25/4 0.25 0.25

DC-6896 64 2 ≤0.03125/8 <0.12/4 0.25 0.5

DC-6899 2 4 2/8 0.25/4 0.25 <0.0625
DC-6911 1 1 1/8 >256/4 0.25 <0.0625

DC-7114 1 4 4/8 >256/4 0.25 <0.0625

DC-7143 1 4 4/8 >256/4 0.25 0.125
DC-7157 1 4 4/8 8/4 0.25 <0.0625

DC-7333 1 2 2/8 >256/4 16 <0.0625

DC-7350 1 8 8/8 >256/4 0.25 <0.0625

DC-7368 1 2 2/8 >256/4 0.25 0.5

DC-7523 1 4 4/8 >256/4 0.5 0.5

DC-7603 2 16 8/8 8/4 0.5 0.5
DC-7658 1 8 8/8 >256/4 0.5 0.25

DC-7663 1 2 2/8 8/4 0.125 2

DC-7683 1 2 2/8 8/4 0.25 1
DC-7706 1 4 4/8 >256/4 0.5 0.5

DC-7741 1 8 8/8 >256/4 0.5 2

DC-7781 1 4 4/8 >256/4 0.25 0.25
DC-7782 1 16 16/8 >256/4 0.25 0.125

DC-7828 1 2 2/8 0.25/4 0.25 1

DC-7911 1 16 16/8 >256/4 0.25 1

(Continued)
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However, the MICs of 27 strains (27/58, 46.5%) carrying 
blaNDM (except 3 strains) had no obvious changes. The 
MICs of strains carrying Cefotaximase-Munich (CTX- 
M-)-type beta/Betalactam genes and blaTEM-1 gene 
decreased by 2–8 folds, indicating a minor change. All 
data are shown in Table 1 and Figure 1.

Comparison of Susceptibility Rates with 
Regard to Diverse Separation Sites
There was no significant difference in the MVB susceptibility 
rate among strains isolated from diverse separation sites and 
was the highest for blood (87.5%), followed by urine and pus 
(83.3%), and drainage fluid (81.8%). The meropenem suscept-
ibility rate was lower than the MVB susceptibility rate and was 
the highest for drainage fluid (36.4%), followed by pus 
(33.3%), and blood (25%). Vaborbactam had a greater effect 
on meropenem susceptibility. There was no significant differ-
ence in various drug susceptibility rates of strains isolated 
from diverse separation sites (Table 2).

Comparison of Susceptibility Rates with 
Regard to Diverse Resistance Genes
MVB susceptibility did not vary significantly with regard 
to resistance genes carried by the strains. The higher MVB 
susceptibility was observed in the case of KPC strains 
(92.9% susceptibility) and strains carrying CTX-M 
(85.7% susceptibility). The MVB susceptibility rate of 
strains carrying resistance genes was higher than that of 
the meropenem susceptibility rate. Furthermore, CAZ/AVI 
susceptibility was significantly higher in KPC isolates 
compared with that in the isolates carrying blaNDM 

(P<0.05). There were non-significant differences in 

susceptibility rates among strains carrying other genes 
and towards other drugs (Table 3).

Comparison of Susceptibility Rates with 
Regard to Diverse Combinations of 
Resistance Mechanisms
A total of 14 combinations of resistance mechanisms were 
found in the strains (Table 4), and the most common combina-
tion was “New Delhi Metallo-beta/Betalactam (NDM) + CTX 
+ TEM + ompC/F”, followed by CTX + ompC/F, KPC + 
CTX, and NDM + CTX + TEM. The susceptibility rate of 
MVB was significantly different among those groups includ-
ing KPC and was different in the strains carrying both KPC 
and NDM at the same time. However, the MIC50 in groups 
including NDM was similar and the susceptibility rate was 
increased because of the increase of MVB breakpoint. The 
remaining combinations of resistance mechanisms involved 
the beta/Betalactam resistance genes (CTX and TEM) and 
outer membrane porin genes (ompC and ompF), and most of 
these strains were susceptible meropenem and MVB, except 
one isolate that carried TEM and ompC/F.

