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Abstract: Drug repurposing is a feasible strategy in developing novel medications. 
Regarding the cancer field, scientists are continuously making efforts to redirect conventional 
drugs into cancer treatment. This approach aims at exploring new applications in the existing 
agents. Antiparasitic medications, including artemisinin derivatives (ARTs), quinine-related 
compounds, niclosamide, ivermectin, albendazole derivatives, nitazoxanide and pyrimetha-
mine, have been deeply investigated and widely applied in treating various parasitic diseases 
for a long time. Generally, their pharmacokinetic and pharmacodynamic properties are well 
understood, while the side effects are roughly acceptable. Scientists noticed that some of 
these agents have anticancer potentials and explored the underlying mechanisms to achieve 
drug repurposing. Recent studies show that these agents inhibit cancer progression via 
multiple interesting ways, inducing ferroptosis induction, autophagy regulation, mitochon-
drial disturbance, immunoregulation, and metabolic disruption. In this review, we summarize 
the recent advancement in uncovering antiparasitic drugs’ anticancer properties from the 
perspective of their pharmacological targets. Instead of paying attention to the previously 
discovered mechanisms, we focus more on newly emerging ones that are worth noticing. 
While most investigations are focusing on the mechanisms of their antiparasitic effect, more 
in vivo exploration in clinical trials in the future is necessary. Moreover, we also paid 
attention to what limits the clinical application of these agents. For some of these agents 
like ARTs and niclosamide, drug modification, novel delivery system invention, or drug 
combination are strongly recommended for future exploration. 
Keywords: ferroptosis, autophagy, mitochondria, immunoregulation, glycolysis

Introduction
Cancer has become one of the biggest threats among all sorts of health concerns.1 

According to the Global Burden of Disease Study 2017, cancer-related deaths have 
increased by 25.4% over the past decade.1 As one of the three main cancer 
treatments, chemotherapy is the major choice for most types of cancers. While 
scientists have made progress in reducing the death rates using these agents, 
existing traditional chemoagents generally have some side effects like nephrotoxi-
city or myelosuppression, which may limit their application in clinical practice.2 

Moreover, some cancers may develop resistance to these agents during the treat-
ment, profoundly reducing the therapeutic effect.3 In this way, it is of great 
significance to include more effective chemo agents that exhibit antitumor proper-
ties in current cancer treatment. Novel medication invention is one of the main 
ways to develop new drugs. However, such an approach is relatively costly and 
time-consuming under the current drug designed and development model, based on 
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the fact that it would take more than ten years on average 
before an invented drug is applied clinically, regardless of 
the low overall success rate.4 Comparably, drug repurpos-
ing is more efficient and money-saving for for the corpora-
tions, government and the patients, as such a strategy may 
help reduce the cost of drug invention, finally reduce the 
price of the medication. With more available preclinical 
experiments, clinical trials, and practice, it would take less 
time and lower cost to apply an approved drug in treating 
cancer.5

Antiparasitic drugs are a group of chemo agents that 
act against infections caused by parasites, including arte-
misinin derivatives (ARTs), quinine-related compounds, 
niclosamide, ivermectin, albendazole derivatives, nitazox-
anide and pyrimethamine (Figure 1). These agents exhibit 
various modes of effect on parasites. Most of the FDA- 
approved antiparasitic agents have been applied clinically 
for a long time, and their pharmacokinetic and pharmaco-
dynamic properties have been explored thoroughly. 
Moreover, their toxicity on normal human cells and pos-
sible adverse effects are well understood and mostly 
acceptable. In this way, scientists thought of the possibility 
of redirecting antiparasitic agents for treating cancers.

Inspiringly, some of these medications do exhibit anti-
tumor properties. For some of these medications, the 
mechanism of how they kill cancer cells is similar to 
how they kill parasites. Moreover, researchers kept explor-
ing and successfully uncovered several novel antitumor 
mechanisms that target other molecules and biological 
procedures that have not been discovered before. 
Multiple phenotypes and metabolisms are involved. 
Ferroptosis has been regarded as a new approach to induce 
cancer cell death, and interestingly, ARTs target the pro-
cess to exert antitumor properties.6 Autophagy acts as a 
“Double-Edged Sword” in cancer cell metabolism, and its 
regulation is closely related to cancer cell death.7 

Mitochondria is the cancer cells’ energy factory, and its 
dysfunction contributes a lot to cancer cell death.8 Aerobic 
glycolysis, known as the “Warburg Effect”, is an essential 
metabolic pathway and a therapeutic target for cancer 
cells.9 The tumor microenvironment is attracting scien-
tists’ attention recently, and some of these antiparasitic 
medications exert immunoregulatory effects, which con-
tribute to their antitumor properties.10 Several signal path-
ways are also involved in the anticancer potential of the 
antiparasitic agents. Altogether, these newly discovered 

Figure 1 Chemical structure of the antiparasitic agents with anticancer properties: Artemisinin derivatives (A); Quinine related compounds (B); Albendazole derivatives 
(C); Ivermectin (D); Niclosamide (E); Pyrimethamine (F) and Nitazoxanide (G).
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anticancer mechanisms profoundly bettered our under-
standing of these drugs.

In this review, we summarized and discussed the recent 
progress in redirecting antiparasitic drugs for cancer treat-
ment, specifically from a view of the underlying 
mechanisms.

Ferroptosis Inducing Effect of 
Antiparasitic Agents
Scientists have explored the mechanism of how ART and 
its derivatives kill Plasmodium before. Heme and iron 
activate ARTs in vivo, and the cleavage of the endoper-
oxide bridge produces intracellular ROS, which is critical 
for its antimalarial effect.11,12 Although uncertainty and 
controversy still exist in its exact antimalarial mechanism, 
scientists believe that both iron and ROS play an essential 
role in its antiparasitic effect.

Interestingly, the antitumor effect of ARTs shares at 
least to some degree a similar mechanism with its antipar-
asitic effect (Table 1). In the early 21st century, scientists 
observed that ARTs’ anticancer effect correlates with the 
existence of iron and ROS production.13,14 However, the 
big picture of how these two factors exert their tumor 
inhibitory function remains fuzzy for a long time. In 
2012, Dixon et al firstly define the concept of 

“Ferroptosis” as “Iron-dependent nonapoptotic cell 
death”, which dramatically deepens understanding of 
iron-related cell death.15 Generally, ferroptosis refers to 
an iron-dependent and reactive oxygen species (ROS)- 
producing cell death procedure. Later, researchers recog-
nized that ferroptosis induction is exactly how ARTs kill 
cancer cells.16–19

ARTs function as multi-target ferroptosis inducers in 
cancer cells (Figure 2). One of the mechanisms is by 
stepping on the “accelerator” of the ferroptosis procedure. 
The transferrin receptor is the source of intracellular iron 
and thus is the upstream component in the ferroptosis 
pathway. Artesunate (ARS) and many other ARTs upregu-
late the expression level of the transferrin receptor, thus 
connecting the ferroptosis with ARS-induced cancer cell 
inhibition.19,20 The IRP/IRE (Iron Regulatory Proteins/ 
Iron Responsive Element) system is probably the most 
critical regulator maintaining the intracellular iron 
hemostasis.21 It regulates the expression of a series of 
iron concentration-regulating proteins at the post-tran-
scription level.20 ARTs target this system and its down-
stream proteins to disturb the iron hemostasis in cancer 
cells. In normal situations, the IRP recognizes the free iron 
and reduces its binding capacity with IRE.20 This results in 
upregulation of the ferritin expression. As the iron storage 
protein, ferritin helps maintain the normal intracellular 

Table 1 Ferroptosis Inducing Effect of Antiparasitic Agents

Drug Mechanism Reference

Artemisinin Targets the Iron Regulatory Proteins (IRP)/Iron Responsive Element (IRE) system and its downstream proteins 

to affect the iron hemostasis in cancer cells

[21]

Directly associates with iron via redox reaction rather than interacting with the IRP/IRE system, thus results in 

no increase of ferritin

[23,24]

Reduces the intracellular GSH level, and significantly promotes the Fenton reaction and peroxidation 

accumulation

[27]

Induces ROS and causes mitochondrial damage, resulting in loss of mitochondrial membrane potential and 

decreased Bcl-2 level, finally results in intrinsic apoptotic pathway

[32]

Induces ROS and causes DNA damage, resulting in DNA double-strand break(DSB), followed by upregulation 

of the DNA damage associated proteins, including γH2AX. As a result, such DSB injury leads to G2/M phase 
cell cycle blockage.

