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Purpose: Glioblastoma multiforme (GBM) poorly responds to chemotherapy owing to the 
existence of blood-brain barriers (BBB). It has been a long desire to develop BBB-permeable 
vehicles to facilitate drug targeting to GBM.
Method and Results: Here, we report that doxorubicin hydrochloride loaded in ApoE 
peptide-functionalized reduction-sensitive polymersomes (ApoE-PS-DOX) induces potent 
therapy of orthotopic U-87 MG model in nude mice. ApoE-PS-DOX with varying amount 
of ApoE (10~30 mol%) all had stable DOX loading and small sizes (< 90 nm). As revealed by 
flow cytometry, confocal microscopy, apoptosis and MTT assays, ApoE-PS-DOX with 20 mol. 
% ApoE induced the best cellular uptake and inhibitory effect to U-87 MG cells, which were 
much better than the non-targeted PS-DOX and liposomal doxorubicin (Lipo-DOX) used in 
the clinic. ApoE-PS-DOX revealed a pharmacokinetic profile comparable to PS-DOX but 
induced considerably better growth inhibition of orthotopically xenografted U-87 MG tumors 
in nude mice than PS-DOX and Lipo-DOX, leading to significant survival benefits with 
a median survival time of 44 days, which was almost doubled relative to the phosphate- 
buffered saline (PBS) group. Moreover, in contrast to mice treated with Lipo-DOX and PS- 
DOX, ApoE-PS-DOX group exhibited little body weight loss, signifying that ApoE-PS-DOX 
not only has low side effects but also can effectively inhibit glioblastoma invasion.
Conclusion: This ApoE-docked multifunctional polymersomal doxorubicin induces potent 
and safe chemotherapy of orthotopic U-87 MG model in nude mice offering an alternative 
treatment modality for GBM.
Keywords: apolipoprotein E, polymersomes, doxorubicin, brain tumor, blood-brain barrier

Introduction
Glioblastoma multiforme (GBM), a leading primary brain malignancy, is hard to treat 
with chemotherapy owing to the existence of blood-brain barrier (BBB).1–3 

Temozolomide (TMZ) is a unique drug capable of crossing BBB and currently used 
for treating GBM patients.4,5 However, more than half of patients with recurrent 
anaplastic gliomas could not benefit from TMZ treatment, and approximately 20% 
patients treated with TMZ suffer from the side effect such as thrombocytopenia and 
neutropenia,6 and the repeated administration of TMZ often induces drug resistance.7,8 

Thus, design and development of novel chemotherapy become an emergent mission for 
GBM treatment.
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BBB-permeable nanovehicles provide an intriguing plat
form to facilitate drug targeting to GBM. Various nanodrugs 
have been designed and constructed for GBM treatment.9–13 

Interestingly, brain capillary endothelial cells were found to 
overexpress several receptors including transferrin receptor, 
lactoferrin receptor, and low-density lipoprotein receptor- 
related protein 1 (LRP1), which could be utilized to enhance 
the BBB crossing and brain delivery.14–17 For example, trans
ferrin-drug conjugates, transferrin-modified liposomes and 
nanoparticles have been constructed for enhanced delivery of 
varying chemical drugs like doxorubicin (DOX) and resvera
trol to treat GBM,18–22 inducing reduced tumor size and 
prolonged survival time in intracranial U87 glioma xeno
grafted mice. Apolipoprotein E-installed nanoparticles have 
been used to assist liposomes and lipid nanoparticles to cross 
BBB.23,24 It should be noted, however, that chemical conjuga
tion with large proteins to nanomedicines can be a great 
challenge.25 Moreover, conflicting results have been reported 
on transferrin-mediated brain targeting.26 Peptides such as T7, 
T12, iRGD, and angiopep-2 with small molecule weight, 
simple structure and specific target moieties have appeared 
to be a superior alternative for GBM targeting.27–32 Angiopep- 
2 demonstrated not only BBB permeability but also high 
affinity to GBM.33–35 Very recently, we found that apolipo
protein E derived peptide, ApoE, exhibited better transcytosis 
and glioblastoma accumulation than angiopep-2,36,37 which is 
likely a result of its multi-receptor-targeting property.

