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Objective: Individual differences in glycemic response to metformin in antidiabetic treat-
ment exist widely. Although some associated genetic variations have been discovered, they 
still cannot accurately predict metformin response. In the current study, we set out to 
investigate novel genetic variants affecting metformin response in Chinese type 2 diabetes 
(T2D) patients.
Methods: A two-stage study enrolled 500 T2D patients who received metformin, gliben-
clamide or a combination of both were recruited from 2009 to 2012 in China. Change of 
HbA1c, adjusted by clinical covariates, was used to evaluate glycemic response to metformin. 
Selected single nucleotide polymorphisms (SNPs) were genotyped using the Infinium iSelect 
and/or Illumina GoldenGate genotyping platform. A linear regression model was used to 
evaluate the association between SNPs and response.
Results: A total of 3739 SNPs were screened in Stage 1, of which 50 were associated with 
drug response. Except for one genetic variant preferred to affect glibenclamide, the remain-
ing SNPs were subsequently verified in Stage 2, and two SNPs were successfully validated. 
These were PRKAG2 rs2727528 (discovery group: β=−0.212, P=0.046; validation group: β= 
−0.269, P=0.028) and PRKAG2 rs1105842 (discovery group: β=0.205, P=0.048; validation 
group: β=0.273, P=0.025). C allele carriers of rs2727528 and C allele carriers of rs1105842 
would have a larger difference of HbA1c level when using metformin.
Conclusion: Two variants rs2727528 and rs1105842 in PRKAG2, encoding γ2 subunit of 
AMP-activated protein kinase (AMPK), were found to be associated with metformin 
response in Chinese T2D patients. These findings may provide some novel information for 
personalized pharmacotherapy of metformin in China.
Keywords: type 2 diabetes, metformin response, genetic variants, PRKAG2

Introduction
Type 2 diabetes (T2D) is a common chronic metabolic disease that is harmful 
to public health. The 2019 International Diabetes Federation (IDF) Diabetes 
Atlas reported 116.4 million diabetics aged 20 to 79 years in China, making it 
the country with the highest number of diabetes sufferers in the world.1 

Among adults in China, the estimated overall prevalence of diabetes is 
10.9%, including diagnosed and undiagnosed cases.2 Yet, according to the 
latest epidemiological studies, only 25.8% of definitely diagnosed patients 
were receiving antidiabetic therapy, and only about 40% of patients were 
under favorable glycemic control.3
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Oral antidiabetic drugs (OADs) can be classified as 
follows: biguanide (metformin is the only biguanide in 
general use), second-generation sulfonylureas (SUs), 
meglitinides, thiazolidinediones (TZDs), α-glucosidase 
inhibitors, dipeptidyl peptidase-4 (DPP-4) inhibitors, 
and sodium-glucose cotransporter 2 (SGLT2) 
inhibitors.4 Among these, metformin is the most widely 
used agent owing to its high efficacy, neutral/mild weight 
loss, low cost, and rare side effect of hypoglycemia.4 The 
American Diabetes Association continued to advise in 
2020 that metformin is the preferred initial pharmacolo-
gic agent for type 2 diabetes and should be used up to 
contraindication or intolerance.5 Individual differences in 
glycemic response to metformin in antidiabetic treatment 
exist widely. Less than half of the T2D patients treated 
with metformin could reach their HbA1c target (˂7%) 
and 30% experienced an adverse gastrointestinal 
reaction.6–8

Metformin is not metabolized in vivo and is excreted 
unchanged in urine. Pharmacogenomics of metformin pre-
viously focused mainly on genetic variants of its transporters. 
SNPs within organic cation transporter (OCT) 1–3 (encoded 
by SLC22A1, SLC22A2, SLC22A3, separately)9–12 and multi-
drug and toxin extrusion (MATE) 1/2-k (encoded by 
SLC47A1/ SLC47A2),13,14 plasma monoamine transporter 
(PMAT; encoded by SLC29A4),15 serotonin reuptake trans-
porter (SERT; encoded by SLC6A4),8,16 as well as thiamine 
transporter (THTR-2; encoded by SLC19A3)17 were reported 
to take part in the drug disposal process of metformin. Thus, 
genetic variants of transporters mentioned above probably 
have an impact on metformin pharmacokinetics, accompa-
nied or not by an influence on pharmacodynamics.