33, [35–37]

Artesunate Induces ferroptosis in cancer cells by interfering with the expression level of transferrin receptor [19]

Dihydroartemisinin Induces the autophagy-dependent degradation of ferritin by regulating the AMPK/mTOR/p70S6k pathway [24,25]

Induces the endoplasmic reticulum stress in glioma cells and further upregulates the expression level of GPX4 

via the PERK-ATF4-HSPA5-GPX4 axis

[29]

Induces ferroptosis via GPX4 expression inhibition in glioblastoma [30]
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iron concentration.22 ARTs can directly associate with iron 
via Redox reaction.23 However, Chen’s study revealed that 
these associated irons fail to interact with the IRP/IRE 
system, resulting in no increase of ferritin.24 However, 
the ART-associated irons’ superoxidative reaction-catalyz-
ing ability remains similar to free irons. In this way, free 
irons escape from ferritin’s regulation and accumulate in 
the cell while preserving its ability to promote ferroptosis.-
24 Interestingly, scientists found another pathway that 
ARTs can influence ferritin level. Dihydroartisinin 
(DHA) induces autophagy-dependent ferritin degradation 
by regulating the AMPK/mTOR/p70S6k pathway. Again, 
this results in increased intracellular iron 
concentration.24,25

ARTs may also regulate the negative-regulatory factors 
(the “brake”) of ferroptosis. As an anti-oxidative 

substance, glutathione (GSH) reduces the oxidative injury 
caused by ROS, therefore reduces the injury caused by 
ferroptosis.26 However, the administration of the artesu-
nate or DHA reduces the intracellular GSH level.27,28 

Further exploration suggests that DHA downregulates the 
PRIM2/SLC7A11 axis.28 As a key cysteine concentration 
regulator, SLC7A11 regulates the GSH biosynthesis. In 
this way, DHA suppresses the intracellular GSH level. In 
a common ferroptosis pathway, glutathione peroxidase 4 
(GPX4) functions as an inhibitory factor via facilitating 
the transition from GSH to oxidized glutathione (GS- 
SG).16 Scientists have demonstrated that DHA induces 
ferroptosis via downregulating GPX4 expression.29 In 
Chen’s study, however, they showed the other aspect of 
DHA’s effect on GPX4 level. Their investigation demon-
strated that DHA exerts endoplasmic reticulum stress in 

Figure 2 Mechanism of the ferroptosis regulating effect of the antiparasitic agents. The inhibitory regulation of ferroptosis (the “brake”) is shown on the left side and the 
promotive regulation (the “accelerator”) is shown on the right side. DHA downregulates the PRIM2/SLC7A11 axis and further suppresses the GSH production. DHA also 
downregulates the GPX4 expression and releases the brake of ferroptosis. However, there is also evidence suggesting that DHA may upregulate GPX4 via upregulating the 
endoplasmic reticulum stress (ERS) and the HSPA5 expression. ARTs upregulate the expression of TFR, which would subsequently increase the intracellular iron level. ARTs 
associate with Fe2+ and prevent its combination with the IRP/IRE system, thus inhibit the expression level of ferritin and increase the intracellular iron level. DHA can also 
promote the degradation of ferritin.
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glioma cells. Subsequently, HSPA5 (heat shock protein 
family A (Hsp70) member 5) is upregulated, further 
increasing GPX4 expression.30 In this way, the cells neu-
tralized the DHA-induced ROS stress and escaped from 
ferroptosis. Not surprisingly, inhibition on the PERK/ 
ATF4/HSPA5 pathway further strengthens the ferropto-
sis-inducing effect of DHA.29 To further release the 
brake of the ferroptosis pathway, Chen et al combined 
DHA with a potent GPX4 inhibitor RSL3.24 Such a com-
bination synergistically promotes the ferroptosis procedure 
and strengthens the inhibitory effect on various cancer cell 
lines. In the future, animal experiments would be needed 
to evaluate the anticancer property of such combination in 
vivo. At the same time, it would be meaningful to try 
combining DHA with other GPX4 inhibitors, such as 

ML-120 or ML-162, in treating cancer cells. Taken 
together, we can summarize that ARTs are multi-target 
ferroptosis promoters, both targeting the “accelerator” 
and the “brake” in this procedure.

The correlation between ferroptosis and cancer immu-
nity regulation is attracting scientists’ attention.38 On one 
hand, cancer cells that undergo ferroptosis may release 
signals like may AA (Arachidonic acid) metabolites that 
affect immune cells and regulate local immune reaction. 
Notably, such ferroptosis acts like a double-edged sword, 
meaning that it can be immunosuppressive or immunopro-
motive depending on the signal that a ferroptotic cell 
secretes.38 On the other hand, ferroptosis also happens in 
immune cells (eg macrophage-1/2) under pharmaceutical 
induction, and will interfere with their function and 

Table 2 Autophagy Regulating Effect of Antiparasitic Agents

Drug Mechanism Reference

Autophagy Inducer

Dihydroartemisinin Induces autophagy characterized by LC-II upregulation in leukemia cells [43]

Induces autophagy via phosphorylation of Bcl-2 at Ser 70, and also functions as an mTOR 
inhibitor in Hela cells

[32]

Induces autophagy via promoting the DAPK1-induced phosphorylation of Beclin-1 [48]

ART dimer SM1044 Promotes the de novo synthesis of ceramide, thus promoting the CaMKK2-AMPK-ULK1 

pathway

[50]

Flubendazole Upregulates the LC-II level; disrupts normal microtubule, and thus interferes with the lysosomal 

function and results in mTOR’s dislocation from the lysosome membrane induced acetylation of 
microtubule activates JNK and results in phosphorylation of Bcl-2

[56]

Blocks the JNK/STAT3 pathway [57]

Binds with EVA1A at Thr113, thus induces EVA1A-mediated autophagy [58]

Ivermectin Induces ATP-release [61]

Induces autophagy via inhibiting P21-activated kinase 1 and the blockage of the whole PAK1/ 

Akt/mTOR pathway62

[62]

Autophagy inhibitor

Chloroquine Impairs the autophagosome bulk’s degradation and blocks autophagosome and lysosome fusion [67]

Hydroxychloroquine, HCQ 

dimer DC611 and Lys05

Inhibits autophagy via PPT1-mediated lysosome inhibition [68]

Mefloquine Downregulates LAMP1/2 and inhibits RAB5/7 [72]

Nitazoxanide Induces cell cycle arrest and upregulate ING by blocking the lysosome acidification and 

autolysosome maturation

[73]
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anticancer properties.38,39 Regarding the ARTs’ research 
field, there are investigations focusing on how ARTs affect 
cancer immunity. However, there are currently no avail-
able papers focusing on whether their immunoregulating 
effect correlates with ferroptosis. In the future, it would be 
interesting to study how ART-induced ferroptosis influ-
ences the tumor microenvironment, will it cause immuno-
suppression or immunopromotion? Likewise, will immune 
cells undergo ferroptosis under the treatment of ARTs and 
what would be the downstream effects?

Autophagy Regulating Effect of 
Antiparasitic Agents
Autophagy functions as a double-edged sword in cancer 
cells and increasingly attracts scientists’ attention since its 
discovery.40,41 It refers to a highly conservative process 
that degrades cytoplasmic components to survive critical 
stress.42 Collectively, there are mainly five steps in the 
autophagic process: (i) initiation; (ii) Cargo initiation; 
(iii) Autophagosome maturation; (iv) Fusion between 

autophagosome and lysosome, (v) Formation of autolyso-
some and nutrient recycling.42 We observed an interesting 
phenomenon that most antiparasitic agents target autop-
hagy procedure, either as inducer or inhibitor, and contri-
bute to their anticancer property (Table 2). In this way, we 
will discuss the autophagy-regulating effect of the antipar-
asitic agents in detail (Figure 3).