Comparison of Susceptibility Rates with 
Regard to Diverse STs
The MVB susceptibility rate was significantly different 
among strains belonging to different STs, and was the highest 
in ST8 (100% susceptibility rate), and was 85.2% in other 
STs. Vaborbactam had a considerable effect on the restoration 
of meropenem susceptibility because the susceptibility per-
centage of meropenem in each ST group was lower. 
Compared with other ST groups, the susceptibility percentage 

Table 1 (Continued). 

Isolates Fold 
Change

MIC (µg/mL)

MEM MVB CAZ/AVI COL TGC

DC-7914 1 16 16/8 >256/4 0.25 1
DC-7956 1 16 16/8 >256/4 0.5 2

DC-7969 1 0.125 0.125/8 32/4 0.125 0.125

DC-7980 1 0.5 0.5/8 1/4 0.25 1
DC-7994 64 1 0.0156/8 0.25/4 0.25 0.5

DC-8085 1 2 2/8 64/4 0.25 0.25

DC-8087 1 4 4/8 8/4 0.25 1
DC-8111 1 4 4/8 >256/4 0.5 0.5

DC-8234 4 2 0.5/8 1/4 0.25 0.25

Notes: Fold change, indicating the ratio of the MIC of Meropenem to the MIC of MVB. Bolded MICs values, indicating a strain resistant to corresponding drugs. 
Abbreviations: MEM, meropenem; MVB, meropenem-vaborbactam; CAZ/AVI, ceftazidime/avibactam; COL, colistin; TGC, tigecycline.
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of MVB, meropenem, and ceftazidime/avibactam in the ST8 
group and the susceptibility percentage of amikacin in the 
ST19 group was statistically significant (P <0.05) (Table 5).

Discussion
MVB, a new and effective anti-CREC drug, has expanded 
the spectrum of meropenem against CREC infection. 
However, its effects on different strains including CREC 

have not been evaluated. Therefore, this study aimed to 
evaluate the in vitro activity of MVB against CREC iso-
lates and to compare the activity with other antibiotics 
with regard to different separation sites, carbapenem- 
resistant mechanisms, and STs.

All 58 isolates showed higher resistance rates to com-
monly used drugs, including CAZ/AVI, which was an 
antibiotic with activity against serine-lactamase and had 

Figure 1 The cumulative percent of Escherichia coli isolates with different carbapenem-resistant mechanisms inhibited at specified meropenem-vaborbactam concentrations (µg/mL).
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broad-spectrum activity against CREC isolates formerly, 
compared with those of colistin, tigecycline, and MVB. 
Similar results were reported by Brian D. Johnston et al; 
however, the resistance rate of amikacin was higher than 
that of our study (26% vs.19%).15 Therefore, the suscept-
ibility results of MVB in CREC should be studied with 
a proper clinical niche. Among 58 CREC strains, the MICs 

of MVB for some strains decreased by 2–128 folds after 
the addition of vaborbactam. The considerably high 
in vitro activity was shown against some strains. The 
results of this study and those reported by 
Castanheira et al14 were similar, as both showed the poten-
tial MVB activity against contemporary CRE, CREC, and 
multi-drug resistance E. coli isolates.

Table 2 Percent Susceptiblea for Meropenem/Vaborbactam (MVB) and Comparator Agents in Relation to Different Separation Sitesb

Agent Total No. (% of 
58)

Different Separation Sites, No, (Column %)

Urine 
(n=18)c

Blood 
(n=16)c

Drainage Fluid 
(n=11)c

Pus 
(n=6)c

Other Separation Sites 
(n=7)c

MVB 48 (82.8) 15 (83.3) 14 (87.5) 9 (81.8) 5 (83.3) 5 (71.4)
MEM 14 (24.1) 4 (22.2) 4 (25.0) 4 (36.4) 2 (33.3) 0

CAZ/AVI 35 (60.3) 11 (61.1) 13 (81.3) 3 (27.3) 4 (66.7) 4 (57.1)

AMP 1 (1.7) 0 1 (6.3) 0 0 0
CRO 1 (1.7) 0 1 (6.3) 0 0 0

CAZ 4 (6.9) 0 1 (6.3) 0 1 (16.7) 2 (28.6)

IPM 38 (65.5) 12 (66.7) 10 (62.5) 6 (54.5) 5 (83.3) 5 (71.4)
GEN 8 (13.8) 4 (22.2) 2 (12.5) 2 (18.2) 0 0

TOB 10 (17.2) 4 (22.2) 2 (12.5) 3 (27.3) 0 1 (14.3)