Here, we report for the first time that DOX loaded in ApoE 
peptide-functionalized reduction-sensitive polymersomes 
(ApoE-PS-DOX) induces potent therapy of orthotopic U-87 
MG model in nude mice (Scheme 1). ApoE-PS-DOX was 
easily prepared from poly(ethylene glycol)-b-poly(trimethy
lene carbonate-co-dithiolane trimethylene carbonate) (PEG-P 
(TMC-DTC)) and ApoE-docked PEG-P(TMC-DTC). Our 
previous work showed that PS-DOX possess superior physio
chemical properties to clinically used liposomal doxorubicin 
(Lipo-DOX), in terms of stability, tolerability, and intracellular 
drug release.38 The disulfide-crosslinked membrane of ApoE- 
PS-DOX would afford minor drug leakage during circulation 
and swift drug release in the cytoplasm of tumor cells that 
possesses 2–3 orders magnitude higher glutathione 
concentrations.39,40 PS-DOX has been engineered with vary
ing ligands such as cRGD, GE11, ATN-161, and angiopep-2 
for targeted treatment of different solid tumors.35,41–43 Our 
results showed that ApoE-PS-DOX induced significantly bet
ter growth inhibition of orthotopically xenografted U-87 MG 
tumors than PS-DOX and Lipo-DOX, leading to significant 
survival benefits with a median survival time of 44 days. 

Moreover, mice following the treatment with ApoE-PS- 
DOX exhibited little body weight loss, signifying that ApoE- 
PS-DOX not only has low side effects but also can effectively 
inhibit glioblastoma invasion.

Experimental Section
Loading and Reduction-Triggered Release 
of DOX·HCl
ApoE-PS was prepared through the self-assembly of PEG-P 
(TMC-DTC) and ApoE-PEG-P(TMC-DTC) with different 
molar ratios (10 mol.%, 20 mol.%, and 30 mol.%) via solvent 
exchange method, and the corresponding polymersomes 
were defined as ApoE10-PS, ApoE20-PS, and ApoE30-PS. 
The non-targeted PS was formed from PEG-P(TMC-DTC) 
only. pH-gradient method was used for DOX·HCl encapsu
lation. In short, PEG-P(TMC-DTC) and ApoE-PEG-P 
(TMC-DTC) with different molar ratios were completely 
dissolved in DMF to form a mixture with a polymer concen
tration of 10.0 mg/mL. 100 μL of the above mixture was 
added to 900 μL of citrate buffer (10 mM, pH 4), and the 
mixed solution was placed at 37 °C for 1 h followed by 
adjusting the pH to 7.8 using Na2HPO4 (2.0 M). After adding 
predetermined amount of DOX·HCl solution (5.0 mg/mL), 
the obtained solution was stewed at 37 °C overnight, and then 
exhaustingly dialyzed against phosphate buffer (PB, 10 mM, 
pH 7.4). The whole experiment process needs to be protected 
from light. In order to figure out the drug loading capacity 
(DLC) and drug loading efficiency (DLE), the drug-loaded 
vehicles were freeze-dried and dissolved in DMF to extract 
DOX·HCl. The amount of DOX·HCl was measured by 
fluorescence analysis (ex.480 nm, em. 560nm), and the 
DLC and DLE were calculated as reported previously.38

Cell Apoptosis Analysis
U-87 MG human GBM cells with luciferase transfection 
gene were purchased from Shanghai Sinochrome (China). 
Approximately 1.0–1.5×105 cells per well were seeded in 
six-well plates for overnight, and incubated with DOX·HCl, 
Lipo-DOX, PS-DOX, or ApoE-PS-DOX (DOX·HCl con
centration: 5.0 μg/mL) for 4 h. The cells were further incu
bated with fresh media for 44 h for Annexin V-FITC/7-AAD 
assay. In short, the collected cells following complete wash
ing were suspended in 200 μL of binding buffer, incubated 
with 7-AAD and Annexin V-FITC for 15 mins at room 
temperature, and examined using flow cytometric analysis. 
The experiments have been repeated three times and the data 
were presented as mean ± SD (n = 3).
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Cell Invasion Analysis
Approximately 1.5×105 U-87 MG cells/well were plated in 
six-well plates overnight, treated with Lipo-DOX, PS- 
DOX, or ApoE-PS-DOX (DOX concentration: 0.5 μg/ 
mL) for 4 h, and then digested. The collected cells follow
ing suspension in 100 μL of Dulbecco’s Modified Eagle’s 
Medium (DMEM) supplemented with 1.0% FBS medium 
were added to the upper chamber of a transwell. Prior to 
adding cells, the upper chamber of the transwell was 
covered by 30 μg of Matrigel and the lower chamber 
was filled with 500 μL of medium containing 10% FBS. 
Following 20 h incubation, the noninvasive cells in the top 
chamber were wiped with cotton swabs, and those invaded 
to the lower chamber were stained with 0.1% crystal violet 
and photographed under a microscope. The experiments 
have been repeated three times and the data were pre
sented as mean ± SD (n = 3).