Over the past few decades, about 50 single nucleotide 
polymorphisms (SNPs) have been found likely to affect 
its glycemic response, including several genetic variants 
identified by genome-wide association study (GWAS). 
These were rs11212617 closed to ATM (a regulator of 
the target of metformin, AMPK),18 rs8192675 in SLC2A2 
(the coding gene of a glucose transporter, GLUT2),19 

rs254271 in PRPF31 (pre-mRNA processing factor 31) 
and rs2162145 in CPA6 (carboxypeptidase A6).20 Taking 
rs11212617 near ATM as an example, several investiga-
tors attempted to conduct replication and meta-analysis 
of this locus to confirm its influence, but the results were 
inconsistent.21–23 Moreover, these high throughput 
screening researches were all conducted in a multiethnic 
population, among which Asians made up a small pro-
portion or were not included.

We used a candidate gene approach, involving thou-
sands of SNPs, to explore the characteristic genetic var-
iants that affect metformin’s glycemic response in Chinese 
T2D patients.

Methods
Study Participants
Data for this study were obtained from two trials. One is 
the “Glibenclamide” arm of the Xiaoke Pill Trial, 
described in detail by Ji et al24. The other is a group of 
newly diagnosed T2D patients that received metformin 
monotherapy.

A total of 365 patients were recruited for the 
“Glibenclamide” arm. Among these, 182 received 
a combination treatment of metformin plus glibenclamide. 
We called it the “combination treatment group”, or “dis-
covery group”. For this group, glycometabolism measure-
ments were assessed at baseline and then every 12 weeks 
until the trial’s termination. Glibenclamide doses were 
adjusted according to changes of FPG level every four 
weeks, and metformin doses remained unchanged through-
out the trial. Another 183 patients were treatment naïve 
T2D cases who received glibenclamide monotherapy. We 
named this as the “glibenclamide monotherapy group”, or 
“exclusion group”. Dose adjustment was similar to the 
above (Trial no. ChiCTR-TRC-08000074).

As for the metformin group, 145 newly diagnosed and 
drug-naïve T2D patients received metformin monotherapy 
for 16 weeks. We called it the “metformin monotherapy 
group” or “validation group”. Glycometabolism measure-
ments were evaluated at baseline and at the ending point 
(Trial no. NCT00778622).

Phenotype Definitions
Referring to Zhou et al18 we used the change of HbA1c 

level (on-treatment HbA1c level minus pre-treatment 
HbA1c level), adjusted by known clinical covariates, as 
the glycemic response phenotype. On-treatment HbA1c 

was defined as the minimum recorded HbA1c achieved 
within 36 weeks after the index date in the “combination 
treatment group” and “glibenclamide monotherapy group”. 
The covariates included age, sex, weight, serum creatinine 
(Scr), baseline HbA1c level, and drug doses. If the first 
four covariates were all available, the creatinine clearance 
rate (Ccr) would be recommended as a whole instead of 
being adjusted separately. The Ccr was calculated as the 
following equation: (140-age) × weight (in kg) × (0.85 if 
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female)/(0.818 * Scr (in μmol/L). Drug dose was defined 
as the average daily dose during the three months prior to 
the minimum HbA1c being achieved.

Genotyping
Infinium iSelect HD Custom Genotyping BeadChips and 
Illumina GoldenGate genotyping platforms were used for 
patient genotyping. SNPs were primarily selected on the 
basis of pharmacokinetics and pharmacodynamics, as well 
as reported disease-related SNPs, such as diabetes, obesity, 
glucose, and lipid metabolism. The 20 top-ranked GO 
(Gene Ontology) biological process and KEGG (Kyoto 
Encyclopedia of Genes and Genomes) Pathway analysis 
of SNP lists are presented in Figure S1. For iSelect 
BeadChip, SNP selection was based primarily on the 
DMET (Drug Metabolizing Enzymes and Transporter; 
Affymetrix) chip, with some extension. As for 
GoldenGate BeadChip, SNPs were selected mainly direct 
to metformin. Genes likely to affect metformin pharmaco-
kinetics and pharmacodynamics, confirmed or speculated, 
were enrolled. In total, 2986 SNPs were included in the 
iSelect BeadChip, while 768 SNPs were customed into the 
GoldenGate BeadChip. For comparability between the two 
chips, 15 SNPs were customed into both. Because the 
“combination treatment group” was at the discovery 
stage, genotyping by both chips was undertaken. 
Subsequently, the “glibenclamide monotherapy group” 
used the iSelect chip only because glibenclamide-related 
genes were involved in this chip, while the “metformin 
monotherapy group” utilized the GoldenGate Chip for the 
same reason.

