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Abstract: Diabetes mellitus is one of the most widespread metabolic diseases in the world, 
and diabetic foot ulcer (DFU), as one of its chronic complications, not only causes a large 
amount of physiological and psychological pain to patients but also places a tremendous 
burden on the entire economy and society. Despite significant advances in knowledge on the 
mechanism and in the treatment of DFU, clinical practice is still not satisfactory, and our 
understanding of its cellular and molecular pathogenesis is far from complete. Fortunately, 
progress in studying the roles of long non-coding RNAs (lncRNAs), which play important 
regulatory roles in the expression of genes at multiple levels, suggests that we can apply 
them in the early diagnosis and potential targeted intervention of DFU. In this review, we 
briefly summarize the current knowledge regarding the functional roles and potential 
mechanisms of reported lncRNAs in regulating DFU. 
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Introduction
Diabetic Foot Ulcer
Diabetes mellitus is a chronic metabolic disease that is distributed worldwide.1 

Diabetic patients, if left untreated, are likely to suffer from several serious acute and 
long-term diabetic complications, which can cause damage to multiple organs.2 

Long-term exposure to hyperglycemic conditions causes macrovascular complica-
tions, along with microvascular complications, such as diabetic nephropathy,3 

retinopathy,4 and diabetic foot ulcer (DFU).5 Foot ulcers in diabetic patients are 
referred to as lesions, which involve the loss of epithelium, sometimes extending to 
the dermis and even deeper layers such as bones and muscles.6

The formation of DFU can be attributed to diabetes-related peripheral neuropathy 
and peripheral arterial diseases.7,8 The most common form of peripheral neuropathy is 
distal sensorimotor polyneuropathy, where patients experience the loss of feelings and 
pain in the lower limbs because of distal nerve damage.9 In addition, endothelial and 
smooth muscle dysfunction, reduced capillary size, and progressive atherosclerosis are 
the reasons for microcirculation disorders and peripheral arterial disease, which occur 
very often in diabetic patients.5 With the progression of time, diabetes-related periph-
eral neuropathy and peripheral arterial diseases result in deformation and non-healing 
ulcers of the foot. Eventually, the dysfunctional wound healing process leads to foot 
deformity and the need for lower limb amputation.10

Under normal conditions, the process of wound closure involves four over-
lapping and coordinated stages: 1) the hemostasis stage, which stops bleeding after 
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the skin barrier is broken, in three steps: vasoconstriction, 
primary hemostasis, and secondary hemostasis; 2) the 
inflammation stage, where injured cells release various 
damage signals, such as chemokines and cytokines, to 
recruit inflammatory cells and to initiate the proliferative 
stage; 3) the proliferation stage, where neovascularization, 
granulation tissue formation, re-epithelialization, and col-
lagen deposition occur; and 4) the remodeling stage, where 
extracellular matrix (ECM) is periodically deposed and 
remodeled, and granulation tissue is reorganized by repla-
cing type III with type I collagen.11 In DFU patients, the 
wound healing process slows down or even stalls owing to 
impairment and prolongation of the four stages.12,13

To date, there is no definitive treatment to prevent and 
cure DFU, and millions of patients suffer from adverse 
effects.14 Therefore, a better understanding of the molecular 
mechanisms involved in the development of diabetic com-
plications, especially DFU, is necessary to develop better 
therapeutic strategies. A series of widely accepted underlying 
mechanisms include the excessive formation of advanced 
glycation end-products (AGEs), activation of protein kinase 
C, increased levels of reactive oxygen species (ROS), nitric 
oxide blocking, and enhanced polyol pathway.15,16 In-depth 
research is needed, and long non-coding RNAs (lncRNAs) 
may provide a breakthrough point.