In vivo Antitumor Efficacy
The study was approved by Soochow University Laboratory 
Animal Center and the Animal Care and Use Committee of 
Soochow University (Guideline: Regulation for the 
Administration of Affairs Concerning Experimental Animals 
of Soochow University). Orthotopic glioblastoma xenograft 
model was built by intracranial transplantation of U-87 MG- 
luciferase (U-87 MG-Luc) tumor tissue. Briefly, subcutaneous 
tumor blocks were acquired by injection of U-87 MG-Luc cells 
(2×106 cells/mouse) to the flank of BALB/c nude mice and cut 
into small fragments. Then, the tumor fragments were admini
strated using a 24# trocar into the left skull (2 mm lateral to the 
bregma and 3 mm depth) of anesthetized BALB/c nude 
mice.32,37,44 The tumor growth was monitored by an IVIS 
Lumina II (λex/λem = 640 nm/668 nm), and the mice were 
separated into four groups at random (n = 8/group). PBS, 
ApoE20-PS-DOX, PS-DOX, or Lipo-DOX (5 mg DOX·HCl 

Scheme 1 Illustration of doxorubicin-loaded ApoE peptide-functionalized reduction-sensitive polymersomes (ApoE-PS-DOX) for the delivery of DOX to orthotopic 
human U-87 glioblastoma xenografts in nude mice. ApoE-PS-DOX engineered with ApoE can boost its BBB penetration and cellular uptake via LRP-1-mediated mechanism. 
The reduction-triggered DOX release from ApoE-PS-DOX affords significant growth suppression of orthotopically xenografted U-87 MG tumors, leading to remarkable 
survival benefits.
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equiv./kg) was administered via tail vein on day 10, 13, 16, or 
19. One day after the last treatment, one mouse from each 
group was sacrificed to acquire the major organs and tumors 
for histological analysis. The harvested tissues were fixed with 
a paraformaldehyde solution (4%) and implanted with paraffin. 
Then, the sliced tissues were stained by hematoxylin and eosin 
(H&E) or TUNEL and observed with a microscope (Leica 
QWin, Germany).

Results and Discussion
Preparation of ApoE-PS-DOX
ApoE-PS was readily self-assembled from PEG-P(TMC-DTC) 
and ApoE-PEG-P(TMC-DTC) with different molar ratios (10 ~ 
30 mol.%) (Figure 1A). Dynamic Light Scattering (DLS) char
acterization illustrated that the sizes of ApoE-PS were about 80 
nm, and the amount of ApoE basically did not affect the size and 
size distribution (Figure S1A). Taking ApoE20-PS as an example, 

Figure 1 Preparation process and physicochemical properties of PS-DOX and ApoE-PS-DOX. (A) Illustration of preparation process of ApoE-PS-DOX. (B) Size distribution 
measured using DLS. Inset: Transmission electron microscopy (TEM) image of ApoE20-PS-DOX (bar: 100 nm). (C) Stability of ApoE20-PS-DOX under different conditions. 
(D) Responsiveness of ApoE20-PS-DOX under 10 mM GSH. (E) GSH-triggered drug release from ApoE20-PS-DOX in PB and PB + 10 mM GSH at 37 °C.
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we investigated the physiochemical properties of ApoE-docked 
polymersomes. Under the conditions of exhausting dilution, 10% 
FBS, and one-week storage in PB, ApoE20-PS displayed superb 
stability with a slight size change (Figure S1B), which mainly 
benefits from disulfide bond-crossing of DTC moieties in the 
polymersomal membrane.38 ApoE-PS, however, quickly swelled 
and exhibited broad distribution in 12 h, and presented largely 
increased size of over 1300 nm at 24 h in the presence of 
glutathione (GSH, 10 mM) (Figure S1C), signifying their rapid 
responsivity under intracellular reduction environment.

