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Background: Individuals with chronic low back pain (CLBP) experience changes in gait 
control due to pain and/or fear. Although CLBP patients’ gait has been performed in 
laboratory environments, changes in gait control as an adaptation to unstructured daily living 
environments may be more pronounced than the corresponding changes in laboratory 
environments. We investigated the impacts of the environment and pathology on the trunk 
variability and stability of gait in CLBP patients.
Methods: CLBP patients (n=20) and healthy controls with no low-back pain history (n=20) 
were tasked with walking in a laboratory or daily-living environment while wearing an accel-
erometer on the low back. We calculated the stride-to-stride standard deviation and multiscale 
sample entropy as indices of “gait variability” and the maximum Lyapunov exponent as an index 
of “gait stability” in both the anterior-posterior and medial-lateral directions. The participants 
were assessed on the numerical rating scale for pain intensity, the Tampa Scale for 
Kinesiophobia, and the Roland–Morris Disability Questionnaire for quality of life (QOL).
Results: In a repeated-measures ANOVA, the standard deviation was affected by environment 
in the anterior-posterior direction and by group and environment in the medial-lateral direction. 
Multiscale sample entropy showed no effect in the anterior-posterior direction and showed both 
effects in the medial-lateral direction. Maximum Lyapunov exponents showed both effects in 
the anterior-posterior direction, but none in the medial-lateral direction. These changes of trunk 
motor control by CLBP patients were found to be related to pain intensity, fear of movement, 
and/or QOL in the daily-living environment but not in the laboratory environment.
Conclusion: These results revealed that CLBP patients exhibit changes in trunk variability 
and stability of gait depending on the environment, and they demonstrated that these changes 
are related to pain, fear, and QOL. We propose useful accelerometer-based assessments of 
qualitative gait in CLBP patients’ daily lives, as it would provide information not available in 
a general practice setting.
Keywords: chronic low back pain, daily-living gait, variability index, stability index, inertial 
sensor

Introduction
Chronic low back pain (CLBP), which is one of the most common health 
problems, is the leading cause of limitations in gait and daily living 
activities.1–3 Individuals with CLBP are known to have characteristic spatiotem-
poral gait parameters, including reduced step length, decreased cadence, and 
increased stride-to-stride variability.4–7 They also frequently present with 
impaired lumbar movements, such as a reduction in movement velocity and 
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a decreased range of movement.8 In general, motor con-
trol is affected among individuals with CLBP in the way 
that Hodges proposed — ie, with changes in multiple 
levels of the motor system to protect the tissues from 
further pain or injury, such as changes in the pattern of 
activity of trunk muscles and mechanical behaviors, and 
reduced responsiveness to sensory input.9 Hodges further 
reported that pain and/or pain-related fear alter motor 
variability and trunk stabilization as motor system adap-
tations in individuals with CLBP.9 However, these adap-
tive phenomena of gait have not been clarified.

Gait variability is a reflection of the multiple degrees 
of freedom of the sensory-motor system.10 Both the 
standard deviation (SD), which is one of the classical 
linear estimates, and multiscale sample entropy (MSE), 
which is based on the quantification of complexity on 
multiple scales of time series, have been used to evalu-
ate gait variability.11–13 Gait stability is considered the 
ability of an individual’s sensory-motor control system 
to maintain a gait in the presence of omnipresent dis-
turbances, and it is often evaluated by using the max-
imum Lyapunov exponent (LyE), which is a nonlinear 
measure of local dynamic stability.14,15 Uncovering the 
variability and the stability of the gait pattern could 
provide more insight into the behavioral changes in 
individuals with CLBP.

Previous studies employing a single wearable sensor to 
evaluate gait reported that the variability and/or stability of 
gait are more affected in a daily-living environment than in 
a laboratory or clinical environment.16–18 In particular, 
healthy young adults routinely vary their motor patterns 
to maintain stability in unstructured environments.18 

Measuring gait in daily living reflects individuals’ habitual 
gait performance,19,20 and thus the recording of the gait 
during daily living has clinical utility and presents the 
potential benefit of evaluating gaits under unsupervised 
and uncontrolled conditions.21,22 Moreover, gaits in 
unstructured daily living are more difficult to predict and 
thus more prone to disturbance than those measured in 
structured clinical settings.