LncRNA
The Encyclopedia of DNA Elements project demonstrated 
that only approximately 2% of the genome encodes for 
proteins, while the remaining genome fraction encodes for 
thousands of non-coding RNAs, which were previously con-
sidered to be “transcriptional noise”.17 A growing amount of 
evidence has proved that non-coding RNAs also play impor-
tant roles in biological processes, such as proliferation, dif-
ferentiation, apoptosis, and reprogramming.18–20 Based on 
the length of transcripts, lncRNAs are defined as a class of 
RNA molecules that are longer than 200 nucleotides, and 
have no or low protein-coding potential.21

The most frequently used classification method is based 
on the genomic location of the lncRNA and proximal pro-
tein-coding genes, and lncRNAs can be classified as inter-
genic, intronic, sense, antisense, and bidirectional 
lncRNAs.22,23 Studies have shown that lncRNAs play the 
role of gene regulation at transcriptional, post-transcriptional, 
translational, and epigenetic levels, mainly including the 
recruitment of transcription factors, binding to RNA poly-
merase II, maintaining mRNA stability, interaction with 

miRNAs, regulation of DNA replication timing, and chro-
mosome stability.18,24–27

A growing number of studies have reported that lncRNAs 
have great potential as predictive, diagnostic, and even ther-
apeutic biomarkers in various types of tumors, cardiovascu-
lar diseases, and many other human diseases.28–30 For 
example, lncRNA Gm5524 has been reported to promote 
the development of diabetic nephropathy by inhibiting the 
expression of anti-apoptotic markers.31 In diabetic retinopa-
thy, lncRNA H19 has been reported to be downregulated, and 
further study found that it may regulate endothelial– 
mesenchymal transition through a transforming growth fac-
tor-β (TGF-β) and Smad-independent mechanism.32

Similarly, many studies on expression disorders and the 
crucial roles of lncRNAs in DFU have been reported in 
recent years, which have not been reviewed yet. Thus, in 
this review, we summarize the current knowledge on the 
deregulation of lncRNAs and their functional effects on 
the healing process of DFU. We also discuss the potential 
of these lncRNAs and their upstream or downstream med-
iators as therapeutic targets for diabetic wound healing 
(Table 1).

LncRNA Expression Profiling in 
Diabetic Foot Ulcers
With the rapid development of the field of lncRNAs, 
differentially expressed lncRNAs in DFU have been stu-
died by microarray and high-throughput deep sequencing 
(Table 2). Takematsu et al examined the changes in gene 
expression in the skin between 13 patients with type 2 
diabetes and 14 non-diabetic patients.33 They found that 
the most upregulated genes included three lncRNAs: 
LINC01118, RP11545I5.3, and an unknown lncRNA. In 
contrast, the most downregulated genes included three 
lncRNAs: LINC01060, HPRT1P2, and CCNYL3. This 
study showed that the expression of the lncRNAs 
LINC01118 and LINC01060 was the most enhanced and 
decreased, respectively.

Xu et al investigated the T-lymphocyte subset in the 
wound surfaces of DFU.34 They found that 2142 lncRNAs 
were upregulated, while 1332 lncRNAs were downregu-
lated. Then, they focused on lncRNA ENST00000411554 
and revealed that the activation of the MAPK signal trans-
duction pathway mediated by lncRNA ENST00000411554 
may be one of the molecular mechanisms explaining the 
immune regulatory imbalance in DFU.

https://doi.org/10.2147/DMSO.S310566                                                                                                                                                                                                                               

DovePress                                                                                             

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14 2550

Yan et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 Functional LncRNAs in Wound Healing of Diabetic Foot Ulcers

Stage of Wound 
Healing Process

LncRNAs Expression Targets Functional Role Ref.