DOX·HCl was actively encapsulated into ApoE20-PS through 
pH-gradient hydration technique that is used for clinically used 
Lipo-DOX at present. Both ApoE-PS and PS exhibited decent 
drug loading capacity with a decent DLC up to 9.3 wt.% (Table 1). 
In comparison with blank polymersomes, the formed ApoE20-PS- 
DOX displayed a slightly increased size with an average diameter 
of 85~89 nm (Figure 1B), comparably narrow distribution, and 
nearly neutral surface charge (1.5 ~ 1.9 mV) (Table 1). Meanwhile, 
PS-DOX without ApoE targeting ligand exhibited similar physio
chemical properties including size (~80 nm), size distribution, and 

Table 1 Drug Loading of PS-DOX and ApoE20-PS-DOX

Polymersomes DLC (wt.%) DLE (%)a Size (nm)b PDIb Zeta (mV)c

Theory Determineda

ApoE20-PS-DOX 10 5.1 48.8 85 0.11 +1.7

15 7.4 45.6 87 0.14 +1.9
20 9.3 40.8 89 0.15 +1.5

PS-DOX 10 4.9 46.4 78 0.16 +0.8
15 6.8 41.2 80 0.12 +0.6

20 8.5 37.3 83 0.14 +0.5

Notes: aMeasured using fluorometry. bMeasured using DLS, PDI, The polydispersity index. cMeasured using electrophoresis.

Figure 2 In vitro antitumor efficacy and cellular internalization of ApoE-PS-DOX in U-87 MG cells. (A) Cytotoxicity evaluated by MTT assay. Cells treated with varying 
formulations for 4 h were further incubated in fresh medium for 44 h (n = 4). (B) Flow cytometric analysis and (C) CLSM images of U-87 MG cells incubated with varying 
formulations for 4 h at a concentration of 10 μg DOX·HCl/mL. Scale bar: 30 μm. ApoE-PS-DOX with a ApoE density of 20% (ApoE20-PS-DOX) demonstrated best cellular 
internalization and cytotoxic capacity in U-87 MG cells.
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surface charge (0.5 mV). ApoE20-PS-DOX was robust against 
dilution, 10% FBS, and PB for 1 week (Figure 1C), while quickly 
swelled to over 1000 nm within 24 h under reductive environment 
(10 mM GSH) (Figure 1D). In vitro release studies displayed that 
ApoE-PS-DOX though possessing a minimal drug release (ca. 
21%) in physiological environments within 24 h showed markedly 
accelerated drug release in PB solution containing 10 mM GSH, in 
which around 83% of drug was released although other conditions 
unchanged (Figure 1E). PS-DOX displayed similar drug release 
profiles. The remarkable features of ApoE-PS-DOX including 
robustly crosslinked structure, peptide conferred tumor selectivity, 
and redox-triggered drug release make it different from most 
developed DOX delivery nanosystems.45–47

In vitro Antitumor Activity and Selective 
Cellular Uptake of ApoE-PS-DOX
Both PS-DOX and ApoE-PS-DOX showed higher in vitro anti
tumor efficacy in U-87 MG cells than Lipo-DOX, mainly owing 
to the efficient cellular uptake and fast drug release from poly
mersomes under intracellular reductive environments (Figure 
2A). Moreover, ApoE-PS-DOX showed stronger cytotoxic 
effect toward cancer cells in comparison with PS-DOX, in 
which ApoE20-PS-DOX displayed a lowest half-maximal inhi
bitory concentration (IC50) of 1.01 μg DOX·HCl equiv./mL. PS- 
DOX and Lipo-DOX revealed IC50 of 3.64 and 10.22 μg 
DOX·HCl equiv./mL, respectively. Noticeably, all empty PS 
and ApoE-PS (ApoE densities: 10–30 mol.%) were nontoxic 

Figure 3 Effect of ApoE20-PS-DOX on the apoptosis and invasion glioma cells, Lipo-DOX and PS-DOX were uses as controls. (A) Cell apoptosis assay and (B) Western blot assay 
of the expression of Bcl-2 and BAX proteins in U-87 MG cells. (C) Effect of different drug on cell invasion. (D) Quantification of cell invasion presented in C. *p < 0.05, **p < 0.01.
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toward both cancer cells (U-87 MG, Figure S2A) and healthy 
cells (astrocyte, Figure S2B) at concentrations of 0.1–0.5 mg/mL.