We conducted the present study to use the measures of 
SD, MSE, and LyE to explore the impacts of the subjects’ 
environment and pathology by analyzing differences in 
trunk variability and stability of gait between individuals 
with CLBP and healthy controls in both laboratory and 
daily-living environments. We also investigated the rela-
tionship between trunk variability and stability of gait and 
pain, fear, and quality of life (QOL). We hypothesized that 

individuals with CLBP would have greater gait variability 
and lower gait stability compared to healthy controls, and 
that these differences in trunk control would be increased 
in the daily living compared to in the laboratory. We 
hypothesized that changes in the trunk control of gait 
among participants with CLBP would show 
a relationship with pain intensity, fear of movement, and/ 
or QOL.

Methods
Participants
An investigation of gait in healthy participants and CLBP 
patients used n=18 as the sample size for each group,23 

and a study of gaits in different environments used n=19 as 
the sample.18 Based on the effect size (ηp

2 = 0.27) of 
a previous study,23 we calculated the necessary total sam-
ple size as 38 participants. We aimed for a minimum 
sample size of 20 in the present healthy control group 
and CLBP group. We recruited 20 healthy participants 
(mean age 56.75±9.43 years) from our laboratory’s geo-
graphic region by using flyers distributed from 
September 2018 to March 2019, and 20 patients with 
CLBP (mean age 54.05±10.76 years) from an orthopedic 
clinic from September 2018 to March 2020 in Figure 1. 
Healthy participants were included if they had no lower 
back pain (LBP) at enrollment and were excluded if they 
had any of the following: history of lumbar surgery, had 
received treatment for CLBP in the past 6 months, 
severely limited mobility, a progressive neurological dis-
order, or a terminal illness. The inclusion criteria for the 
CLBP patients were as follows: an LBP duration of >3 
months; a score of ≥1 on an 11-point numeric rating scale 
(NRS, 0–10) for pain intensity; and sufficient walking 
ability to travel to our laboratory without assistance. The 
exclusion criteria were as follows: previous spinal surgery 
(fusion, instrumentation, or discectomy), lumbar infiltra-
tion in the last 6 months, serious spinal pathology (cancer, 
inflammatory arthropathy, or acute vertebral fracture), 
spinal deformities, leg pain (eg, hip/knee OA), 
a diagnosis of neurological disease, and a stage of ≥2 on 
a functional assessment staging test of Alzheimer’s dis-
ease. The study protocol conformed to the Declaration of 
Helsinki. Before participating, each participant provided 
written informed consent. This study was approved by the 
Ethics Committee of Kio University Health Science 
Graduate School (approval no. H30-20).
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Study Design
For the experiment conducted in the laboratory environ-
ment, CLBP patients and healthy controls was asked to 
wear a single wearable tri-axial accelerometer (Axivity 
AX3, York, UK) on the fifth lumbar vertebra (L5). The 
participants received sufficient instruction on how to wear 
the device and practiced until they were able to wear it 
stably. The device was programmed to capture data at 100 
Hz and at a range of ±8 g.24 Participants then walked for 
>60 sec at their preferred speed around an indoor track 
(30 m/loop). This laboratory-based gait measurement was 
then followed by gait measurement in a daily living envir-
onment while the participant was wearing the tri-axial 
accelerometer. For this part of the experiment, the partici-
pants were asked to wear tri-axial accelerometer for 3 days 
while performing their usual daily activities in their usual 
living environment;25 the participants removed the sensor 
during bathing and sleeping, and wore it at all other times.