AMK 45 (77.6) 14 (77.8) 12 (75.0) 10 (90.9) 4 (66.7) 5 (71.4)
FOS 36 (62.1) 13 (81.3) 12 (75.0) 5 (45.5) 4 (66.7) 2 (28.6)

Notes: All isolates were susceptible to tigecycline. All isolates were non-susceptible to ertapenem, ciprofloxacin, levofloxacin and colistin. aData are expressed as 
no. isolates (column %). bPercent susceptible of isolates with separation sites irrespective. cThere is no statistical significance (P > 0.05, according to χ2 test for two-group 
comparisons of all isolates). 
Abbreviations: MVB, meropenem-vaborbactam; MEM, meropenem; CAZ/AVI, ceftazidime/avibactam; AMP, ampicillin; CRO, ceftriaxone; CAZ, ceftazidime; IPM, imipenem; 
ETP, ertapenem; CIP, ciprofloxacin; LVX, levofloxacin; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; FOS, fosfomycin; COL, colistin.

Table 3 Percent Susceptiblea for Meropenem/Vaborbactam (MVB) and Comparator Agents in Relation to Individual Resistance 
Genesb

Agent Total No. (% of 58) Carbapenem Resistance Genes, 
No, (Column %)

Beta/Betalactam Resistance 
Genes, No, (Column %)

Outer Membrane Porin 
Genes, No, (Column %)

blaKPC  

(n=14) c

blaNDM  

(n=30) c
blaCTX-M-x  

(n=56)c

blaTEM-1  

(n=34)c

ompC  
(n=22)c

ompF  
(n=21)c

MVB 48 (82.8) 13 (92.9) 21 (70.0) 48 (85.7) 26 (76.5) 16 (72.7) 16 (76.2)

MEM 14 (24.1) 1 (7.1) 4 (13.3) 14 (25.0) 7 (20.6) 3 (13.6) 5 (23.8)

CAZ/AVI 35 (60.3) 12 (85.7)* 10 (33.3)* 34 (60.7) 14 (41.2) 12 (54.5) 15 (71.4)

AMP 1 (1.7) 0 1 (3.3) 1 (1.8) 0 1 (4.5) 0

CRO 1 (1.7) 0 1 (3.3) 1 (1.8) 0 1 (4.5) 0

CAZ 4 (6.9) 0 1 (3.3) 4 (7.1) 2 (5.9) 4 (18.2) 0

IPM 38 (65.5) 8 (57.1) 18 (60.0) 38 (67.9) 24 (70.6) 15 (68.2) 13 (61.9)

GEN 8 (13.8) 2 (14.3) 4 (13.3) 7 (12.5) 3 (8.8) 3 (13.6) 2 (9.5)

TOB 10 (17.2) 3 (21.4) 4 (13.3) 9 (16.1) 3 (8.8) 3 (13.6) 2 (9.5)

AMK 45 (77.6) 12 (85.7) 20 (66.7) 43 (76.8) 26 (75.0) 17 (77.3) 14 (66.7)

FOS 36 (62.1) 10 (71.4) 13 (43.3) 35 (62.5) 21 (61.8) 14 (63.6) 13 (61.9)

Notes: All isolates were susceptible to tigecycline. All isolates were non-susceptible to ertapenem, ciprofloxacin, levofloxacin and colistin. All isolates did not carry blaIMP 

(n=0), blaVIM (n=0), blaOXA-48 (n=0) and blaSHV (n=0). aData are expressed as no. isolates (column %). bPercent susceptible of isolates with individual resistance genes 
irrespective of the presence/absence of other individual resistance genes. cSignificant differences (P < 0.05, according to χ2 test for two-group comparisons of all isolates that 
have the indicated resistance gene) are in boldface and marked with an asterisk. 
Abbreviations: MVB, meropenem-vaborbactam; MEM, meropenem; CAZ/AVI, ceftazidime/avibactam; AMP, ampicillin; CRO, ceftriaxone; CAZ, ceftazidime; IPM, imipenem; 
ETP, ertapenem; CIP, ciprofloxacin; LVX, levofloxacin; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; FOS, fosfomycin; COL, colistin.
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In fact, KPC-producing CRE infections are associated 
with a significantly higher risk of overall mortality com-
pared with that of non-KPC-producing CRE infections.3 