Statistical Analysis
Before genetic association analysis, SNP quality con-
trol (QC) and sample QC were performed in three 
groups. For each SNP, simultaneously satisfying call 
rate ≥90% and MAF (minor allele frequency) ≥0.05 
and Hardy–Weinberg equilibrium (HWE) test P values 
> 0.5 were filtered. For each sample, a genotyping call 
rate ≥90% was retained for subsequent analyses. 
Stepwise linear regression was utilized to select clin-
ical covariates of potential effects. Linear regression 
model was performed to test associations between 
each SNP and drug efficacy. The Bonferroni correction 
was used for multiple testing corrections to adjust raw 
P values. All the above analyses were achieved by 
using plink 1.07 (http://pngu.mgh.harvard.edu/purcell/ 
plink/) and SPSS 20.0 (SPSS Inc., Chicago, 
Illinois, USA).

Results
Results of SNP Selection and Genotyping
A total of 2986 SNPs and 768 SNPs were included in 
iSelect BeadChip and GoldenGate BeadChip, separately. 
The accordance ratio of the 15 reduplicative SNPs was 
over 98%. In the “combination treatment group”, 551 
SNPs in iSelect chip and 645 SNPs in GoldenGate Chip 
passed SNP and sample filtering. In the “glibenclamide 
monotherapy group”, 545 SNPs in iSelect chip passed 
filtering, while in the “metformin monotherapy group”, 
644 SNPs in GoldenGate chip passed filtering. The screen-
ing process is shown in Table S1.

Table 1 Demographics of Study Populations

Characteristics Glibenclamide Monotherapy 
Group

Combination Treatment 
Group

Metformin Monotherapy 
Group

No.(male/female) 181(106/75) 176(90/86) 143(84/59)

Age(y) 53.5±8.5 55.0±9.4 52.9±9.9

Baseline weight(kg) 67.2±10.4 67.2±11.1 73.2±13.2
Baseline BMI(kg/m2) 24.5±2.5 25.0±3.1 26.8±3.4

Baseline Waist/hip ratio 0.90±0.07 0.91±0.07 0.93±0.08

Baseline FPG(mmol/L) 9.02±1.57 9.36±1.71 8.50±1.80
Baseline HbA1c(%) 8.34±1.22 8.47±1.26 8.32±0.82

On-treatment HbA1c(%) 6.56±0.90 6.78±0.99 6.53±0.54

Baseline Creatinine (μmol/L) 74.14±20.09 70.23±18.15 NA
Glibenclamide daily dose 

(mg)

3.75(2.50–5.00) 2.50(2.08–5.00) /

Metformin daily dose (mg) / 1000(750–1500) 1500(1500–2000)

Notes: Data are presented as means ± SD or Median and interquartile range (IQR, 25th and 75th percentile). “NA” stands for missing data. “/” stands for no data for 
monotherapy patients.
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Characteristics of Study Populations
Detailed demographics are shown in Table 1. After strictly 
excluding patients who did not meet the entry criteria but 
were recruited, there were 176 patients (90 males and 86 
females) in the combination treatment group (discovery 
group), 181 patients (106 males and 75 females) in the 
glibenclamide monotherapy group (exclusion group) and 
143 patients (84 males and 59 females) in the metformin 
monotherapy group (validation group). Baseline age, 
weight, BMI, and waist/hip ratio are listed in Table 1. 
A relatively higher proportion of overweight and obese 
individuals were observed in the validation group. The base-
line FPG levels were, respectively, 9.36±1.71, 9.02±1.57, 
and 8.50±1.80 mmol/L in the discovery, exclusion, and 
validation groups in sequence. The baseline HbA1c levels 
in turn were 8.47±1.26, 8.34±1.22, and 8.32±0.82%. The on- 

treatment HbA1c refers to the minimum HbA1c level during 
visits, and the level was 6.78±0.99, 6.56±0.90, 6.53±0.54% 
in sequence. Correspondingly, medication daily dose was 
the average daily dose for three months prior to the mini-
mum HbA1c being achieved. For the discovery group, the 
glibenclamide daily dose was 2.50 mg (2.08–5.00 mg) (IQR, 
25th and 75th percentile, the same as below) and the met-
formin daily dose was 1000 mg (750–1500 mg). For the 
exclusion group, the glibenclamide daily dose was 3.75 mg 
(2.50–5.00 mg). For the validation group, the metformin 
daily dose was 1500 mg (1500–2000 mg).