Inflammation MALAT1 Down HIF-1α; TNF-α, 

IL-6, IL-10

Has a potential pro-inflammatory role and promotes 

angiogenesis

[66]

WAKMAR2 Down NF-kB signaling Has an anti-inflammatory role and promotes re-epitheli 

alization

[67]

GAS5 Up STAT1 Has a pro-inflammatory role by inducing M1 macrophage 

phenotype

[69]

Lethe Down p65-NF-kB 
/NOX2

Has an anti-inflammatory role by eliminating increased ROS 
production

[71]

Proliferation H19 – miR-152-3p/ 
PTEN

Promotes proliferation and migration, and suppresses 
apoptosis and inflammation of fibroblasts

[74]

H19 – EZH2/HIF-1α Promotes angiogenesis and fibroblast proliferation and 

migration

[75]

H19 – PI3K/Akt Promotes angiogenesis [80]

MALAT1 – HIF-1α/MMP-9 Promotes collagen deposition and the viability of fibroblasts [82]

MALAT1 – miR-205-5p Promotes angiogenesis [84]

WAKMAR1 Down DNMTs/E2F1 Promotes keratinocyte migration [88]

GAS5 – c-Myc Promotes re-epithelialization and angiogenesis [91]

TETILA Up TET2/MMP-9 Suppresses HaCat migration [98]

ANRIL Down miR-181a/ 

Prox1

Promotes lymphangiogenesis in diabetic wound healing [101]

Remodeling H19 Up miR-29b/FBN1 Accelerates the deposition of ECM [103]

URIDS Up Plod1 Decreases the deposition of collagen and the ratio of collagen 

I/III

[105]

Table 2 The Expression Profile of LncRNAs in Diabetic Foot Ulcers

Number Method Sample Result Ref.

1 RNA sequencing Skin tissues from 13 non-diabetic 

and 14 type 2 diabetes donors

5 upregulated genes and 6 downregulated genes were 

under the lncRNA category within the 64 upregulated 

genes and 120 downregulated genes

[33]

2 Microarray Wound skin tissues of patients 

receiving debridement for trauma or 
DFU associated with infection

2142 upregulated lncRNAs and 1332 downregulated 

lncRNAs

[34]

3 ArrayQuality package and 
the limma package to 

analyze the GSE68186 

dataset

3 DFU samples and 3 non-diabetic 
foot skin samples

58 upregulated lncRNAs and 42 downregulated 
lncRNAs

[35]

4 Microarray Human skin fibroblasts cultured in 

high and normal glucose

7 upregulated lncRNAs and 7 downregulated lncRNAs 

were associated with the angiogenesis pathway

[36]
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In another study, Yu et al analyzed the GSE68186 dataset 
and, for the first time, constructed differentially expressed 
mRNA-mediated PPI networks and lncRNA co-expression 
networks using real-time PCR and gene ontology analysis.35 

The 58 lncRNAs and 688 differentially expressed genes 
(DEGs) were associated with the upregulated lncRNA- 
mediated co-expression network, and the 42 lncRNAs and 
700 DEGs were associated with the downregulated lncRNA- 
mediated co-expression network. These results showed that 
differentially expressed lncRNAs are involved in several 
regulatory pathways, such as the ERK1 and ERK2 cascade 
and secondary alcohol biosynthetic process, showing the 
prognostic potential of lncRNAs in DFU.

Tu et al examined the impaired angiogenesis process in 
diabetic wound healing and cultured human skin fibro-
blasts under hyperglycemic conditions in vitro to mimic 
a diabetic environment.36 By microarray analysis, they 
found that 14 angiogenesis pathway-associated lncRNAs 
and 22 mRNAs were differentially expressed, among 
which seven lncRNAs and nine mRNAs were upregulated, 
and seven lncRNAs and 13 mRNAs were downregulated. 
Then, they investigated whether lncRNA RP4-791C19.1 
and CTD-2589O24.1 act as enhancers on their respective 
target genes: epidermal growth factor receptor (EGFR) and 
p21 (RAC1) activated kinase 1 (PAK1), and cis-regulate 
their expression according to bioinformatics predictions.