Antiparasitic Agents as Autophagy 
Inducer
Wang et al were the first to link the ARTs’ antitumor effect 
with autophagy. In 2012, they found that DHA induces 
autophagy characterized by microtubule-associated protein 
light chain 3-II (LC3-II) upregulation in leukemia cells.43 

From then on, research focusing on this field started to 
show up, and the past several years witnessed a significant 
advancement in understanding ARTs-related autophagy. 
The autophagy induction effect was validated in various 
cancers, including breast cancer, colorectal cancer, ovarian 
cancer, leukemia, and glioma.44 Scientists revealed 

Figure 3 Mechanism of the autophagy regulating effect of the antiparasitic agents. The autophagy-promotive agents are shown in purple boxes and autophagy-inhibitory 
agents are shown in red boxes. mTOR is one of the major inhibitory elements that targets the initiation of the autophagic procedure. SM1044, DHA and ivermectin inhibit 
mTOR and subsequently activate the autophagic process. Flubendazole disassociates mTOR from the lysosome, leading to nuclear translocation of TFEB and finally 
upregulates LC3. It can also phosphorylate Bcl-2 via JNK-1 activation and release its inhibition on Beclin-1, which is part of the Class III PI3K complex. Flubendazole also 
binds with EVA1A and further induces EVA1A mediated autophagy. HCQ, DC661 and Lys05 inhibit the PPT1 and result in accumulation of palmitoylated proteins, which 
would concurrently inhibit lysosome and mTOR. Nitazoxanide and CQ/HCQ inhibit the fusion between autophagosome and lysosome. Mefloquine targets RAB5/7 and 
LAMP1/2 to inhibit the lysosome maturation.
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multiple mechanisms involved in ARTs-induced autop-
hagy, in which the Beclin-1/Bcl-2 complex is one of 
their main targets. The importance of Bcl-2 and Beclin-1 
in autophagy has been demonstrated clearly.45,46 Beclin-1 
plays a central role in autophagy as it regulates the forma-
tion and maturation of autophagosomes. Moreover, the 
dissociation of Beclin-1 from Bcl-2 is critical for its bio-
logical activity. Wang et al revealed that DHA induces 
autophagy via phosphorylation of Bcl-2 at Ser 70.32 

According to the previous report, phosphorylation of Bcl- 
2 at this site would dissociate Beclin-1, thus triggering the 
autophagic pathway.47 Similarly, in cholangiocarcinoma, 
DHA was reported to induce autophagy via promoting the 
Death Associated Protein Kinase 1(DAPK1)-induced 
phosphorylation of Beclin-1, again detaches Beclin-1 
from Beclin-1/Bcl-2 complex.48 ARTs also regulate some 
autophagy-related pathways. The mammalian target of the 
rapamycin (mTOR) pathway plays an inhibitory role in 
autophagy, and targeting the mTOR pathway to induce 
autophagy has become a cancer treatment therapy.49 

Wang et al reported that DHA functions as an mTOR 
inhibitor in Hela cells, thus inducing autophagy.32 

Interestingly, a novel ART derivative, SM1044, also 
shows the autophagy-inducing property in a different 
manner.50 It promotes the de novo synthesis of ceramide, 
promoting the CaMKK2-AMPK-ULK1 pathway, and 
finally induces autophagy.

Autophagy induced by ARTs also correlates with the 
other pharmaceutical effects. The relationship between 
autophagy and ferroptosis is worth discussing. On the 
one hand, Du’s study suggested that DHA-induced autop-
hagy accelerates the degradation of ferritin, and autophagy 
related 7 (ATG7)-knockdown abolishes cancer cells from 
DHA-induced cell death.25 Further study revealed that 
DHA induces the lysosomal degradation of ferritin, as 
we have discussed before. On the other hand, Chen et al 
demonstrated that at low concentrations, DHA-induced 
ferroptosis is independent of autophagy.24 Moreover, 
although knockdown of autophagy related 5 (ATG5) 
delayed DHA-induced ferroptosis, DHA can still sensitize 
cancer cells to erastin-induced ferroptosis in such condi-
tion, suggesting the DHA can induce autophagy in an 
autophagy-independent manner.24 Collectively, these data 
suggest that DHA-induced autophagy contributes to the 
process of ferroptosis. However, the autophagy process is 
probably unnecessary for DHA-induced ferroptosis, as 
several autophagy-independent pathways result in ferrop-
tosis. Autophagy also correlates with ARTs-induced cell 

cycle arrest. Previous studies revealed that DHA/ARS- 
induced cell cycle arrest is dependent on autophagy, and 
inhibition of autophagy attenuates such cell cycle 
blockage.51,52 Interestingly, DHA downregulates the telo-
mere shelterin component TBP-related factor 2(TRF2) via 
autophagy-mediated degradation, thus impairing the nor-
mal cell cycle.51 Regarding apoptosis, the autophagy pro-
cess seems to play a protective role in ART-induced 
apoptosis. Jiang et al reported that autophagy inhibition 
augments ARS-induced apoptosis.53 Similarly, Ganguli’s 
study suggests that autophagy inhibition showed a syner-
gistic effect with ART by promoting apoptosis.54 It is 
conceivable that ARTs emerge as stress for cancer cells, 
as it may induce apoptosis. Autophagy may help cancer 
cells survive those critical situations, thus exhibiting a 
cytoprotective effect. Taken together, as a “Double-edged 
Sword”, ARTs-induced autophagy mainly functions as a 
cancer killer. It will significantly help scientists better 
understand the pharmaceutical effect of ARTs if more 
investigations focus on how autophagy cross-talk with 
the other mechanisms of ARTs.

Recent years witnessed a considerable breakthrough in 
understanding autophagy-related mechanisms of benzimi-
dazole derivatives. In 2015, Zhang et al screened out 
flubendazole as an autophagy-related 4B (Atg4B) docking 
molecule via the in-silico analysis, suggesting this agent’s 
potential target.55 Almost simultaneously, Chauhan et al 
identified flubendazole as an autophagy inducer through 
experiments.56 It significantly upregulates the LC3-II 
level, suggesting that it augments the autophagic process.-
56 As flubendazole disrupts normal microtubule, it inter-
feres with the lysosomal function and results in mTOR’s 
dislocation from the lysosome membrane.56 The down-
regulation of the mTOR pathway leads to the dephosphor-
ylation and nuclear translocation of the transcription factor 
EB (TFEB), which is a critical transcript factor in lysoso-
mal biogenesis and autophagy. Moreover, flubendazole- 
induced acetylation of microtubule activates JNK and 
results in phosphorylation of Bcl-2.56 As a result, Beclin- 
1 is disassociated from Bcl-2 and again induces autophagy. 
Lin et al further revealed that flubendazole also blocks the 
JNK/STAT3 pathway, which is the upstream negatively 
regulating pathway of the autophagic process, resulting 
in autophagy induction.57 Zhen et al revealed that fluben-
dazole exerts autophagy inducing effect in an EVA1A- 
related manner.58 EVA1A has been reported to induce 
autophagosome formation via interacting with 
ATG16L1.59 Their analysis revealed that flubendazole 
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probably binds with EVA1A at Thr113, thus induces 
EVA1A-mediated autophagy. While most studies suggest 
that flubendazole/mebendazole generated autophagy func-
tion as an anticancer mechanism in cancer cells, contro-
versy still exists. Sung et al demonstrated that while 
mebendazole functions as an antiangiogenic agent via 
inhibiting the proliferation of endothelial cells, mebenda-
zole-induced autophagy is observed, and inhibiting such 
autophagy enhances its anti-proliferative effect.60 In this 
way, mefloquine-induced autophagy seems to be cytopro-
tective. It would be interesting to validate the overall effect 
of mebendazole/flubendazole-induced autophagy on both 
carcinogenesis and angiogenesis in a mouse model, thus 
concluding whether it is a beneficial mechanism or poten-
tial therapeutic target.