In our research, it is worth noting that MVB, CAZ/AVI, 
and AMK were active against KPC-producers, which was 
an Ambler class A enzyme that utilizes serine at the active 

site to facilitate hydrolysis of nearly all currently avail-
able beta/Betalactam antibiotics,16 and 50% of KPC- 
producing CREC isolates were susceptible to MVB 
(MIC ≤0.003125/8 µg/mL) and this was in line with 
Zhou et al.17 A previous study reported that 
a combination of MVB with various carbapenems 
reduced the MIC values by 16–64 folds for tested KPC- 
producing isolates in the US.18 Our finding expressed that 
MVB had the highest decrease in MIC values for KPC- 
producing CREC strains isolated from southeastern 
China. On the other hand, the MICs of strains carrying 
CTX-M-type beta/Betalactam genes, blaTEM-1 genes, and 
outer membrane porin genes were different; however, the 
extent of decrease was less than that of KPC. Probably the 
inhibitory activity of vaborbactam is less important when 
it meets class A ESBLs and class C cephalosporinases 
alone19 compared with that of the stable carbapenem. In 
other words, the low off rate of vaborbactam for KPC 
plays an important role in enhancing the activities of 
antibiotics against KPC-producing strains, and the low 
potency of vaborbactam against CTX- and TEM- 
producing strains might be that it cannot form a stable 
inhibitory complex with these enzymes.19 However, our 
study showed that MVB and CAZ/AVI did not exhibit 
strong inhibitory activity against the Metallo-beta 
/Betalactam NDM-1 and NDM-5, and was consistent 
with the results reported by Lomovskaya et al.20 As 
vaborbactam and avibactam lack inhibitory activity 
against Metallo-beta/Betalactam, it resulted in a similar 

Table 4 Combination of Resistance Mechanisms Among 58 Carbapenem-Resistant Escherichia coli Isolates

Combination of Resistance 
Mechanismsa

Total No.  
(% of 58)

Meropenem Meropenem/Vaborbactam

MIC50  

(µg/mL)
MIC Range  

(µg/mL)
No. (%) 

Susceptible
MIC50  

(µg/mL)
MIC Range  

(µg/mL)
No. (%) 

Susceptible

KPC+CTX 8 (13.8) 4 1, 16 1 (12.5) ≤0.03125/8 ≤0.03125/8, 1/8 8 (100)

KPC+CTX+TEM 1 (1.7) 16 -b 0 (0) 2/8 -b 1 (100)

KPC+CTX+ompC/F 3 (1.7) 2 2, 4 0 (0) ≤0.03125/8 ≤0.03125/8, 1/8 3 (100)

KPC+CTX+TEM+ompC/F 1 (1.7) 4 - b 0 (0) 2/8 - b 1 (100)

KPC+NDM+CTX+TEM+ompC/F 1 (1.7) 2 - b 0 (0) 0.5/8 - b 1 (100)

NDM+CTX 1 (1.7) 4 - b 0 (0) 4/8 - b 1 (100)

NDM+CTX+ompC/F 3 (5.2) 16 2, 16 0 (0) 16/8 2/8, 16/8 1 (33.3)

NDM+TEM+ompC/F 2 (3.4) 4 4, 8 0 (0) 4/8 4/8, 8/8 1 (50)

NDM+CTX+TEM 8 (13.8) 1 0.125, 2 4 (50) 1/8 0.125/8, 2/8 8 (100)

NDM+CTX+TEM+ompC/F 15 (25.9) 4 2, 16 0 (0) 4 0.125/8, 16/8 9 (60)

CTX+TEM 1 (1.7) 0.25 - b 1 (100) 0.0625/8 - b 1 (100)

CTX+ompC/F 9 (15.5) 0.5 0.125, 4 6 (66.7) 0.125/8 0.03125/8, 2/8 9 (100)

CTX+TEM+ompC/F 4 (6.9) 0.5 0.5, 2 2 (50) 0.25 0.0156/8, 1/8 4 (100)

TEM+ompC/F 1 (1.7) 16 - b 0 (0) 8/8 - b 0 (0)

Notes: aCombination of resistance mechanisms are listed alphabetically (prioritising carbapenemases); b -, Indicating not applicable (only one isolate).