Roles of LncRNAs in Diabetic Foot 
Ulcers
Role in Diabetic Neuropathy and 
Microvascular Injury
As mentioned in the Introduction, DFU is a chronic compli-
cation that results directly from peripheral nerve dysfunction 
and peripheral arterial diseases associated with diabetes.7,8 

In the progression of DFU, microvascular and neural 
damage are closely related. Blood vessels depend on normal 
nerve function, and nerves depend on adequate blood flow. 
Thus, it is necessary to review the roles of lncRNAs in 
diabetic neuropathy (Table 3) and microvascular injury.

Role in Diabetic Neuropathy
To discover a potential connection between lncRNAs and 
diabetic neuropathy, many researchers have applied 
whole-transcriptome sequencing technology to analyze 
the differentially expressed lncRNAs in patients or in 
streptozotocin (STZ)-induced diabetic rats with diabetic 
neuropathy.37–41 Our group conducted a microarray study 

to investigate the expression profiling of lncRNAs and 
mRNAs in dorsal root ganglia (DRG) from rats with 
diabetic neuropathy, and identified 983 lncRNAs and 
1357 mRNAs that were aberrantly expressed compared 
with control samples.37 Furthermore, lncRNA–mRNA net-
work analysis was performed and showed dynamic inter-
actions between the dysregulated lncRNAs and mRNAs.

It has been reported that the expression level of 
lncRNA NONRATT021972 was upregulated in the DRG 
of a diabetic rat model and in the blood of patients with 
type 2 diabetes.42–45 Further experiments showed that 
NONRATT021972 siRNA treatment increased the 
mechanical withdrawal threshold, the thermal withdrawal 
latency, and the sensory nerve conduction velocity in STZ- 
induced diabetic rats.44,45 Mechanistically, the upregula-
tion of P2X3, P2X7, and pro-inflammatory signals in DRG 
of diabetic rats could be abrogated by NONRATT021972 
siRNA.42,44,45 Moreover, Peng et al demonstrated that 
NONRATT021972 siRNA treatment can also reduce the 
hyperalgesia potentiated by the activation of ERK pathway 
in diabetic rats.44

P2X3 and P2X7 are two purinergic P2X neurotrans-
mitter receptors, the activation of which by ATP has been 
shown to mediate pain hypersensitivity in diabetic 
neuropathy.46 Specifically, P2X3 receptors play a crucial 
role in pain transmission at peripheral sensory neurons,47 

while P2X7 receptors are engaged both in inflammation 
and in neuropathic pain.48 Apart from NONRATT021972, 
lncRNA BC168687 and uc.48+ were positively associated 
with neuropathic pain scores of diabetes. Moreover, the 
siRNA of the two lncRNAs also downregulated P2X7 and 
P2X3 expression in rats with diabetic neuropathy, thereby 
alleviating the symptoms of neuropathic pain.49–52

In a study by Liu et al, knockdown of BC168687 
attenuated diabetes-induced mechanical allodynia and 
thermal hyperalgesia by downregulating the expression 
of transient receptor potential vanilloid type 1 
(TRPV1).53 TRPV1 is highly correlated with a variety of 
pain modalities, including inflammatory pain, neuropathic 
pain, and pathological pain.54 Their study also reported 
that BC168687 siRNA treatment inhibited the upregulated 
p-ERK and p-p38 signaling, as well as the increased levels 
of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL- 
1β) in the DRG of diabetic rats.

Both lncRNA HCG18 and nuclear enriched abundant 
transcript 1 (NEAT1) have been reported to contribute to 
the pathogenesis of diabetic neuropathy.55,56 Ren et al 
discovered that HCG18 promoted M1 macrophage 
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polarization, which accelerates the progression of diabetic 
peripheral neuropathy by promoting the secretion of 
inflammatory factors.55 They further revealed that 
HCG18 regulated M1 macrophage polarization via the 
miR-146a/TRAF6 axis. Asadi et al found an increased 
expression of NEAT1, ITGA4, SESN1, and SESN3, as 
well as a decreased expression of miR-183-5p and miR- 
433-3p, in patients with diabetic neuropathy.56 Their recei-
ver operating characteristics (ROC) curve analyses indi-
cated that these dysregulated molecules could be potential 
biomarkers in diabetic neuropathy.