Scientists discovered the significance of autophagy in 
the ivermectin-induced anticancer effect in 2015. 
Draganov et al demonstrated that ivermectin induces 
ATP-release and further induces autophagy in breast can-
cer cells.61 Later, Dou et al revealed that ivermectin inhi-
bits cancer cell proliferation in an autophagy-mediated 
manner.62 Such ivermectin-induced autophagy correlates 
with inhibition of P21-activated kinase 1 and the whole 
PAK1/Akt/mTOR pathway blockage.62 Similarly, Liu et al 
demonstrated a similar mechanism in glioma cells.63 

Mitophagy, an emerging concept, refers to selective autop-
hagic degradation of mitochondria.64 Zachari et al reported 
that ivermectin induces mitophagy in embryonic 
fibroblasts.65 It would be interesting to validate whether 
ivermectin induces such mitophagy in cancer cells in 
future exploration.

Antiparasitic Agents as Autophagy 
Inhibitor
While autophagy induction promotes cancer cell death, 
inhibiting autophagy may also contribute to anticancer 
property. The autophagy inhibitory effect of chloroquine 
(CQ) and its derivatives has attracted scientists’ interest 
for a long time. While more and more studies focused on 
its application in various cancer types, the detailed 
mechanism of how CQs induces autophagy remained 
insufficiently understood. The past several years witnessed 
several inspiring progress in understanding the underlying 
mechanisms. It has been known that CQ, HCQ and Lys05 
mainly target autophagy by blocking autophagosome and 
lysosome fusion.66 Mauthe et al revealed that CQ induces 
autophagy inhibition differently from BafA1, a commonly 

used autophagy inhibitor.67 It impairs the autophagosome 
bulk’s degradation, while the lysosomal acidity is not 
interfered with.67 Interestingly, Rebecca et al demonstrated 
a different autophagy-inducing mechanism of CQ 
derivatives.68,69 They identified palmitoyl-protein thioes-
terase 1 (PPT1) as a common target of CQ derivatives 
including hydroxychloroquine (HCQ), DC661, and 
Lys05.68,69 PPT1 functions as a thioester bond breaker of 
the palmitoylated proteins. It promotes tumor proliferation 
growth, and targeting PPT1 inhibits tumor progression. 
Their studies revealed that inhibition on PPT1 leads to 
accumulation of palmitoylated proteins, which would dis-
rupt the lysosome catabolism. Inspiringly, their investiga-
tions revealed that PPT1 inhibition also results in direct 
inhibition of mTORC1, which is similar to the pharma-
ceutical mechanism of the autophagy inducers. While the 
upstream of autophagy is activated, the downstream events 
(lysosome function) is totally blocked. In this way, PPT1 
inhibitors would harvest the anticancer effect of both 
autophagy inhibitors and autophagy inducers. To some 
degree, this is similar to co-administration of the autop-
hagy inducer and autophagy inhibitor, which have shown 
synergistic anticancer effect, however with one single 
agent.70 Comparing the final anticancer effect between 
PPT1 inhibition and coadministration of autophagy indu-
cer and inhibitor would be interesting. Current publica-
tions are still insufficient to evaluate the other downstream 
effects of PPT1 inhibition, and how cancer cells would 
response to such concurrent inhibition of autophagy and 
mTORC1 remains fuzzy. It is worthy to pay more attention 
on PPT1 inhibitors and to see if it could be applied in 
clinical practice. Mefloquine (MQ), another CQ derivative, 
was also found to induce mitochondrial autophagy in 
esophageal squamous carcinoma cells.71 Takeda investi-
gated deeper and revealed that MQ inhibits the expression 
of Lysosomal Associated Membrane Protein 1/2 (LAMP1/ 
2), the lysosome markers that are essential for the normal 
function of the lysosome and the autophagy process.72 

Further investigation revealed that it targets the lysosomal 
function via inhibiting RAB5/7 expression, which is criti-
cal in lysosome formation.72

Nitazoxanide (NTZ) is another worth noticing autop-
hagy inhibitor. Wang et al revealed that NTZ induces cell 
cycle arrest by upregulating ING (Inhibitor of Growth 1) 
in glioblastoma, which is mediated by inhibiting its autop-
hagic degradation.73 Further exploration demonstrated that 
NTZ blocks the lysosome acidification and autolysosome 
maturation, thus reducing the late-stage autophagic flux. In 
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the future, validating such autophagy inhibitory effect of 
NTZ in other cancer cells and exploring the other down-
stream effect of such autophagic inhibition would be of 
great significance.

Generally, the autophagy inhibitory effect has two 
main significance. First, based on the fact that autophagy 
can help cancer cells suffer intolerant situations, autop-
hagy inhibition decreases cancer cells.74,75 Once the can-
cer cells fail to perform the autophagy procedure fully, 
apoptosis is often triggered and causing cell death.74,75 

Second, autophagy inhibition profoundly decreases cancer 
cells’ surviving ability under other anticancer agents’ treat-
ment, thus enhancing their pharmacologic effect. In recent 
years, scientists moved on to investigate more downstream 
effects of autophagy inhibition. While most researches 
focused on the direct impact of CQ-induced autophagy 
on cancer cells, New et al paid more attention to its impact 
on cancer-associated fibroblasts (CAF).76 They observed a 
relatively high level of basal autophagy in CAF cells and 
demonstrated that the autophagy-dependent secretion of 
CAF promotes the progression of HNSCC. Targeting 
CAF autophagy with CQ inhibits proliferation, migration, 
and invasion of cancer cells, suggesting its therapeutic 
effect. Interestingly, in another study, Zhao et al revealed 
that CAF might promote cancer cell stemness via inducing 
autophagy.77 In this way, CQ may inhibit the CAF-induced 
stemness via inhibiting CAF-induced autophagy.

Application of Autophagy Regulators: 
Future Directions
Autophagy functions as a double-edged sword in cancer 
cells.78,79 On one hand, mutation-induced autophagy 
reduction helps cancer cells accumulate ROS and abnor-
mal organelles, contributing to malignant transformation 
during tumorigenesis.74 On the other hand, strengthened 
autophagy help cancer cells survive under stress condition 
(eg hypoxia or medication) in the later stage of cancer 
progression.74 Moreover, while autophagy enhances tumor 
immunity from some aspects (eg autophagy enhances 
MHCI/II process and presentation, which are critical in 
malignancy recognition), it attenuates the immune 
response from other aspects (eg autophagy degrades NK- 
derived granzyme B so that NK-mediated cell death is 
attenuated).80 In this way, the proper application of autop-
hagy regulators would be of great importance.

There have been many preclinical studies and clinical 
trials focusing on autophagy inhibitors (eg CQ and HCQ) 
in the cancer field (discussed later in section 3). In most of 
these trials, autophagy inhibitors are applied combined 
with other medications to reduce chemo-resistance. This 
is a good strategy but not all we can do. Although both 
autophagy enhancement and inhibition may bring benefits 
to cancer reduction, it should be highlighted that a basal 
level autophagy flux is essential for cancer cell survival.81 

Table 3 Mitochondria Disrupting Effect of Antiparasitic Agents

Drug Mechanism Reference

Chloroquine Induces mitochondrial damage, results in mitochondrial membrane depolarization and the release of 

cytochrome c; 

inhibits cytochrome c oxidase activity, thus increases the ROS level

[83]

Niclosamide Disturbs mitochondrial respiration and induces mitochondrial depolarization, thus promotes glycolysis and 

decreases glycolytic capacity and reserve

[86]

Upregulates pyruvate influx into mitochondria and lowers the pentose phosphate pathway and phosphoglycerate 

activity dehydrogenase pathway

[87]

Triggers intracellular calcium flux via mitochondrial uncoupling, thus disturbs the arachidonic acid metabolism in a 

p53 deficit-dependent manner

[88]

Induces apoptosis via the intrinsic mitochondrial pathway [89]

Ivermectin Induces mitochondrial dysfunction and oxidative stress via inhibiting the Akt/mTOR pathway [90]

Induces mitochondrial damage leads to increased Bax/Bcl-2 ratio, which leads to cytoplasm c release and caspase- 
mediated cancer cell apoptosis

[93]