After the measurement of gait in daily living was 
completed, each CLBP patient was instructed to fill out 
three questionnaires about their LBP over the 3 days of the 
experiment. The average pain intensity over time was 
assessed on an 11-point numerical rating scale (NRS: 0  
= no pain and 10 = highest possible degree of pain). 
Kinesiophobia was assessed using the 11-item version of 
the Tampa Scale for Kinesiophobia in Japanese (TSK-11: 
11 = no fear of movement and 44 = highest fear of 
movement).26 Physical disability caused by LBP was 
assessed by the Japanese version of the Roland–Morris 
Disability Questionnaire (RMDQ: 0 = no physical disabil-
ity and 24 = worse physical function).27

Data Processing and Analysis
All data analyses related to the raw acceleration signals 
were performed using custom-made software designed on 
MATLAB R2019b (MathWorks, Natick, MA, USA). The 
mean wearing time for the tri-axial accelerometer was 
907.10 ± 21.44 min/day (range: 869–938) for healthy con-
trols and 903.35 ± 19.98 min/day (range: 865–942) for 
CLBP patients, and all participants were included in the 
analyses because they wore the wearable sensor for 
a sufficient amount of time for the analyses.28 The algo-
rithm and data segmentation techniques applied to the 
accelerometer data have been described in full.24,29 In 
brief, we subjected the vertical acceleration data to con-
tinuous wavelet transformation in order to estimate the 
initial contact and the final contact in the gait cycle.29

To ensure that the steady-state gait was analyzed, we 
removed the initial three steps and final three steps from the 
data captured over 60 sec. In the daily living environment, 
a mean of 15.75 walking epochs (range 6–32 epochs), each 
with a duration >60 sec, was identified for each of the healthy 
participants. Similarly, a mean of 15.15 walking epochs 
(range 5–26), each with a duration >60 sec, was identified 
for each of the CLBP patients. Prior to the calculation of 
additional variables, the acceleration signals were realigned 
to the Earth’s gravitational constant, and a low-pass 
Butterworth filter with a cut-off frequency of 20 Hz was 
applied.30,31 The following variables were calculated using 
the accelerations in the anterior-posterior (AP) and medial- 
lateral (ML) directions (see Figure 1A Figure 2A), since the 
directional control of movement is performed 
independently.32

Trunk Variability of Gait
The standard deviation (SD) is one of the classical linear 
estimates. To compute the stride-to-stride variability of 
gait, trunk acceleration during each stride was time-nor-
malized (0–100%) (see Figure 1B Figure 2B). At each of 
the 101 normalized time points, the SDs of the AP and ML 
trunk accelerations were calculated. Next, the average SD 
of these 101 SDs was calculated.11

Multiscale sample entropy (MSE) is a nonlinear para-
meter used to quantify the variability or the complexity of 
biological signals based on the dynamical system theory 
that the dynamics of motor behavior results from interac-
tions among the nervous system, the body, and the envir-
onment in the performance of a particular task on multiple 
spatio-temporal scales12,13 (see Figure 1C Figure 2C). 
MSE is more sensitive than linear variability and can be 
used to investigate complexity in motor control.33 This 
index aims at quantifying the predictability of patterns: 
a time series containing many repetitive patterns (ie, one 
that is more predictable) would have relatively small MSE, 
whereas a less predictable process would have higher MSE 
and smaller regularity.12 In the present study, we used 
a range of τ-values (1–6) to analyze entropy at different 
time scales while preserving the characteristics of the 
original time series. The length of sequences to be com-
pared (m) was fixed at 2, and the tolerance for accepting 
matches (r) was fixed at 0.2.34,35

Trunk Stability of Gait
The maximum Lyapunov exponent λ (LyE) is a frequently 
used to quantify the dynamic stability of gait and the ability 
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of the motor system to attenuate small perturbations, defined 
as the divergence of trajectories in state space14 (see Figure 
1D). The LyE thus measures the exponential rate of the 
divergence of trajectories of a state space constructed from 
kinematic data acquired from the gait.36 An inability of the 
motor system to diminish perturbations results in a higher 
divergence of the trajectories of state space and thus greater 
LyE values. Thus, the higher the LyE value, the lower the 
stability of the individual’s gait.37,38

We calculated the LyE values using the method 
defined by Rosenstein et al.39 The state space recon-
struction was composed of delay-embedded state spaces 
(q(t), q(t+τ), q(t+2τ) …) of unfiltered ML and AP accel-
eration components. Time delays (τ) were calculated 
from the first minimum of the average mutual informa-
tion function. An embedding dimension of dE = 5 was 
used for all data sets, as determined from a global false- 
nearest-neighbor analysis. The LyE was calculated as 
the slope of the logarithm of the average divergence 
across the span of 0–0.5 strides as shown in Figure 
2Figure 2D.