LncRNA plasmacytoma variant translocation 1 (PVT1) 
has been proven to be a protective factor in diabetic neuro-
pathy. Chen et al found that PVT1 expression was signifi-
cantly downregulated in DRG of diabetic rats, and the 
overexpression of PVT1 reversed the impaired nerve con-
duction in diabetic rats.57 Their in-depth experiments demon-
strated that PVT1 downregulated the expression levels of 
neurodegeneration-related genes (Uchl1, Sod1), while upre-
gulating the expression levels of neurogenesis-related genes 
(Drd2, Notch1, and S100b). Furthermore, PVT1 activated the 
PI3K/AKT pathway, which was blocked in diabetic rats.

Role in Diabetic Microvascular Injury
Yan et al were the first to extend the study of lncRNA into 
a novel research field, diabetic microvascular injury.58 They 
found that hyperglycemia significantly upregulated lncRNA 
MIAT levels in endothelial cells and diabetic retinas. Their 
study revealed that MIAT knockdown inhibited endothelial 
cell proliferation, migration, and tube formation in vitro, and 

alleviated pathological angiogenesis, vascular leakage, and 
inflammation in vivo. Since then, more and more lncRNAs 
have been reported to play important roles in diabetic nephro-
pathy and retinopathy, two diabetes-related microvascular 
complications, and many researchers have reviewed this 
topic.59–61

Hyperglycemia is the major contributor to endothe-
lial dysfunction, which is a risk indicator for diabetic 
angiopathy. Xu et al characterized the lncRNA land-
scape of expression, and found that 214 lncRNAs were 
upregulated and 197 were downregulated in high- 
glucose cultured human umbilical vein endothelial cells 
(HUVECs).62 Further research should focus on these 
dysregulated lncRNAs to provide novel insights into 
the regulatory molecules of diabetes-induced endothelial 
dysfunction. Hyperglycemic conditions also cause 
damage to endothelial progenitor cells (EPCs). EPCs 
are essential in angiogenesis and wound healing, but 
their circulating and wound level numbers are decreased 
in diabetes.63 In the study by Li et al, overexpression of 
lncRNA taurine upregulated gene 1 (TUG1) restored the 
ability of migration, invasion, and tube formation in 
high-glucose treated EPCs.64 In vivo, TUG1 overexpres-
sion promoted angiogenesis in a diabetic mouse 
ischemic limb model.

In wound healing of DFU, microvascular injury directly 
leads to a disorder of angiogenesis, which occurs at the 
beginning of the proliferation stage. LncRNAs involved in 
regulating the process of angiogenesis have been reviewed in 

Table 3 Functional LncRNAs in Diabetic Neuropathy

LncRNA Expression Targets Functional Role Ref.

NONRATT021972 Up P2X3 Decreases mechanical withdrawal threshold, thermal withdrawal latency, and 
sensory nerve conduction velocity

[44]

P2X7 [43,45]

uc.48+ Up P2X3 Enhances mechanical allodynia and thermal hyperalgesia [49]

P2X7 [50]

BC168687 Up P2X7 Enhances mechanical allodynia and thermal hyperalgesia [51,52]

TRPV1 [53]

HCG18 Up miR-146a/ 

TRAF6

Promotes M1 macrophage polarization, and accelerates the progression of 

diabetic peripheral neuropathy

[55]

NEAT1 Up miR-183-5p, 

miR-433-3p

Potential biomarkers in diabetic neuropathy [56]

PVT1 Down PI3K/AKT Reverses the impaired nerve conduction in diabetic rats [57]
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the following subsection, “Role in wound healing of diabetic 
foot ulcers; Proliferation stage”.