Table 5 Percent Susceptiblea for Meropenem/Vaborbactam 
(MVB) and Comparator in Relation to Sequence Types (STs)b

Agent Total No. 
(% of 58)

ST, No, (Column %)

ST8 
(n=17)c

ST19 
(n=7) c

ST692 
(n=7) c

Other STs 
(n=27) c

MVB 48 (82.8) 17 (100)* 4 (57.1) 4 (57.1) 23 (85.2)

MEM 14 (24.1) 4 (23.5)* 0 1 (14.3) 9 (33.3)

CAZ/ 

AVI

35 (60.3) 15 (88.2)* 2 (28.6) 1 (14.3) 17 (63.0)

AMP 1 (1.7) 0 0 0 1 (3.7)

CRO 1 (1.7) 0 0 0 1 (3.7)

CAZ 4 (6.9) 1 (5.9) 0 0 3 (11.1)

IPM 38 (65.5) 12 (70.6) 2 (28.6) 5 (71.4) 19 (70.4)

GEN 8 (13.8) 4 (23.5) 1 (14.3) 0 3 (11.1)

TOB 10 (17.2) 5 (29.4) 1 (14.3) 0 4 (14.8)

AMK 45 (77.6) 16 (94.1) 2 (28.6)* 5 (71.4) 22 (81.5)

FOS 36 (62.1) 14 (82.4) 2 (28.6) 4 (57.1) 16 (59.3)

Notes: All isolates were susceptible to tigecycline. All isolates were non- 
susceptible to ertapenem, ciprofloxacin, levofloxacin and colistin. aData are 
expressed as no. isolates (column %). bPercent susceptible of isolates with STs. 
cSignificant differences (P < 0.05, according to χ2 test for two-group comparisons of 
all isolates) are in boldface and marked with an asterisk. 
Abbreviations: MVB, meropenem-vaborbactam; MEM, meropenem; CAZ/AVI, 
ceftazidime/avibactam; AMP, ampicillin; CRO, ceftriaxone; CAZ, ceftazidime; IPM, 
imipenem; ETP, ertapenem; CIP, ciprofloxacin; LVX, levofloxacin; GEN, gentamicin; 
TOB, tobramycin; AMK, amikacin; FOS, fosfomycin; COL, colistin.
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MIC distribution for MVB and meropenem, with the 
MIC50 and MIC90 of both the two drugs were 16 and 
32 mg/L, respectively.14,21 However, the MIC50 and 
MIC90 of MVB and meropenem of the NDM group 
were lower in our study (Table 1). The percent suscept-
ibility of MVB was higher than that of meropenem in the 
NDM group (Tables 3 and 4). It was not only related to 
Metallo-beta/Betalactam, but also the increase of MVB 
breakpoint. This phenomenon was observed in 14 combi-
nations of resistance mechanisms; MVB exhibited con-
siderably high activity even when both KPC and NDM 
were present in the same strain.

MVB has been approved by the FDA for the treat-
ment of complicated urinary tract infections.7 The 
CRCE strains isolated from various separation sites 
showed susceptibility towards MVB, and had similari-
ties with no statistical differences, suggesting that MVB 
might be effective against CREC infections of various 
sources. This observation needs to be verified with more 
isolates and in vivo tests. Additionally, MVB activity 
varied significantly with regard to STs; the susceptibility 
of ST8 strains towards MVB, meropenem, and CAZ/ 
AVI had statistical differences. Notably, ST8 was the 
predominant ST in the present study; however, other 
studies have reported that ST131 H30R1 and H30Rx 
subclones are more susceptible to MVB than isolates 
of other STs.12,22

To summarize, MVB is effective against most CREC 
clinical isolates found in the hospital of southeastern 
China, and the susceptibility of CREC strains towards 
MVB varied with regard to carbapenem-resistant 
mechanisms and STs. MVB might be considered an 
alternative treatment against invasive infections caused 
by KPC-producing and ST8 CREC isolates. It requires 
the determination of the type of carbapenemase and 
susceptibility to MVB and/or STs.
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