Nitazoxanide/ 
RM4819

Both NTZ and RM4819 exhibit mitochondria uncoupling effect, only RM4819 shows mitochondria complex III 
inhibitory effect

[94,95]

Drug Design, Development and Therapy 2021:15                                                                             https://doi.org/10.2147/DDDT.S308973                                                                                                                                                                                                                       

DovePress                                                                                                                       
2755

Dovepress                                                                                                                                                           Huang et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


From this aspect, a complete inhibition on autophagy may 
be a practical approach to kill cancer cells, regardless of 
what role autophagy is functioning. Combining CQ, HCQ, 
or MQ with other autophagy inhibitors like GSK690693 or 
Autophinib may be a potent combination in cancer inhibi-
tion. Regarding autophagy inducers, we believe that future 
exploration should focus more on its cancer immunity 
regulatory effect. Although autophagy is considered to 
have a complicated effect on immune response, it 
improves the effectiveness of antigen-presenting cell 
(APC) and cytotoxic T lymphocytes (CTL), which are 
the major players in cancer immunity. Similarly, although 
autophagy upregulates many cytokines in the tumor micro-
environment, the majority are immunoreactive ones.80 In 
this way, it is worth trying the combination of autophagy 
inducers with immunotherapies, like CAR-T (chimeric 
antigen receptor T-cell) therapy or other adoptive cellular 
immunotherapies.

Mitochondria Disrupting Effect of 
Antiparasitic Agents
Mitochondrial damage is another worth noting mechanism 
involved in the antiparasitic agents’ anticancer property 
(Table 3). Generally, targeting mitochondria may lead to 
two results. First, direct injury on mitochondria will trigger 
the intrinsic apoptosis pathway, leading to cell death. 
Second, as the energy factory, mitochondria dysfunction 
will significantly disrupt normal cell metabolism, leading 
to energy insufficiency and reducing viability.

Recent studies continue to deepen our understanding of 
the mechanism in CQs.82,83 Liang et al revealed that CQ 
targets the invasiveness and migrating ability of cancer 
stem-like cells of triple-negative breast cancer (TNBC) 
by inducing mitochondrial damage, characteristic of 
abnormal mitochondrial structure.83 Such mitochondrial 
damage leads to mitochondrial membrane depolarization 
and the release of cytochrome c.83 CQ also inhibits cyto-
chrome c oxidase activity, which transfers the electron 
from cytochrome c to oxygen, leading to an increased 
level of ROS.83 In this way, the CQ-induced ROS results 
in DNA double-strand damage characteristic of γ-H2AX 
accumulation. Besides inducing DNA damage, CQ also 
impairs the DNA repair ability of TNBC cancer cells, 
thus further worsening its DNA-related injury.83 Both 
autophagy inhibition, mitochondrial damage, and down-
stream ROS production may contribute to cancer cell 
death. Notably, Vessoni et al pointed out that, although 

CQ induces all these pathologic processes, only the mito-
chondrial membrane potential loss is responsible for the 
cancer cell sensitivity to CQ.84 Their experiments suggest 
that although CQ does induce purine oxidation, no DNA 
double-strand damage occurs when the loss of MMP is 
already detectable, suggesting that the DNA injury hap-
pens after the loss of MMP and cell death induced by 
CQ.84 Combining these two studies, we can conclude 
that both ROS generation and DNA double-strand damage 
are the downstream events of CQ-induced mitochondrial 
damage, while the CQ-related cancer cell death relies 
more on the loss of MMP. Mefloquine exhibits a similar 
mechanism in inducing mitochondrial damage followed by 
ROS generation.82 Altogether, these studies strongly sug-
gest that the mitochondria-targeted strategy plays a critical 
role in CQs’ anticancer property.

As an anti-helminth agent, niclosamide functions 
mainly as a mitochondrial uncoupler that inhibits oxidative 
phosphorylation and reduces ATP production at the ther-
apeutic dose.85 However, it can also inhibit human mito-
chondrial function at a higher dose in vitro. Based on such 
a pharmacologic mechanism, scientists thought of redir-
ecting it as an anticancer agent. In recent years, many 
studies focus on its inhibitory effect on oxidative phos-
phorylation in cancer cells mitochondria. Such inhibition 
on mitochondria interferes with cellular metabolism. 
Shangguan et al validated that niclosamide inhibits ovarian 
cancer cells both in vitro and in vivo.86 They showed that 
niclosamide disturbs mitochondrial respiration and induces 
mitochondrial depolarization in ovarian carcinoma cells.86 

In this way, niclosamide promotes glycolysis and 
decreases glycolytic capacity and reserve, suggesting that 
it disrupts normal aerobic glycolysis. Alasdair et al 
demonstrated that mitochondrial uncoupling upregulates 
pyruvate influx into mitochondria and lowers the pentose 
phosphate pathway and phosphoglycerate activity dehy-
drogenase pathway.87 Furthermore, it inhibits colon cancer 
cells’ proliferation in vitro and suppresses the hepatic 
metastasis in vivo experiments. Most interestingly, 
Kumar et al revealed a novel antitumor mechanism of 
niclosamide in p53-defective cancers.88 Their study 
demonstrated that niclosamide triggers intracellular cal-
cium flux via mitochondrial uncoupling, thus disturbing 
the arachidonic acid metabolism in a p53 deficit-dependent 
manner. Moreover, their experiment revealed that an 
increased arachidonic acid level is responsible for the 
niclosamide-induced cytochrome c release and apoptosis. 
Yu et al showed that niclosamide induces apoptosis in 
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thyroid cancer cells in vitro and inhibits tumor growth in 
vivo.89 Further, they observed mitochondrial membrane 
potential change and activation of Bax and inhibition of 
Bcl-2 in niclosamide-treated cells, suggesting that the 
intrinsic mitochondrial pathway mediates niclosamide- 
induced apoptosis. Altogether, these studies revealed that 
niclosamide targets mitochondria as its primary anticancer 
mechanism.

Scientists did not discover the inhibitory effect of 
ivermectin on mitochondria in cancer cells until 2016. 
In 2016, Liu et al revealed that ivermectin induces pro-
liferation inhibition and apoptosis in both glioblastoma 
and endothelial cells, thus exhibit antitumor effect and 
anti-angiogenesis effect.90 Furthermore, they showed that 
it induces mitochondrial dysfunction and oxidative stress 
in glioblastoma and endothelial cells, which correlates 
with the inhibition of the Akt/mTOR pathway.90 

Scientists revealed similar phenotypes, including mito-
chondrial dysfunction and oxidative stress induction in 
ivermectin-treated chronic myeloid leukemia cells and in 
renal cell carcinoma correspondingly.91,92 Interestingly, 
in Wang’s study, ivermectin exhibits renal cancer cell 
inhibitory effect while sparing the normal kidney cells, 
suggesting it potent in further clinical treatment.92 In 
Zhang’s experiment, they demonstrated that ivermectin- 
induced mitochondrial damage leads to increased Bax/ 
Bcl-2 ratio, which leads to cytoplasm c release and cas-
pase-mediated cancer cell apoptosis.93 Altogether, these 
studies demonstrated that ivermectin targets mitochon-
drion and induces its dysfunction, leading to its antitumor 
effect.

Nitazoxanide (NTZ) and its bromo-derivative 
RM4819 also target mitochondria to inhibit cancer 
cells.94,95 Tantawy et al demonstrated that NTZ influ-
ences the Bcl-2 family and results in mitochondria dys-
function characteristic of cytochrome-c release.94 In 
another study, Ripani et al revealed that while both 
NTZ and RM4819 exhibit mitochondria uncoupling 
effect, only RM4819 shows mitochondria complex III 
inhibitory effect.95 Due to such pharmaceutical target 
difference, RM4819 is far more effective than NTZ in 
disrupting mitochondria function. Their experiment 
further revealed that these 2 agents have minimal effect 
on the normal enteral epithelium. Altogether, these 
results suggest that NTZ and RM4819 could be potent 
anticancer agents, and further in vivo exploration may 
be needed.