Results of Genetic Association Analysis
The integrated workflow is shown in Figure 1.

First, we established the association between genotypes 
and drug response in the discovery group. We merged 

Figure 1 The design workflow of this clinical study.
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Table 2 SNPs Associated with Phenotype in Discovery Group (Stage 1)

Rs Chromosome Position Nearby Gene Allele MAF* β P-value

rs34274 12 109164055 ACACB A/G 0.149 0.469 0.0017
rs4929949 11 8583046 STK33 G/A 0.422 0.300 0.0026

rs7438284 4 69098619 UGT2B7 T/A 0.328 −0.345 0.0034

rs6664 3 143122898 CHST2 A/G 0.386 −0.333 0.0045
rs4148095 21 42215846 ABCG1 G/A 0.155 0.413 0.0047

rs4726084 7 151687417 PRKAG2 A/G 0.239 0.336 0.0056

rs972283 7 130782095 LOC105375508 A/G 0.290 −0.303 0.0076
rs4646440 7 99763247 CYP3A4 A/G 0.251 0.321 0.0093

rs1423096 19 7674291 RETN A/G 0.172 0.346 0.0101
rs6115830 20 396582 TRIB3 A/G 0.283 −0.298 0.0105

rs2237988 11 17422587 ABCC8 A/G 0.230 −0.314 0.0111

rs2299641 11 17419443 ABCC8 C/G 0.171 0.366 0.0125
rs7483 1 109737079 GSTM3 G/A 0.261 0.321 0.0133

rs909530 1 171114034 FMO3 A/G 0.332 0.273 0.0133

rs4402960 3 185793899 IGF2BP2 A/C 0.279 −0.291 0.0170
rs12233719 4 69096731 UGT2B7 A/C 0.149 0.317 0.0170

rs730570 14 100676553 LOC105370668 A/G 0.171 0.330 0.0171

rs4755228 11 44107740 EXT2 A/C 0.320 −0.275 0.0179
rs12924026 16 15991796 ABCC1 G/A 0.055 −0.559 0.0186

rs4148330 16 15947911 ABCC1 G/A 0.437 0.236 0.0208

rs10906115 10 12272998 CDC123 G/A 0.372 −0.258 0.0214
rs4148416 17 50676062 ABCC3 A/G 0.140 0.353 0.0214

rs2236135 14 23126512 SLC7A8 G/A 0.455 0.240 0.0225

rs1714987 17 37386072 C17orf78 C/G 0.426 0.243 0.0231
rs6975294 7 151641118 PRKAG2 A/T 0.216 0.287 0.0233

rs7136445 12 21171814 SLCO1B1 G/A 0.477 −0.258 0.0258

rs10916824 1 20592419 CDA G/A 0.097 −0.407 0.0259
rs5050 1 230714140 AGT C/A 0.171 −0.298 0.0301

rs2297322 13 98723927 SLC15A1 A/G 0.412 −0.224 0.0306

rs2453594 17 19581638 SLC47A1 G/A 0.244 0.276 0.0308
rs4952986 2 43347159 THADA A/G 0.344 −0.232 0.0308

rs864745 7 28140937 JAZF1 G/A 0.233 −0.256 0.0331

rs13233587 7 151832150 PRKAG2 A/G 0.376 −0.240 0.0331
rs3782905 12 47872384 VDR C/G 0.181 0.285 0.0334

rs212091 16 16142793 ABCC1 G/A 0.219 0.275 0.0349

rs1128977 1 165419892 RXRG A/G 0.159 −0.306 0.0353
rs13959 9 72930966 ALDH1A1 A/G 0.440 −0.218 0.0357