Statistical Analyses
We used the software program R (ver. 3.4.1) for all statis-
tical analyses. Before conducting the statistical analyses, 
we confirmed that all data were normally distributed by 
using the Shapiro–Wilk normality test. We compared the 
age and gender distribution between the HC and CLBP 
groups by using the t-test and chi-squared test, respec-
tively. For the examination of the trunk motor controls of 
gait, we performed a 2 × 2 [Environment (lab/daily liv-
ing) × Group (HC/CLBP)] repeated measures analysis of 

variance (RM-ANOVA) in the ML and AP directions. 
Partial eta square (ηp

2) values were calculated for the 
identification of effect sizes. Independent and dependent 
t-tests were used for a post-hoc analysis when significant 
group by condition interactions were identified.

Independent t-tests were used to compare demo-
graphics between groups, and Cohen’s d-values were cal-
culated to indicate effect sizes. A commonly used 
interpretation is to refer to effect sizes as small (d = 0.2; 
ηp

2 = 0.01), medium (d = 0.5; ηp
2 = 0.06), and large (d =  

0.8; ηp
2 = 0.14).40 We evaluated the associations between 

the CLBP patients’ trunk motor controls of gait and their 
symptoms by using Pearson product-moment correlation 
coefficients. The analysis was corrected for multiple com-
parisons using Holm corrections.41

Figure 1 Flow diagram of the experimental procedures. Healthy controls (HCs) were recruited from our laboratory’s geographic region using flyers distributed Sept. 2018 
to March 2019, and chronic low back pain (CLBP) patients were recruited from an orthopedic clinic. HC and CLBP patients participated in this study from September 2018 
to March 2020. The gait in daily-living environments was measured for 3 days. The CLBP patients answered questionnaires about their LBP over the 3 days when they wore 
a single wearable sensor.

Table 1 Participants’ Characteristics and Comparison of 
Variables Between the HC and CLBP Groups

Healthy Controls 
(HC) (n = 20)

Chronic Low Back Pain 
(CLBP) (n = 20)

Age (year) 56.75 ± 9.43 54.05 ± 10.76

Gender M = 12, F =8 M = 11, F = 9

Pain NRS – 4.40 ± 1.32

Duration 
(months)

– 23.65 ± 17.42

TSK-11 – 22.05 ± 6.61

RMDQ – 4.60 ± 2.91
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Results
Participant Characteristics in the HC and 
CLBP Groups
Table 1 presents the demographic characteristics of the HC 
and CLBP groups and the symptoms of the CLBP group. No 
significant differences were observed in the characteristics of 
the HC and CLBP groups (age p>0.05 on independent sam-
ples t-test; gender p>0.05 on chi-squared test).

Trunk Variability of Gait
Figure 3 provides the mean values and SDs for trunk 
variability and stability of gait in the HC and CLBP 
groups. Table 2 summarizes the results of the RM- 
ANOVA for trunk variability and stability of gait in 
both groups. The F-value, p-value, and partial eta 
square (ηp

2) values in the RM-ANOVA are shown in 
Table 2. In the AP direction, the RM-ANOVA of the 

Figure 2 Calculation of gait parameters. (A) Direction of acceleration during gait. Blue line: anterior-posterior (AP). Green line: medial lateral (ML) direction. (B) Stride-to- 
stride standard deviation (SD); x-axis, gait cycle (0–100%); y-axis, amplitudes of AP direction. (C) Multiscale sample entropy (MSE). Time scales τ from 1 to 6 represent 
averages of a successively increasing number of data points in nonoverlapping windows (τ =1–6: from light blue to deep blue). The time series of τ=1 shows original data. (D) 
The maximum Lyapunov exponent (LyE). A three-dimensional attractor (state space reconstruction of q) and close-up view of part of the attractor are shown. For each 
point on the attractor, the nearest neighbor was calculated, and divergence of these points was calculated as dist j (t). The average logarithmic rate of divergence was 
calculated to determine the LyEs.
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SD revealed significant main effects for Group but not 
for Environment. An interaction of Environment × 
Group was not significant. In the ML direction, the 
RM-ANOVA of the SD revealed significant main 
effects for Environment and for Group. An interaction 
of Environment × Group was not significant.