Role in Wound Healing of Diabetic Foot 
Ulcers
Inflammation Stage
Patients with diabetic foot have a high risk of requiring leg 
amputation because of untreated infections.65 Jayasuriya 
et al investigated the role of lncRNA metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) in infected 
DFU.66 They knocked down MALAT1, and observed that 
the expression of the two pro-inflammatory cytokines 
TNF-α and IL-6 was suppressed, while the expression of 
the anti-inflammatory cytokine IL-10 was increased. Their 
preliminary research showed that MALAT1 was involved 
in the inflammation stage in DFU healing, which needs to 
be confirmed in future studies.

Herter et al revealed the function of the previously 
annotated but unstudied lncRNA LOC100130476 in the 
inflammatory phase of wound healing.67 This lncRNA was 
later named wound and keratinocyte migration-associated 
long non-coding RNA 2 (WAKMAR2). First, they found 
that the expression of WAKMAR2 was significantly 
decreased in delayed wound-edge tissues when the wound 
repair progression was in the inflammatory phase. Then, 
they revealed that knockdown of WAKMAR2 upregulated 
the inflammatory chemokines produced by keratinocytes 
and blocked the re-epithelialization phase in a human ex 
vivo wound model. Further research uncovered the 
mechanism whereby the functional loss of WAKMAR2 
activated NF-kB signaling, a well-known pro- 
inflammatory pathway,15 and contributed to a hyperactive 
inflammatory phase and non-healing diabetic wounds.

In diabetic wounds, excessive persistence of the M1 
macrophage phenotype and failure to transition to the M2 
phenotype are two pathogenic features associated with 
delayed healing.68 Hu et al focused on the inflammation 
stage and found that reducing the expression of lncRNA 
growth arrest specific 5 (GAS5) may enhance diabetic 
wound healing by promoting the transition of pro- 
inflammatory (M1) macrophages to anti-inflammatory 
(M2) macrophages.69 Their study demonstrated that 
GAS5 overexpression induced the expression of M1 mar-
ker genes (iNOS, IL-1β, and TNF-α) rather than M2 
marker genes (Arg1 and Mrc1). A further study showed 
that GAS5 was a positive regulator of STAT1, which is an 
important inducer of the M1 macrophage phenotype.70

Excessive ROS and oxidative stress are among the 
reasons for clinical complications in diabetes, including 
diabetic impaired wound healing.15 Zgheib et al found that 
lncRNA Lethe was downregulated, while NOX2 was upre-
gulated in diabetic wounds. Moreover, overexpression of 
Lethe decreased the formation of ROS and eliminated the 
upregulation of NOX2 expression in both RAW macro-
phage cells under hyperglycemic conditions and diabetic 
bone marrow-derived macrophages (BMMs).71 Their 
further mechanistic research revealed that Lethe exerted 
its function by inhibiting the translocation of p65–NF-kB 
to the nucleus. NOX2 is a known producer of ROS, and 
the p65–NF-kB complex can induce the expression of 
NOX2.72,73 Their study was the first to demonstrate the 
role of Lethe as an anti-oxidative stress lncRNA in 
delayed diabetic wound healing, and further studies are 
required to determine whether correction of Lethe expres-
sion in diabetic wounds could improve healing.

Proliferation Stage
LncRNAs with the ability to regulate the abundance or 
activity of other RNAs, mainly including miRNA, are 
called competing endogenous RNAs (ceRNAs).18 

LncRNA H19 has been shown to function as a ceRNA 
to target miR-152-3p.74 MiR-152-3p was found to be 
upregulated in chronic wound tissues of patients with 
DFU, and to inhibit the proliferation and migration of 
fibroblasts by targeting phosphatase and tensin homolog 
(PTEN). A study by Li et al proved that treatment with 
H19 promoted the function and suppressed the apoptosis 
of fibroblasts through the H19/miR-152-3p/PTEN axis, 
thus being a promising therapeutic strategy in diabetic 
wound healing.74