rs4726070 7 151631132 PRKAG2 A/G 0.299 0.234 0.0358

rs3751889 16 1220055 CACNA1H G/A 0.085 0.391 0.0365
rs3755740 3 143118124 CHST2 A/G 0.409 −0.225 0.0385

rs1800545 10 111077780 ADRA2A A/G 0.179 0.294 0.0386

rs1531343 12 65781114 RPSAP52 C/G 0.106 0.354 0.0396
rs3814573 10 113138334 TCF7L2 G/A 0.332 −0.240 0.0401

rs1132054 19 48599142 SULT2B1 A/G 0.347 −0.226 0.0440

rs12518099 5 90250292 CETN3 G/A 0.425 0.218 0.0446
rs2727528 7 151653366 PRKAG2 C/A 0.379 −0.212 0.0461
rs1645694 19 41094903 CYP2A13 A/G 0.080 0.371 0.0470

rs1105842 7 151667178 PRKAG2 A/C 0.399 0.205 0.0476
rs6952398 7 151699167 PRKAG2 G/A 0.110 0.334 0.0492

rs730947 2 218838575 PRKAG3 C/A 0.239 −0.247 0.0495

Notes: *Minor allele frequency is calculated from the subjects; Position is based on GRCh38. p12; Genetic variants with P value less than 0.05 in both two stages are 
presented in bold. 
Abbreviations: MAF, minor allele frequency; β, beta coefficient.

Pharmacogenomics and Personalized Medicine 2021:14                                                                      https://doi.org/10.2147/PGPM.S305020                                                                                                                                                                                                                       

DovePress                                                                                                                         
749

Dovepress                                                                                                                                                             Xiao et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


genotyping data of two platforms and redid SNP and sample 
QC. 1245 SNPs passed filter, including 14 reduplicative loci 
between the two platforms, so that the number of enrolled 
SNPs was 1231. After adjustment for baseline HbA1c level, 
Ccr, and medication daily dose, 50 SNPs were found to be 
associated with the change of HbA1c value (P˂0.05, shown 
in Table 2). Among these probably positive loci, 60% were 
from the GoldenGate chip.

Next, associations between genotype and phenotype in 
the exclusion group were analyzed. 19 of 545 SNPs were 
found related to glibenclamide response (P˂0.05, shown in 
Table 3), among which was rs1800545 in ADRA2A (adre-
noceptor alpha 2A) with P value less than 0.05 in both 
groups above. Our preference is that this variant is the 
most likely to affect glibenclamide response.

Because most SNPs found in the discovery group were 
derived from the GoldenGate chip, only GoldenGate gen-
otyping was performed on validation group patients using 
metformin monotherapy. In this group, 27 of 644 SNPs 
were found to be correlated with metformin glucose- 
lowering efficacy (P˂0.05, shown in Table 4). Compared 
with SNPs identified in the discovery group, two variants 
of the PRKAG2 (protein kinase AMP-activated non- 
catalytic subunit gamma 2) gene were validated (bold in 
Tables 2 and 4). One was PRKAG2 rs2727528 (discovery 
group: β=−0.212, P=0.046; validation group: β=−0.269, 

P=0.028). The other was PRKAG2 rs1105842 (discovery 
group: β=0.205, P=0.048; validation group: β=0.273, 
P=0.025). C allele carriers (W/M+M/M, W=wild type; 
M=mutation type) of rs2727528 and C allele carriers (W/ 
W+W/M) of rs1105842 would have a larger difference of 
HbA1c level when using metformin (shown in Figure 2). 
Meanwhile, we were concerned that in the metformin 
monotherapy group, there were 5 SNPs located in the 
PRKAG2 gene found to be associated with metformin 
response. Except for the two SNPs mentioned above, the 
other three were rs1029946 (β=0.306, P=0.001), 
rs6964824 (β=−0.347, P=0.013), and rs2727551 
(β=0.296, P=0.042). Linkage disequilibrium analysis 
showed that the linkage among the five SNPs was rela-
tively low (shown in Figure 3). In addition, rs11212617 
near C11orf65 or ATM, identified by the first metformin 
GWAS, was repeated in the metformin monotherapy group 
(β=−0.255, P=0.035), while C allele carriers benefited 
more in our research.