The RM-ANOVA of MSE revealed no significant 
main effects for Environment of Group in the AP 
direction, whereas in the ML direction, an MSE of τ  
=1 showed significant main effects for Group but not 
for Environment. An MSE of τ ≥2 showed significant 
main effects for Environment and for Group and 
revealed that the interaction of Environment × Group 
was significant.

The post hoc analyses were performed for MSE at 
τ ≥2 for ML and revealed that the occurrence of MSE at 
τ ≥2 in daily living was significantly higher than that in 
the lab for the CLBP group but not the HC group. In 

addition, MSE at τ ≥4 in the CLBP patients was signifi-
cantly higher than that of the controls in the laboratory 
environment, and MSE at τ ≥2 in the CLBP group was 
significantly higher than that of the controls in the daily- 
living environment.

Trunk Stability of Gait
In the AP direction, the LyE showed significant main 
effects for Environment and for Group. An interaction of 
Environment × Group was not significant. In the ML direc-
tion, the RM-ANOVA results for LyE revealed no signifi-
cant main effects for Environment or Group. An 
interaction of Environment × Group was not significant. 
The post-hoc power analysis yielded a statistical power 
from 0.84 to 0.99 for RM-ANOVAs and 0.99 for the post 
hoc analysis of the RM-ANOVAs, confirming sufficient 
power.

Figure 3 Trunk variability and stability of gait in laboratory and daily-living environments for the HC and CLBP groups. (A) Stride-to-stride SD, from left to right: laboratory 
and daily-living environments in the HC group, laboratory and daily-living in the CLBP group. (B) MSE. Time-scale τ values are represented by gray scale (τ =1–6: from light 
gray to black). (C) The LyE.
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The Associations Between the Trunk 
Motor Controls of Gait and the 
Questionnaires of the CLBP Patients
The associations between the trunk motor controls of gait 
and pain intensity, the TSK-11, and the RMDQ are presented 
in Figure 4. In the lab, the only significant correlation was 
between the MSE at τ =6 of the ML direction and the TSK- 
11. In daily living, the LyE of the AP direction was asso-
ciated with both the TSK-11 and RMDQ responses, and the 
SD of the ML direction was associated with the TSK-11 
responses. MSE at τ ≥5 in the ML direction was also asso-
ciated with the pain-intensity NRS and TSK-11 results.

Discussion
A single wearable sensor placed on the lower back was 
used in this study to assess the trunk variability and stabi-
lity of gait in individuals with chronic low back pain 
(CLBP) and healthy controls (HC) in laboratory and 
daily-living environments. We hypothesized that indivi-
duals with CLBP would have greater gait variability and 
lower gait stability compared to HCs, and that these dif-
ferences in trunk control would be greater in the daily- 

living environments than in the laboratory. We also 
hypothesized that differences in the trunk controls of gait 
would show a relationship to symptoms of CLBP.

Our results were as follows: (1) the standard deviation 
(SD) of trunk acceleration (ie, trunk variability) in the 
CLBP group was high regardless of the environment in 
the Anterior-Posterior (AP) direction and high but affected 
by the environment in the Medial-Lateral (ML) direction. 
(2) Multiscale sample entropy (MSE) (ie, complexity) was 
not affected by CLBP status or by the environment in the 
AP direction but was high in the CLBP group and affected 
by the environment in the ML direction. In addition, the 
MSE at τ ≥2 was higher in the CLBP group in the daily- 
living environment. (3) The maximum Lyapunov 
Exponent (LyE) (ie, trunk stability) was high in the 
CLBP group and affected by the environment in the AP 
direction, but was not affected by CLBP status or environ-
ment in the ML direction. (4) These changes in trunk 
motor control due to CLBP were related to pain intensity, 
fear of movement, and/or deficits in activities of daily 
living (ADLs) in the daily-living environment but not the 
laboratory environment. All of the results of the RM- 
ANOVAs with significant differences showed medium or 

Figure 4 Heat map showing correlation coefficients between trunk motor controls of gait and symptoms of CLBP in the CLBP group. Darker pixels reflect higher 
correlation values (red: positive, green: negative). The r-value is indicated only in the pixels when the correlation was significant at p<0.05 using Holm corrections.
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large effect sizes. Overall, the results supported our 
hypothesis, but the AP and ML directions showed differ-
ences in these trends of trunk variability and stability of 
gait.