Immunoregulating Effect of 
Antiparasitic Agents
Interestingly, several antiparasitic drugs exhibit immunor-
egulatory effects as anticancer mechanisms (Table 4). 
Immunoregulatory effects include directly affecting some 
specific immune cells and regulating the cancer microen-
vironment as a whole. Immunoregulation may further 
enhance the antitumor effect of these agents, which is 
worth discussing.

In the past five years, scientists dramatically deepened 
the understanding of ARTs immunoregulatory effects. 
Many of these studies focus on how ARTs affect immune 
cells. Cao et al demonstrated that ART upregulates the 
proportion of CD4+ IFN-γ+ T cells and Granzyme B + 
cytotoxic T lymphocyte while abolishing the immunosup-
pressive effect of Treg cells and MDSCs (myeloid-derived 
suppressor cells).96 In another study, Qian et al revealed that 
ARS enhances the cytotoxicity of γδ T cells via upregulat-
ing the expression of granzyme B in γδ T cells.97 However, 
current research on how ARS affects γδ-T cell immunity is 
far not sufficient. In the future, we may focus on the 
detailed mechanism of how ARS upregulates the granzyme 
B level, and if other mechanisms exist in ARS-induced γδ-T 
cell enhancement. Considering further application, since 
ARS enhances γδ T cell function, combining ARS with 
γδ-T related immunotherapies (like CAR γδ-T therapy) 
would be worth of trying.98 NK cells are also targets of 
ARTs. Houh et al revealed that ART enhances the cytotoxic 
effect of NK cells and stimulates the granule exocytosis.99 

Although it does not interfere with the NK activating recep-
tors’ expression level, it modulates their downstream pro-
teins, including Vav-1 and ERK1/2.99 Similarly, Lu et al 
reported that ART sensitizes cancer cells to NK cell-induced 
cytolysis manifested by enhancing conjugation between NK 
cells and tumor cells.100 Further exploration revealed that 
ART enriched apoptotic genes in cancer cells, making them 
more susceptible to NK cell-mediated lysis. In the future, 
combining ART with NK cell immunotherapies (adoptive 
NK transfer, CAR-NK, etc.) in animal experiments would 
be interesting. Besides directly acting on immune cells, 
ART also regulates the immunoreactive mediators’ expres-
sion level (T-bet, IFN-γ and TNF-α).96,97 While cancer cells 
may secrete immunosuppressive mediators to inhibit T 
cells’ cytotoxicity, both ART and ARS help cancer cells 
regain sensitivity to γδ T cells via inhibiting TGF-b 
secretion.97,101 These results suggested that ARTs may 
help construct a more stressful microenvironment for cancer 
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cells, and its potential application in cancer-related immune 
regulation is worth of exploring in the future.

Several pieces of research focused on CQs’ immunor-
egulatory effect. Autophagy inhibition, the original impact 
of CQs, may contribute to such an immunoregulatory 
effect. A recent study revealed that CQ-induced autophagy 
inhibition enhances cancer cells’ immunogenicity, thus 
enhancing dendritic cell (DC) maturation and T cell 
response.102 Their experiment showed that combining 5- 
FU with CQ significantly induces carcinoembryonic anti-
gen (CEA) family protein expression, which leads to 
enhanced immunogenicity and promotes DC maturation. 
As it is known that apoptotic cells are usually weak in 
immunogenicity, such a difference in immunogenicity 
probably correlates with autophagy-inhibition induced 
apoptosis, as it is different from physiological apoptosis. 
Although to some degree, there is insufficient evidence 
proving that such enhancement in immunogenicity directly 
correlates with CQ-induced autophagy blockage, their 
study is still inspirational, and further investigations 
should focus more on the exact mechanism of how such 

CQ-induced immunogenicity enhancement is mediated. 
The immunoregulatory effect of CQ can also be autophagy 
inhibition-independent. Han et al revealed that, although 
HCQ does inhibit autophagy of CML cancer cells, it 
sensitizes CML cell to Vγ9Vδ2 T cell-mediated lysis in 
an autophagy-independent way.103 Further exploration 
demonstrated that HCQ induces UL16 Binding Protein 4 
(ULBP4), the NKG2D ligand, on the CML cells’ surface. 
The enhanced connection between ULBP4 and NKG2D 
augments the recognition capability of Vγ9Vδ2 T cells on 
CML cells. Interestingly, HCQ does not directly alter the 
production or degradation of ULBP4. Instead, it facilitates 
the translocation of ULBP4 from the cytoplasm to the cell 
membrane.103 In another study, Zhang et al demonstrated 
that CQ promotes cancer cell killer CD8+T cell and down-
regulates immunosuppressive cells, including tumor-asso-
ciated macrophages, myeloid-derived suppressor cells, and 
Tregs in breast cancer in vivo.104 Notably, it suppresses 
TGF-b production of the cancer cells in vitro and in vivo, 
suggesting that it functions as a cancer microenvironment 
regulator.104 While most studies revealed that CQ 

Table 4 Immuoregulating Effect of Antiparasitic Agents

Drug Mechanism Reference

Artemisinin Upregulates the proportion of CD4+ IFN-γ+ T cells and Granzyme B + cytotoxic T lymphocyte while 
abolishes the immunosuppressive effect of Treg cells and MDSCs

[96]

Regulates the expression level of immune mediators by upregulating the T-bet, IFN-γ, TNF-α while 
downregulating the TGF-b

Enhances the cytotoxic effect of NK cells and stimulates the granule exocytosis [99]

Modulates their downstream proteins of NK activating receptors including Vav-1 as well as ERK1/2

Sensitizes cancer cells to NK cell-induced cytolysis by enhancing conjugation between NK cells and tumor 

cells

[100]

Artesunate Enhances the cytotoxicity of γδ T cells via upregulating the expression of granzyme B in γδ T cells [97]

Helps HepG2 cancer cells regain sensitivity to γδ T cells via inhibiting TGF-b secretion [101]

Chloroquine CQ-induced autophagy inhibition enhances the immunogenicity of cancer cells, thus enhances DC 
maturation and T cell response by inducing autophagy inhibition

[102]

Promotes cancer cell killer CD8+T cell and downregulates immunosuppressive cells in vivo [104]

Suppresses TGF-b production of the cancer cells in vitro and in vivo

Downregulates the Immunol response via upregulating the FoxP3 positive Treg cells and reducing the T 

cytotoxic cells

[105]

Hydroxychloroquine Sensitizes CML cell to Vγ9Vδ2 T cell-mediated lysis in an autophagy-independent way [103]

Pyrimethamine Suppresses Treg cells as well as TH-17 associated immune response, while enhances the cytotoxicity of CD8 
+ T cells via promoting exocytosis

[107]
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enhances tumor-related immune response, Masuelli et al 
demonstrated a different result, suggesting that CQ may be 
an immune inhibitor.105 Their study revealed that while 
CQ enhances curcumin (CUR) in vitro and nude mice, it 
reduces the antitumor effect of curcumin in immunocom-
petent mice. Further investigation suggests that CQ down-
regulates the immune response via upregulating the FoxP3 
positive Treg cells and reducing the T cytotoxic cells. 
Moreover, a higher expression level of HIF-1a in the CQ 
+CUR group is observed. The authors hypothesized that 
the immunosuppressive effect of CQ probably correlates 
with its damage-associated molecular pattern (DAMP)- 
inducing effect or the immune-suppressive cytokines 
released due to higher HIF-1a. Currently available results 
are still insufficient to conclude whether CQ/HCQ func-
tions as an immune enhancer or inhibitor in the cancer 
microenvironment. Future studies should focus more on 
the exact mechanism of how CQ boosts or inhibits 
immune response in immunocompetent mice models via 
analyzing the expression level of DAMP molecules, 
including HIF-1a, the cytokine levels, and the response 
of different types of immune cells to determine the overall 
effect of CQs on the cancer-related immune response.