Discussion
To our knowledge, the current study is the first to use high- 
throughput genotyping chips to identify candidate SNPs, 
which may affect metformin response in Chinese T2D 
patients through a two-stage study. Three groups totaling 
500 patients met the final selection criteria and were 

Table 3 SNPs Associated with Phenotype in Exclusion Group (Stage 1)

Rs Chromosome Position Nearby Gene Allele MAF* β P-value

rs953062 6 46658616 SLC25A27 G/A 0.282 −0.339 0.0051
rs2156609 18 45667036 SLC14A2 C/G 0.376 0.295 0.0059

rs2229523 6 85489515 NT5E A/G 0.403 0.314 0.0060

rs7797834 7 92113836 CYP51A1 G/A 0.193 0.339 0.0127
rs1050891 2 138014190 HNMT G/A 0.287 −0.266 0.0163

rs721950 8 20181826 SLC18A1 A/C 0.180 −0.310 0.0171

rs9381468 6 46657537 SLC25A27 A/G 0.425 −0.233 0.0285
rs1800545 10 111077780 ADRA2A A/G 0.160 0.300 0.0297

rs3743369 15 92164339 SLCO3A1 A/G 0.224 0.255 0.0308

rs2295490 20 388261 TRIB3 G/A 0.233 0.263 0.0335
rs4715333 6 52804451 GSTA1 A/C 0.467 0.213 0.0340

rs324420 1 46405089 FAAH A/C 0.130 −0.336 0.0365

rs17707947 5 16877635 MYO10 A/G 0.113 0.343 0.0379
rs2952151 17 39672243 PGAP3 G/A 0.459 −0.219 0.0398

rs2072330 17 19741159 ALDH3A1 T/A 0.243 0.249 0.0399

rs3731596 2 226797473 IRS1 G/A 0.052 0.486 0.0416
rs4646227 13 98706147 SLC15A1 C/G 0.072 0.424 0.0454

rs11770903 7 95397015 PON3 G/A 0.204 0.259 0.0461

rs2049900 7 92109474 AKAP9 G/C 0.343 −0.214 0.0475

Notes: *Minor allele frequency is calculated from the subjects; Position is based on GRCh38. p12. 
Abbreviations: MAF, minor allele frequency; β, beta coefficient.
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analyzed. Previous studies on metformin pharmacoge-
nomics were mostly carried out in patients receiving com-
bination therapy, with at least one more antidiabetic drug 
being added to metformin. Even if subjects were metfor-
min monotherapy patients, or considering monotherapy 
patients as a subgroup, the sample size was usually rela-
tively small. This was understandable for at least two 
reasons. First, many T2D patients have progressed to 
such a degree that a single drug could not well control at 
the time of diagnosis. That is why we emphasize screening 
for diabetes. Second, as described in the introduction, 
a proportion of patients do not respond well to metformin 
or cannot tolerate its side effects. To cripple interference 
from the combined drugs, we individually recruited com-
mensurate patients for treatment with the specified anti-
diabetic drug. We validated our results at the discovery 
stage in metformin monotherapy patients. All the above 

was to strengthen the credibility of verified SNPs in affect-
ing metformin response in Chinese T2D patients.

In the discovery group, we screened out 50 SNPs 
nominally associated with the change of HbA1c value. 
Although the one with the lowest P value (10−3 level) 
did not pass the Bonferroni test (Bonferroni P value 
should be less than 4.06×10−5), potential impacts could 
be masked. Furthermore, due to the combination of met-
formin and glibenclamide, we did not know the contribu-
tion of each drug in glucose lowering. To minimize the 
influence, 19 SNPs were identified for association with 
glibenclamide response in the glibenclamide monotherapy 
group. It was not surprising that some of them were 
located in or near “known” genes to affect pharmacoki-
netics or pharmacodynamics of sulfonylureas, such as 
IRS1,25 CYP51A1,26 ADRA2A,27 and so on. Due to racial 
differences in allele frequency, some crucial variants of 

Table 4 SNPs Associated with Phenotype in Validation Group (Stage 2)