We compared TSK-11 and RMDQ with those obtained in 
previous studies, and we observed that TSK-11 and RMDQ 
were similar to reported values, and that the kinesiophobia 
and QOL of our CLBP patients were not deviant.42,43 In the 
present CLBP group, the mean score of kinesiophobia was 
22.05. Kinesiophobia is described as a gradualizing syn-
drome but not a dichotomous characteristic.44 For the TSK- 
11, no cut-off value differentiating between high and low 
kinesiophobia has been reported;26 however, for the 17-item 
TSK, the total score ranges from 17 to 68 and scores >37 are 
generally considered as reflecting a high level of 
kinesiophobia.44,45 If we consider that 37 (57%) on the 68- 
grade scale represents high kinesiophobia, it would be equal 
to 35 points on a 44-graded scale. In light of their TSK-11 
scores, our participants appear to have suffered from slight 
kinesiophobia but not severe kinesiophobia. Our CLBP 
patients’ mean score on the RMDQ was 4.60, and the 
reported cut-off point for the RMDQ is 2.5.46 

Eighty percent of the present CLBP patients’ scores were 
beyond this limit, and most of the CLBP patients had 
impaired QOL due to low back pain.

We also observed that the trunk variability of gait in 
the CLBP group was increased in the daily-living environ-
ment. Gait in the unstructured environment of daily living 
may be more difficult to predict and prone to perturbations 
compared to gait in structured clinical environments, 
because the unstructured environment reinforces the need 
to adapt movements with a high degree of freedom (DOF). 
From the perspective of spinal structure, the lumbar spine 
has the largest DOF number and therefore greater pro-
blems with controlling position, especially with high 
loads and in unpredictable environments.47 Loose control 
(ie, increased trunk variability) can cause LBP, as large 
displacements after trunk perturbations are associated with 
LBP, and failures of muscular control over the spine result 
in large tissue strains.48,49

The increased complexity of gait in CLBP that we 
observed in this study is consistent with the results of 
previous studies.50–52 Our present findings also revealed 
that the effect of environment or group was increased with 
time delay τ, in agreement with previous research.53,54 In 
particular, a τ-value >4 means that frequencies below 
10–16 Hz contribute the most in characterizing the auto-
maticity of the human gait.55

Our present findings demonstrated that the trunk varia-
bility of gait was related to pain intensity and kinesiopho-
bia only in the daily-living environment. Other researchers 
reported that the automaticity of gait and variability were 
disrupted in relation to pain and/or fear, and that gait 
complexity was increased in patients with lumbar spinal 
stenosis; the latter phenomenon was described as being 
directly related to the intensity of low back pain.56,57 In 
addition, pain and fear each interfere with the neural con-
trol pathways for automaticity.58 Thus, changes in the 
neuromuscular control and/or pain or fear may compel 
participants to compensate for adjusting their gait pattern. 
From the above findings, we speculate that the unstruc-
tured environment of daily living, ie, unpredictable situa-
tions, may promote compensatory gait-loosening strategies 
and a lack of automaticity.

The trunk stability of gait is defined as the ability to 
maintain functional locomotion despite the presence of 
small kinematic disturbances or control errors.38 

Individuals with CLBP have a deficiency in muscle coordi-
nation and reduced precision in the control of trunk move-
ment due to diminished proprioceptive feedback.59 In 
addition, deficits of motor control are thought to be induced 
by pain or fear.60,61 These factors appear to cause disturbed 
control and recovery from perturbations and reduced 
stability.62,63 Some studies have described higher trunk varia-
bility and/or lower stability of gait in CLBP patients (as 
observed herein), but opposite results have also been reported 
in CLBP, describing decreased variability and/or increased 
stability of trunk movements due to increased trunk 
stiffness.4,64 Importantly, the studies that reported tight con-
trol of gait used a treadmill. Treadmill walking tends toward 
less variability and more stability compared to walking on 
solid ground or in daily-living environments.65 Although 
increased stiffness may contribute to the control of small- 
amplitude perturbations experienced in the predictable envir-
onment of treadmill walking, it may limit the potential for 
control and recovery from larger perturbations.62 Thus, 
CLBP patients’ lumbar movement during gait may be 
unstable due to an inability to adapt to perturbations in the 
unstructured environment of daily living by pathological 
kinematic disturbances or control errors.