In comparison with Lipo-DOX and PS-DOX, ApoE-PS- 
DOX displayed remarkably higher cellular uptake in U-87 
MG cells as measured by flow cytometry (Figure 2B), sig
nifying that the introduction of ApoE facilitated the cellular 
uptake of nano-drugs via LRP and LDLR receptor-mediated 
mechanism. Notably, ApoE20-PS-DOX displayed highest 
DOX fluorescence after incubating with cells for 4 h, pre
senting 3.6 times higher drug accumulation in U-87 MG cells 
than Lipo-DOX group. ApoE20-PS-DOX was thus selected 
for subsequent in vitro/vivo evaluation. The cellular uptake 
and trafficking was further investigated using confocal laser 
scanning microscope (CLSM) measurement, and the results 
revealed that U-87 MG cells incubated with ApoE20-PS- 
DOX for 4 h displayed strong DOX fluorescence in both 
cytoplasm and nucleus (Figure 2C), signifying its efficient 
cellular internalization as well as fast drug release inside 
cancer cells. In contrast, cells incubated with Lipo-DOX or 
PS-DOX without targeting ligand presented faint DOX fluor
escence that mostly located at perinuclear area.

Cell Apoptosis and Invasion
Cell apoptosis of U-87 MG cells following the treatment 
with different formulations was evaluated using Annexin 
V-FITC/7AAD apoptosis detection kit. Notably, both PS- 
DOX and ApoE10-PS-DOX caused significant apoptosis 

of U-87 MG cells, in which PS-DOX, ApoE10-PS-DOX, 
ApoE20-PS-DOX, and ApoE30-PS-DOX at a DOX·HCl 
concentration of 5 μg/mL displayed remarkable apoptotic 
rates of 49.9%, 74.6%, 85.3%, and 79.0%, respectively 
(Figure 3A). The most apoptotic cells generated by 
ApoE20-PS-DOX corresponds to its highest in vitro cyto
toxic capacity towards cancer cells. Western blot assay 
further revealed that cells treated with ApoE20-PS-DOX 
had the highest expression of apoptosis-related BAX pro
tein and the lowest expression of anti-apoptosis-associated 
Bcl-2 protein (Figure 3B).

Vigorously invasive growth of GBM greatly compro
mises the therapeutic efficacy of surgical excision, radio
therapy and chemotherapy.48 Here, transwell assay was 
employed to evaluate the capacity of nanodrugs on the inhi
bition of cell invasion. Compare with PBS group, Lipo- 
DOX, PS-DOX, and ApoE20-PS-DOX showed obvious 
inhibition of cell invasion (Figure 3C). Interestingly, cells 
following the treatment with ApoE20-PS-DOX displayed 
around two times less invasion compared with PS-DOX 
and Lipo-DOX groups (Figure 3D).

Pharmacokinetics and Biodistribution
Both ApoE-PS-DOX and PS-DOX were observed to have 
a relatively long circulation time with a t1/2,β of ca. 4.0 
h (Figure 4A), in sharp contrast with that of free DOX (ca. 
0.45h49), confirming that ApoE-PS-DOX has superior 

Figure 4 Pharmacokinetics and biodistribution studies. (A) Pharmacokinetics study of ApoE20-PS-DOX and PS-DOX in C57BL/6 mice. (B) Biodistribution study of ApoE- 
PS-DOX, PS-DOX, and Lipo-DOX in orthotopic xenograft mouse model at 8 h post-injection (10 mg DOX·HCl/kg). **p < 0.01.
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in vivo stability. Comparing with Lipo-DOX, ApoE-PS- 
DOX achieved nearly 8-fold higher enrichment (ca. 7.2% 
ID/g) in the U87 glioma tumors (Figure 4B), outperform
ing previously reported nanodrugs.11,18,50 This high GBM 
accumulation of ApoE-PS-DOX is mainly attributed to the 
prominent BBB-crossing and cell-targeting effect of 
ApoE. Furthermore, ApoE-PS-DOX revealed less deposi
tion in the liver and heart in comparison with Lipo-DOX, 
possibly further lessening the cardiotoxicity, a main con
cern of DOX in the clinics.51

In vivo Therapeutic Efficacy
The anti-glioma efficacy of ApoE20-PS-DOX was assessed 
using orthotopic U-87 MG-luciferase (U-87 MG-Luc) tumor- 

bearing mouse model. The bioluminescent luciferase reporter 
expressed by U-87 MG cells was employed to visualize the 
progression of tumors. In comparison with fast tumor growth 
in PBS group, all DOX formulations (Lipo-DOX, PS-DOX, 
ApoE20-PS-DOX) could retard tumor growth as characterized 
by obviously lower bioluminescence intensity of intracranial 
tumors on days 10, 14, 18 and 22 (Figure 5A). Of note, mice 
treated with ApoE20-PS-DOX revealed weak tumor biolumi
nescence during the whole experimental period, signifying its 
efficient suppression on tumor progression. The biolumines
cence quantification of intracranial tumors revealed that mice 
treated with ApoE20-PS-DOX had the lowest biolumines
cence level with about 3.0-fold and 5.6-fold lower lumines
cence intensity than those treated with PS-DOX and PBS 