In 2011, Takakura et al firstly demonstrated that pyr-
imethamine (Pyr) functions as a STAT3 inhibitor in poly-
cystic kidney disease models.106 However, such STAT3 
inhibitory effect had not been studied in the cancer field 
until 2018. In this year, Khan et al validated the STAT3 
inhibitory effect of Pyr in breast cancer.107 Such inhibition 
on STAT3 suppresses the proliferation and invasion of 
breast cancer cells in vitro. Interestingly, Pyr also exhibits 
an immunoregulatory effect via inhibiting STAT3. Their 
experiments demonstrated that administration of Pyr sup-
presses Treg cells as well as TH-17 associated immune 
response, while enhancing the cytotoxicity of CD8+ T 
cells via promoting exocytosis. It has been fully demon-
strated that STAT3 plays a critical role in carcinogenesis in 
various types of cancers. Future studies should explore the 
STAT3 inhibitory effect of Pyr in other cancers, especially 
in which STAT3 plays an important role in 
immunoregulation.

Metabolic Disrupting Effect of 
Antiparasitic Agents
Cancer cell metabolism is characterized by aerobic glyco-
lysis, known as the Warburg effect. Disrupting glycolysis 
can significantly disturb the normal metabolism of cancer 

cells. The past several years witnessed progress in under-
standing the glycolysis disrupting effect of antiparasitic 
agents, and we will discuss them in detail.

Artemisinins function as glycolysis inhibitors. In 2015, 
Mi et al revealed that DHA downregulates the glycolysis 
metabolism level characteristic with decreased ATP and 
lactate levels in non-small cell lung carcinoma 
(NSCLC).108 Further exploration suggests that it inhibits 
the mTOR pathway and downregulates the expression 
level of GLUT1, resulting in reduced glucose uptake and 
decreased glycolysis metabolism.108 Similarly, in esopha-
geal carcinoma, Li et al observed that DHA suppresses 
glycolysis via inhibiting the expression level of pyruvate 
kinase M2.109 In prostate cancer cell line LNCaP, DHA 
reduces the glucose uptake, ATP level, and lactate level.110 

Western blotting revealed that the expression of a series of 
glycolysis-related proteins, including GLUT1, hexokinase 
2, platelet-type fructose phosphate kinase, pyruvate kinase 
M2, and lactate dehydrogenase are decreased.110 

Furthermore, they demonstrated that DHA suppresses the 
expression of HIF-1a, which is the upstream regulator of 
glycolysis, via regulating the PI3K/Akt/mTOR pathway.110 

Similarly, scientists also observed the glycolysis inhibitory 
effect of ARS in B cell lymphoma.111 Benzimidazole 
derivatives also exhibit a glycolysis-disrupting effect. 
Zhou et al reported that albendazole inhibits the expression 
of HIF-1a in NSCLC cells.112 Such suppression on HIF-1a 
results in glycolysis inhibition.112 Under the hypoxia con-
dition, albendazole inhibits glycolytic enzymes, including 
HK, PK, and LDH, while reducing lactate.112 Altogether, 
this experiment suggests that albendazole may disrupt 
hypoxia-induced glycolysis via suppressing the expression 
level of HIF-1a. Fenbendazole, another benzimidazole 
derivative, also disturbs the glycolytic metabolism. It inhi-
bits the glucose uptake and the activity of hexokinase 2, 
thus significantly attenuating glycolysis. The in-silico ana-
lysis revealed that fenbendazole probably interferes with 
hexokinase II by mimicking the structure of glucose or 
G6P, thus binding to the enzyme’s active site and disrupt-
ing its normal function.113

Disturbance of glycolysis would profoundly interfere 
with the survival ability of cancer cells in hypoxia condi-
tions. Notably, although radiotherapy or TACE (transcath-
eter arterial chemoembolization) are both potent therapy 
against the tumor, they are not effective enough for the 
cancer cells that are hypoxia-resistant. In this way, com-
bining these agents with radiotherapy or TACE should be 
considered. Several studies combine ARTs or 
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benzimidazole derivatives with radiotherapy and showed 
that these agents do exhibit radiosensitizing effects.114,115 

In this way, it would be interesting to carry on clinical 
trials that combine radiotherapy with these agents. 
Regarding TACE, no animal experiment is available and 
future investigations would be needed to explore whether 
such strategy is effective.

Pyrimethamine (Pyr) functions as a plasmodium dihy-
drofolate reductase (pDHFR) inhibitor in fighting against 
malaria.116 It inhibits the transformation from dihydrofo-
late to tetrahydrofolate, resulting in nucleic acid synthesis 
dysfunction. Interestingly, a recent study revealed that 
pDHFR has a similar structure with human dihydrofolate 
reductase (hDHFR), and pyrimethamine does exert an 
inhibitory effect on hDHFR by directly binding to it, 
thus inhibiting tumor cell proliferation and metastasis.117 

Moreover, researchers demonstrated that compared with 
methotrexate, another hDHFR inhibitor, Pyr additionally 
inhibits epithelial–mesenchymal transition, metastasis, and 
invasiveness of cancer cells. Further, they revealed that 
thymidine phosphorylase is another target of Pyr, which 
can explain such a difference in the inhibitory effect on 
cancer cells. Since it may interfere with DNA synthesis 
and metabolism, considering combining it with radiother-
apy is reasonable. An in vitro experiment suggested that 
administration of Pyr on glioblastoma cells before chemo- 
radiotherapy would enhance their anticancer effect.118 In 
the future, more exploration in animal experiment and in 
more cancer cell types would be necessary.

Dark Side: Limitations and Future 
Directions
Although in vitro and animal experiments suggest that 
these agents are potent cancer killers, limitations that 
slowed their pace into clinical application emerge at the 
clinical trial stage. We analyze the results of the clinical 
trials and explore the limitations of these agents. Finally, 
we manage to provide possible solutions to overcome 
these limitations and give our opinions on the future direc-
tions of these agents. The data of the clinical trials are 
obtained from www.clinicaltrials.gov.

Artemisinins
We summarized the ongoing and completed clinical trials 
which apply ARTs in cancer treatment. (Table S1) Two 
completed Phase I trials published their results. 
Considering the medication tolerability, 18 mg/kg given 

on days 1 and 8 of a 21-day cycle or 200 mg/d orally are 
both tolerable dosage regimens.119,120 The major observed 
DL-AE (Dose Limited-Adverse Event) is anemia, which is 
also commonly seen in malaria ARS therapy and is accep-
table and well tolerated. However, as previous animal 
studies aroused concerns about the potential ototoxicity 
of ARS, intermittent vertigo, ongoing tinnitus, or subcli-
nical hearing loss is observed in several patients (4/23).119– 

121 Thus, future clinical trials should continue to pay 
attention to the possible ototoxicity, especially in long- 
term surveillance. In these two clinical trials, drug efficacy 
is kind of disappointing. No complete or partial remission 
was observed. A possible reason lies in its pharmacoki-
netic property. Pharmacokinetic analysis suggested that the 
concentration of ARS rapidly declined in the first 20 mins 
(T1/2=7–8 mins), although its active metabolite DHA 
exists much longer (T1/2=0.5–3.5 h). This suggests that 
future investigations in vitro should focus more on DHA 
instead of ARS. Besides, considering modifying the che-
mical structure of ARS that may slow down its transfor-
mation into DHA would be another way out. In the clinical 
trials, the plasma concentration of DHA (1.46 µM) is far 
not high enough to reach the IC50 concentration of the 
preclinical trials (8–100 µM) in the acceptable dosage (18 
mg/kg given on days 1 and 8 of a 21-day cycle).119 These 
pharmacokinetics data suggested that future in vivo or in 
vitro studies should focus on DHA’s anticancer effect at a 
low dose, and we would better consider it as a combina-
tion therapy medication. Currently, there are no completed 
Phase II/III clinical trials, and the ongoing ones focus on 
colorectal carcinoma. Previous in vitro and in vivo experi-
ments suggested that ARS has an anticancer effect on 
various cancers, including head and neck carcinoma, 
breast cancer and lymphoma, etc.27,111,122 Thus, it would 
be meaningful to carry on clinical trials of ARS on these 
cancer types after the pharmacokinetic issue is solved.