Our present analyses revealed that for both stability 
and variability of gait, the data in the AP and ML direc-
tions showed different trends. Specifically, in the AP direc-
tion, stability of gait was impaired at medium effect sizes, 
and the variability was not affected by environmental 
changes; in the ML direction, the variability was affected 

Journal of Pain Research 2021:14                                                                                                     https://doi.org/10.2147/JPR.S310775                                                                                                                                                                                                                       

DovePress                                                                                                                       
1683

Dovepress                                                                                                                                                            Nishi et al

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


by the environment and by CLBP at medium or large 
effect sizes, but the stability was maintained. Changes in 
the trunk variability of gait were reported to occur as an 
adaptation to the environment to maintain trunk stability.18 

A decrease in stability in the AP direction, even though the 
variability does not change, may indicate less compensa-
tion or inadequate compensation.33 Dysfunction of the 
agonist/antagonist relationship in lumbar extension also 
impedes the motor adaptation of perturbation.66,67 

Therefore, in the AP direction, individuals with CLBP 
may have difficulty adapting to the environment, resulting 
in decreased stability in unstructured daily living. In con-
trast, in the ML direction, the stability of gait can be 
maintained by adaptations to the environment via changes 
in variability. These results were associated with the 
patients’ subjective intensity of pain and fear of move-
ment, and they were more pronounced in daily living. 
Our results also demonstrated that the trunk stability of 
gait in the AP direction was related to the patients’ physi-
cal disability in daily living. Other studies have shown that 
pain and/or fear promote changes in the sensory-motor 
control system and movement strategy.68,69 Changes in 
gait control modified by pain and/or fear of movement 
may disturb a person’s adaptation to their environment.

The present study has limitations to address. First, because 
the sample size was relatively small (n=20 for each group), the 
results should be interpreted with caution and their general-
izability remains unclear. Future studies with a larger sample 
size are needed to confirm these findings. Second, because the 
questionnaires about pain and fear of movement were not 
assessed separately in the laboratory and daily living, the 
questionnaire responses may have tended to reflect the pain 
experienced in the daily-living environment. Third, we did not 
obtain the participants’ home layouts as their daily-living 
environments. Our results, which showed that the trunk varia-
bility and stability of gait are related to pain and fear, support 
the concept that environmental adaptation is disturbed by 
chronic low back pain. Fourth, we compared gait parameters 
between one epoch in the laboratory environment and multiple 
epochs in the daily-living environment. By extracting epochs 
longer than 60 seconds, a statistically precise estimate of gait 
control is possible. We also considered that repeatable data 
were obtained because the gait data were recorded using the 
same environment for all participants (ie, a 30-m-loop indoor 
track). Unlike the laboratory environment, since the environ-
ments in each epoch daily-living environments (eg, location 
and route) were not constant, we used the average value of the 
epochs as the index of gait in the daily-living environments. 

However, the comparison of these environments may have 
been statistically insufficient.

In conclusion, the present results revealed that CLBP 
patients undergo changes in trunk variability and stability 
of gait depending on the environment, and these changes are 
related to pain, fear, and quality of life. Interestingly, in the 
AP direction, the stability of gait was impaired, and the 
variability was not affected by environmental changes; in 
the ML direction, the variability was affected by the environ-
ment, but the stability was maintained. Although the under-
lying causes of these different adaptations of gait variability 
and stability by direction remain to be investigated, we 
suspect that changes in the muscle and/or sensory-motor 
control system are responsible. Our findings demonstrate 
the utility of an accelerometer-based assessment of qualita-
tive gait in the daily living of CLBP patients, as it provides 
information that is unavailable in a general practice setting. 
Our results also suggest that the changes in the lumbar 
control of gait in a daily-living environment are more pro-
nounced than those in a laboratory environment.
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