Rs Chromosome Position Nearby Gene Allele MAF* β P-value

rs215096 16 15961589 ABCC1 G/A 0.147 0.465 0.0064
rs1029946 7 151578720 PRKAG2 G/A 0.462 0.306 0.0096

rs4607517 7 44196069 GCK A/G 0.175 0.399 0.0103

rs6964824 7 151654146 PRKAG2 G/A 0.206 −0.347 0.0127
rs4148622 11 17427455 ABCC8 A/G 0.133 0.404 0.0146

rs10423928 19 45679046 GIPR T/A 0.220 0.336 0.0151

rs2292772 12 21892837 ABCC9 G/A 0.210 −0.331 0.0196
rs3746103 19 1233682 CBARP A/G 0.115 −0.403 0.0231

rs7615776 3 126341774 KLF15 A/G 0.325 −0.281 0.0232
rs10498769 6 46649581 CYP39A1 C/G 0.126 −0.417 0.0238

rs915654 6 31570720 LTA T/A 0.479 0.268 0.0242

rs7301876 12 21881686 ABCC9 A/G 0.231 −0.306 0.0243
rs1105842 7 151667178 PRKAG2 A/C 0.423 0.273 0.0250
rs1514175 1 74525960 TNNI3K G/A 0.248 −0.315 0.0251

rs3856806 3 12434058 PPARG A/G 0.245 0.296 0.0263
rs2727528 7 151653366 PRKAG2 C/A 0.381 −0.269 0.0281
rs340874 1 213985913 PROX1 G/A 0.402 0.275 0.0313

rs2299869 6 35415655 PPARD A/G 0.157 −0.341 0.0325
rs1552224 11 72722053 ARAP1 C/A 0.077 0.463 0.0345

rs1800796 7 22726627 IL6 C/G 0.308 −0.271 0.0349

rs1875796 3 12402158 PPARG G/A 0.450 0.254 0.0353
rs11212617 11 108412434 C11orf65 A/C 0.385 −0.255 0.0353

rs2417940 12 20864941 SLCO1B3 A/G 0.140 −0.334 0.0363

rs6436094 2 218822874 PRKAG3 G/A 0.465 −0.239 0.0422
rs2727551 7 151694567 PRKAG2 A/G 0.203 0.296 0.0423

rs651164 6 160160342 SLC22A1 G/A 0.413 −0.221 0.0460

rs10838738 11 47641497 MTCH2 G/A 0.266 −0.287 0.0467

Notes: *Minor allele frequency is calculated from the subjects; Position is based on GRCh38. p12; Genetic variants with P value less than 0.05 in both two stages are 
presented in bold. 
Abbreviations: MAF, minor allele frequency; β, beta coefficient.
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sulfonylureas like *2 variant (Arg144Cys, rs1799853), *3 
variant (Ile359Leu, rs1057910) of CYP2C928 were rare 
mutations in Chinese patients, so that they either were 
not selected in the genotyping chip originally, or did not 
pass MAF filtering. By comparing the results of the two 
groups above, one repeated locus was regarded as asso-
ciated with glibenclamide, but not metformin. Over 60% 
of the remaining 49 SNPs came from the GoldenGate chip, 
which was targeted at metformin’s intracorporal process 
and efficacy. Thus, we decided to verify the remaining 

SNPs using only the GoldenGate chip. A total of 27 
SNPs with a raw P value less than 0.05 and PRKAG2 
rs2727528 and rs1105842 were duplicated in both discov-
ery and validation groups. Further analysis indicated that 
C allele carriers of rs2727528 and C allele carriers of 
rs1105842 would have a larger difference of HbA1c level 
when using metformin. This could mean that patients with 
prepotent genotype will obtain more benefit from metfor-
min in glucose control. Meanwhile, we were concerned 
that in the metformin monotherapy group, five SNPs 

Figure 2 Proportional reduction in HbA1c by PRKAG2 rs2727528 and rs1105842 genotypes as represented by violin plots. Proportional reduction in HbA1c was calculated as 
(on-treatment HbA1c level minus pre-treatment HbA1c level)/pre-treatment HbA1c level. (A) Proportional reduction in HbA1c among PRKAG2 rs2727528 different genotypes 
in discovery group; (B) Proportional reduction in HbA1c among PRKAG2 rs2727528 different genotypes in validation group; (C) Proportional reduction in HbA1c among 
PRKAG2 rs1105842 different genotypes in discovery group; (D) Proportional reduction in HbA1c among PRKAG2 rs1105842 different genotypes in validation group.
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located in the PRKAG2 gene were nominally associated 
with metformin response, and were in poor linkage with 
each other. This suggests that PRKAG2 and its variants 
may contribute more to metformin efficacy than we 
recognize.