Benzimidazole Derivatives
We may first discuss the pharmaceutical properties of 
benzimidazole derivatives according to several previous 
clinical trials, although they are not correlated with cancer. 
In 2010, a clinical trial explored the maximum tolerated 
dose of albendazole and revealed that up to 2400 mg/d is 
tolerable.123 Moreover, the pharmacokinetic analysis 
showed that ABZ is rapidly metabolized into albendazole 
sulfoxide (ABZ-SO), the major active metabolite of ABZ. 
ABZ-SO. The mean maximum plasma concentration of 
ABZ-SO reaches 2.7 ± 2.1 (0.80–4.7) μg/mL, which is 
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much higher compared with its IC50 value in cell 
experiments.124,125 Currently, there are no ongoing or fin-
ished clinical trials applying ABZ to treat cancers. Based 
on the promising antitumor effect of ABZ in vitro and in 
vivo experiments, carrying out more clinical trials apply-
ing ABZ to treat cancers is necessary. Moreover, the 
pharmacokinetic properties of ABZ suggested that future 
in vitro studies should focus more on the antitumor char-
acteristics of ABZ-SO since ABZ remains only a short 
time in the plasma and ABZ-SO is the major active meta-
bolite. Regarding MBZ, Guerini et al have summarized the 
pharmacokinetic properties of MBZ in detail.126 The max-
imum plasma concentration of MBZ under the tolerated 
dose is higher than the IC50 value in vitro experiments. 
There are several clinical trials applying mebendazole in 
treating cancers (Table S2). However, most of them are at 
the “Recruiting” stage and currently there are no available 
results. A terminated clinical trial suggested that MBZ 
may not be effective enough to inhibit cancer progression 
in GI cancer patients. However, no detailed results are 
available. The ongoing trials focus more on brain tumors 
and it is worth waiting for further results.

Ivermectin
Currently, there are no available clinical trials that apply 
ivermectin in treating cancers. Several recently published 
reviews focused on the antitumor pharmacokinetic proper-
ties of ivermectin.127,128 The pharmacodynamic evalua-
tions revealed that the highest approachable plasma 
concentration of ivermectin in humans is higher than the 
average effective concentration in animal experiments. 
Moreover, several recent clinical trials which use ivermec-
tin to treat other diseases again confirm that its side effect 
and toxicity are relatively acceptable.129,130 In constant 
with the previous authors’ conclusion, we strongly suggest 
carrying out more clinical trials using ivermectin to treat 
cancers.

Chloroquine Derivatives
For chloroquine derivatives, there are more clinical trials 
compared with other antiparasitic agents (Tables S3 and 
S4). CQ’s anticancer potential in brain tumors is attracting 
scientists’ attention (NCT02496741, NCT01894633, 
NCT01727531, NCT02378532, NCT02432417, 
NCT00224978). It is a pity that not all of these trials 
have published data. A clinical trial (n=30) published in 
2006 suggested that additional CQ to chemotherapy may 
improve the mid-term survival of glioblastoma multiforme 

(GBM) patients.131 Another completed clinical trial 
(NCT02378532) which started in 2015 combines chloro-
quine with chemoradiation in GBM patients. 
Unfortunately, no published result is available. An 
ongoing clinical trial (NCT02432417) combines CQ with 
temozolomide and radiotherapy in GBM patients.132 

Previous studies suggested that upregulation of 
EGFRVIII would help cancer cells survive stress condi-
tions by inducing autophagy in GBM cancer cells.132 In 
the future, whether CQ-induced autophagy-inhibition may 
improve the overall survival of GBM patients, especially 
those with EGFRVIII-positive subtype, should be investi-
gated. The result of this clinical trial is worth waiting for.

Niclosamide
The available clinical trials are summarized in Table S5. 
As mitochondrial uncoupler, it has a natural potent to harm 
other cells like cardiac or muscular cells. Whether such 
cytotoxic effect would limit its clinical application in 
treating cancer is attracting scientists’ attention. A recent 
study focused on this problem and investigated how car-
diac cells would react to mitochondrial uncouplers includ-
ing niclosamide.133 Gao et al demonstrated that while 
high-level niclosamide does exhibit cardiotoxicity, it 
exerts a cardio-protective effect by activating the STAT3 
pathway at lower concentration (so-called “mild mitochon-
drial uncoupling”).133 According to previous preclinical 
experiments, the minimum clinically meaning dose is 
about 163.5 ng/mL (combined with enzalutamide), which 
equals approximately 0.5 μM. At such a concentration, 
niclosamide induces about 5% cardiac cell death and a 
20% loss of membrane potential (MMP), which may dis-
turb the normal cardiac function. Cardiac cell protection or 
targeted delivery to cancer cells could be the way out. No 
matter which approach is selected, cardiotoxicity monitor-
ing should be included in clinical trials. Currently, there is 
no available study focusing on whether niclosamide would 
affect muscle cells, and investigations on this issue would 
be necessary. Another barrier to the clinical application of 
niclosamide is whether it can achieve targeted concentra-
tion in vivo. A published clinical trial suggested that at the 
maximum tolerated dose (500 mg TID), only 1/3 of the 
patients reach 163.5 ng/mL.134 Scientist thought of 
improving the delivery system and several nanobased- 
agents were invented, which may improve its 
bioavailability.135 In the future, scientists may explore 
these agents in clinical trials.
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Pyrimethamine
Only 2 ongoing clinical trials are available on www.clin 
icaltrials.gov. (Table S6). In one of the trials, the research-
ers have published some of the results.136 Their investiga-
tion suggested that in the maximum dose cohort (50 mg/d), 
the plasma concentration of Pyr reached 6.17 μM, which 
has not reached the target concentration (10 μM) for max-
imum STAT3 inhibition. However, there is no dose-related 
toxicity observed at such dose, suggesting that a higher 
dosage may be tolerable. Researchers observed the STAT3 
inhibition in CLL cells in some of the treated patients. 
Interestingly, their research suggested that it may be pos-
sible to predict whether the CLL cells would respond to 
Pyr in vivo by treating the CLL cells in vitro and evaluate 
the post-treatment STAT3 expression change. Moreover, a 
rebound of STAT3 expression at the progression stage of 
the treatment. In this way, it is worthy to consider combin-
ing Pyr with other STAT3 inhibitors in future exploration.

Nitazoxanide
Currently, there is only one clinical trial applying nitazox-
anide (NTZ) in cancer treatment (NCT02366884), and the 
result is still unavailable. There are also insufficient in 
vitro and in vivo experiments to evaluate the detailed 
anticancer mechanism of nitazoxanide. Based on previous 
studies, colorectal cancer cells seem to be more sensitive 
to nitazoxanide (For HCT116 cell line: IC50=11.2 μM) 
compare with glioblastoma (IC 50: around 400 μM).73,94 

According to the reported clinical trials, the maximum 
plasma concentration of NTZ at 1g/d dosage is 10.2 μg/ 
mL (equals 33.2 μM).136 Moreover, a previous study sug-
gested that up to 4g/d NTZ is tolerated in humans.136 In 
this way, future exploration may focus on evaluating the 
highest tolerated dose of NTZ in human and analysis its 
pharmacokinetic property.

Conclusion
Drug redirection is increasingly attracting the attention of 
both researchers and pharmaceutical companies. 
Repositioning anti-parasitic agents to kill cancer cells could 
be a feasible way to develop cancer medications, and inves-
tigations on the detailed mechanisms and related clinical 
trials are continuing to accumulating. We summarized the 
recent advance in exploring the antiparasitic drugs’ antic-
ancer properties. Most of these agents target multiple biolo-
gical procedures and exhibit inspiring anticancer potential. 
Their pharmaceutical effects also provide ideas for novel 

drug design and development. However, there is also a dark 
side in this field. Several limitations that may block their final 
clinical application still exist and is worthy of noticing. For 
most of these agents, whether the target plasma concentration 
is achievable under the tolerated dose is the major issue. Drug 
combination or pharmacokinetic property improvement by 
modifying the chemical structure or applying the delivery 
systems may be the way out. Future in vitro or animal 
experiments should also focus more on the pharmaceutical 
properties of these agents at the range of achievable plasma 
concentration. Hopefully, some of these anti-parasitic agents 
may emerge as clinically applicable anticancer medications 
in the future.
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