Figure 5 Anti-GBM efficacy of ApoE-PS-DOX, PS-DOX, and Lipo-DOX (dosage: 5.0 mg DOX·HCl equiv./kg) in orthotopic U-87 MG-Luc human glioma xenografts. ApoE- 
PS-DOX group demonstrated best tumor growth inhibition and survival benefits. (A) Bioluminescence images of mice following the administration on day 10, 13, 16, and 19. 
(B) Average radiance of U-87 MG-Luc bioluminescence in different groups (**p<0.01). (C) Body weight changes of mice within 23 d post-implantation. (D) Survival 
evaluation of mice. Statistical analysis: ApoE20-PS-DOX vs Lip-DOX and PBS, ** p < 0.01; Lip-DOX vs PS-DOX, ns; PS-DOX vs PBS, ** p < 0.01; Lip-DOX vs PBS, ** p<0.01 
(Kaplan−Meier analysis, Log rank test).
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on day 22, respectively (Figure 5B). Moreover, ApoE-PS- 
DOX group exhibited little body weight loss (Figure 5C), 
signifying that ApoE-PS-DOX not only has low systemic 
toxicity but also can efficiently inhibit glioblastoma invasion. 
On the contrary, both Lipo-DOX and PS-DOX induced com
parable body weight loss to PBS group. Remarkably, ApoE20- 
PS-DOX could significantly extend the survival time of ortho
topic U-87 tumor-bearing mice with a median survival time 

(MST) of 44 days, which was over 2-fold longer than PBS 
group (23 days) (Figure 5D), confirming its high anti-GBM 
efficacy. PS-DOX and Lipo-DOX could also increase the 
MST to 35 and 28 days, respectively, although significantly 
less efficient than ApoE20-PS-DOX. In comparison, moderate 
survival benefits (MST = 28 ~ 38 days) were obtained from 
previous work on DOX and paclitaxel-loaded nanodrugs in 
orthotopic GBM bearing mice.12,50,52,53

Figure 6 (A) Tunel analysis of brain tumor excised from mice received the therapy of ApoE20-PS-DOX, PS-DOX, Lipo-DOX and PBS. Green represents apoptotic area in 
tumor. Bar: 50 μm. (B) Tumor enrichment behavior of ApoE20-PS-DOX, PS-DOX and Lipo-DOX observed by CLSM. Tumor sections are obtained from GBM-bearing mice 
following 24 h treatment. Nuclei were stained with blue DAPI and DOX with red fluorescence. Bar: 50 μm.
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Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assays revealed that mice received the 
ApoE20-PS-DOX therapy induced considerable apoptosis 
(green) of intracranial glioblastoma cells, in sharp contrast 
with a few apoptotic tumor cells in both PS-DOX and Lipo- 
DOX groups (Figure 6A). Immunofluorescence staining was 
used to detect DOX distribution in intracranial tumors after 
treatment. Mice received the ApoE20-PS-DOX therapy dis
played significant DOX fluorescence throughout the whole 
tumor tissue (Figure 6B), corroborating that ApoE20-PS- 
DOX facilitates the drug enrichment and retention in intra
cranial GBM tumors. On the contrary, only a small amount of 
DOX was perceived in the intracranial tumors of mice 
received the PS-DOX or Lipo-DOX therapy.

Conclusions
We have demonstrated that DOX loaded in ApoE peptide- 
functionalized reduction-sensitive polymersomes (ApoE-PS- 
DOX) induces potent and safe chemotherapy of orthotopic 
U-87 MG model in nude mice. ApoE-PS-DOX presents 
several traits including stable drug loading, small size, BBB 
permeability, GBM cell selectivity, and triggered drug 
release, giving rise to an extended circulation time and 
remarkably enhanced drug enrichment in the orthotopical 
U-87 MG tumor xenografts. Accordingly, ApoE-PS-DOX 
brought about significant survival benefits (median survival 
time doubled compared with PBS control) and reduced sys
temic side effects. ApoE-directed delivery of DOX appears 
to be an intriguing modality for the treatment of intract
able GBM.
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