Metformin has been shown to act via both AMP- 
activated protein kinase (AMPK)-dependent and AMPK- 
independent mechanisms.29 AMPK is a heterotrimeric 
complex consisting of a catalytic subunit (α, encoded by 
PRKAA1 and PRKAA2) and two regulatory subunits (β, 
encoded by PRKAB1 and PRKAB2; γ, encoded by 
PRKAG1, PRKAG2, and PRKAG3).30,31 The γ-subunit 
harbors nucleotide-binding sites and plays an important 
role in AMPK regulation in response to cellular energy 
levels. In mammals, there are three isoforms of the γ- 
subunit, and these respond differently to regulation by 
nucleotides.32,33 A recent study has further reported that 
humans carrying the R302Q mutation in γ2 have increased 
adiposity and slightly raised fasting glucose levels com-
pared with unaffected individuals, owing to chronic acti-
vation of γ2 AMPK when mutation exists.34 This suggests 
that mutation could change the state of activation. 
Genome-wide association studies show that PRKAG2 is 
significantly associated with diabetes incidence.35 In addi-
tion, methylation signatures of cg24061580 (PRKAG2) 
correlate with insulin resistance.36 Polymorphisms in 

encoding genes of other subunits, PRKAA1 (encode α1), 
PRKAA2 (encode α2), and PRKAB2 (encode β2), have 
been found to affect metformin glucose-lowering 
effect.37 However, PRKAG2 has been extensively studied 
mainly for its mutations, which could cause human cardi-
omyopathy characterized by hypertrophy, Wolff-Parkinson 
-White syndrome, conduction system disease, and glyco-
gen storage in the myocardium.38 Recent studies have 
revealed the molecular pathogenesis of cardiac abnormal-
ity owing to PRKAG2 mutation. PRKAG2 mutant patients 
and model mice displayed anomalous atrioventricular con-
duction related to cardiac glycogen overload. Most likely, 
the increased AMPK activity caused by active mutation 
enhanced glycogen synthesis through robust glucose 
uptake.39,40 That is, glucose-6-phosphate and the abundant 
substrate functioned as allosteric activators of glycogen 
synthase, thus promoting the influx of glucose by AMPK 
activation to synthesize glycogen. However, because of 
insulin deficiency and glucagon-induced insulin resistance, 
diabetics cannot store glucose as liver glycogen, either 
directly (glycogen synthesis from dietary glucose after 
meals) or indirectly (glycogen synthesis from “de novo” 
synthesis of glucose).

Our study found that PRKAG2 rs2727528 and rs1105842 
could affect the hypoglycemic effect of metformin in 
Chinese Han T2D patients. We speculate that the mutation 

Figure 3 Linkage disequilibrium analysis of 5 SNPs (rs1029946, rs1105842, rs2727528, rs2727551, rs6964824) in PRKAG2 in validation group. (A) D’ of the 5 SNPs in 
PRKAG2; (B) r2 of the 5 SNPs in PRKAG2.
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in PRKAG2 might change the conformation or activity of γ2 
AMPK, thus altering the rate of gluconeogenesis, glycogen 
cycling, and hepatic glucose output. Coincidentally, metfor-
min acts primarily by decreasing hepatic glucose output, 
largely by inhibiting gluconeogenesis.41 The interaction 
between metformin and PRKAG2 mutation is fascinating. 
However, our hypothesis needs to be verified by cell and 
animal experiments.

There were certain limitations to our study. First, 
superabundant trivial loci were enrolled when designing 
the genotyping chip, especially those with very low allele 
frequency in Chinese people. Second, due to differences in 
visit times, only 16-week glycometabolism and lipometa-
bolism measures were collected in the metformin mono-
therapy group. A different course of treatment compared 
with the discovery group may mask the effects of some 
meaningful gene variants.

Conclusion
Nevertheless, this is progressive research with a more 
rigorous grouping and a larger population to screen genetic 
variants that could affect metformin response in Chinese 
T2D patients. By correlating the change of HbA1c levels 
with thousands of related SNPs, we found that PRKAG2 
rs2727528 and rs1105842 polymorphisms may affect met-
formin response in Chinese T2D patients. The mechanisms 
of their influence need further research.
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