Similarly, Guo et al demonstrated that the enhancement 
of H19 expression could promote the proliferation and 
migration of fibroblasts in vitro and improve the coagula-
tion function in vivo.75 In-depth research showed that H19 
played a role as an enhancer for the recruitment of zeste 
homolog 2 (EZH2), an important histone H3K27 
methyltransferase,76 to the HIF-1α gene promoter zone. 
The recruitment of EZH2 could promote HIF-1α histone 
H3K4me3 methylation and increase HIF-1α expression. 
HIF-1α is an important regulator in wound healing and 
controls many processes, such as angiogenesis, extracellu-
lar deposition, and re-epithelialization,77 and the upregula-
tion of HIF-1α promotes diabetic wound healing.

Chronic diabetic wounds can be attributed to defects in 
the angiogenesis phase of the healing process.6 H19 has 
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been proven to be important in the process of 
angiogenesis.78,79 In their preliminary experiment, Tao 
et al transfected HEK293 (human embryonic kidney 293) 
cells with an H19-overexpressing lentiviral vector and 
harvested the extracellular vesicles (EVs) of this cell 
line,80 which stably expressed H19 and were named H19- 
EMNVs (extracellular vesicle-mimetic nanovesicles). EVs 
are popular owing to their function of treating and diag-
nosing diseases in various fields, including diabetic wound 
healing.81 Then, they proved that H19-EMNVs could 
improve the proliferation, migration, and vessel formation 
of endothelial cells, thus promoting angiogenesis in the 
wound healing of DFU.

MALAT1 can also regulate HIF-1α expression to help 
patients heal their impaired diabetic wounds.82 Liu et al 
found that enhancement of MALAT1 and the HIF-1α 
signaling pathway could improve fibroblast activation, 
promote collagen expression, and accelerate wound heal-
ing in a diabetic mouse model. Their study shed lights on 
the upregulation of MALAT1 as a possible strategy to treat 
delayed diabetic wounds.82

Mesenchymal stem cells (MSCs) have multipotent dif-
ferential potential and are used to promote tissue repair.83 

Zhu et al overexpressed MALAT1 in MSCs.84 When the 
modified MSCs were transplanted into wound tissues in 
STZ-induced diabetic mice, higher vessel density was 
detected, which reflected promotion of the angiogenesis 
phase. Further research showed that MALAT1 played its 
role by downregulating the expression of miR-205-5p. 
Their study put forward new ideas for using lncRNAs, 
which can function as a sponge RNA, to optimize the 
MSC therapeutic strategy to treat DFU.

Re-epithelialization is an essential part of the proliferation 
stage in wound healing, and it is mainly attributed to kerati-
nocyte migration.11,85 In many chronic wounds, including 
DFU, keratinocyte migration and the process of re- 
epithelialization are impaired.13,86,87 Li et al found that knock-
down and overexpression of lncRNA WAKMAR1 reduced 
and increased, respectively, the motility of keratinocytes and 
re-epithelialization of human ex vivo skin wounds.88 

Mechanistically, WAKMAR1 regulated a network of genes 
that are important for cell migration by enhancing the expres-
sion of E2F transcription factor 1 (E2F1). E2F1 is 
a transcription factor (TF) functioning to direct many biologi-
cal activities, such as cell proliferation and migration.89,90 This 
line of evidence demonstrated that WAKMAR1 is a critical 
lncRNA in promoting keratinocyte migration, a deficiency of 
which may impair wound re-epithelialization.

Sawaya et al revealed that mevastatin, one of the common 
statin drugs, may be a novel option for the treatment of 
chronic diabetic wounds by promoting epithelialization and 
angiogenesis.91 They found that topical application of 
mevastatin upregulated GAS5 expression, thus downregulat-
ing c-Myc expression in DFU, which has been proven to be 
a wound healing inhibitor.92,93 Their study demonstrated that 
GAS5 may have a positive impact in the healing of DFU, 
while Hu et al claimed that a prolonged inflammation stage 
may be attributed to GAS5 overexpression.69 Therefore, 
more research is needed to explore the mechanism and func-
tion of GAS5 in wound healing of DFU.

Excessive activation of matrix metalloproteinase-9 
(MMP-9) is one factor that leads to delayed diabetic 
wound healing.94,95 LncRNAs can play their roles at the 
epigenetic level, which includes histone and DNA methy-
lation. The process of DNA demethylation requires enzy-
matic activity of multiple proteins, such as DNA 
demethylase TET2.96,97 Zhou et al found that knockdown 
of TET2-interacting lncRNA (TETILA) reduced TET2 
protein expression, TET2 activity, and MMP-9 transcrip-
tion, while promoting HaCat migration and reversing 
AGE-induced wound healing deficits.98 Further research 
uncovered the molecular mechanism: TETILA served as 
a homing signal to recruit TET2, thus inducing promoter 
demethylation and promoting the expression of MMP-9 to 
disrupt the process of diabetic wound healing.

Lymphangiogenesis occurs in adult tissues during 
wound healing, and lymphatic vessels play important 
roles in this process.99 Evidence has shown that impaired 
lymphangiogenesis was implicated in non-healing 
wounds.100 He et al found that overexpression of 
lncRNA antisense non-coding RNA in the INK4 locus 
(ANRIL) or suppression of miR-181a could rescue the 
apoptosis, impaired migration, and decreased tube- 
formation capacity in high-glucose-treated lymphatic 
endothelial cells.101 They revealed that ANRIL could 
sponge and suppress the expression of miR-181a, thus 
attenuating the downregulation of Prox1 and restoring 
the slow lymphangiogenesis in diabetic wound healing. 
Prox1 is a typical lymphatic endothelial marker and 
a target gene of miR-181a.102 Their study uncovered the 
significant function of ANRIL in lymphangiogenesis, pro-
viding a promising therapeutic target to treat DFU.

Remodeling Stage
Li et al detected that the expression of H19 and Fibrillin 1 
(FBN1) was higher and the expression of miR-29b was 
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lower in the wound tissues of DFU patients.103 FBN1 is 
a major component of microfibrils in the ECM and is one 
of the target genes of miR-29b.104 They demonstrated that 
the proliferation and migration of fibroblasts extracted 
from DFU patients were promoted, while the apoptosis 
of the cell line was suppressed, when H19 and FBN1 
were overexpressed and miR-29b was silenced. The fol-
lowing mechanism underlies these phenomena: H19 com-
petitively binds to miR-29b, thus rescuing the 
downregulation of FBN1. In this way, H19 accelerated 
the remodeling process of wound healing in their DFU 
mouse model.

Hu et al annotated and characterized a novel lncRNA, 
MRAK052872, which was significantly upregulated in the 
fibroblasts of the dermal layer in diabetic skin tissue.105 

Therefore, this lncRNA was later named URIDS 
(UpRegulated in Diabetic Skin). They further studied its 
function by knocking down the expression of URIDS and 
found that the migration of AGE-treated fibroblasts was 
significantly increased. In an established diabetic wound 
rat model, knockdown of URIDS increased the deposition 
of collagen and the ratio of collagen I/III. Later, they identi-
fied procollagen-lysine, 2-oxoglutarate 5-dioxygenase 1 

(Plod1) as a URIDS-targeting protein. Plod1 encodes lysyl 
hydroxylase 1, which is a crucial enzyme that catalyzes the 
formation of hydroxylysine in the process of collagen synth-
esis, and is responsible for ECM remodeling and 
stabilization.106 Their study collectively revealed URIDS 
as a potential therapeutic target for the pathological process.

Conclusion
Refractory DFU is a chronic diabetes complication that 
lacks effective treatment measures, leading to an intract-
able clinical challenge and a serious public health issue. 
Although many researchers have explored the specific 
molecular biological mechanism of this disease in multiple 
physiological and pathological processes, the understand-
ing of the roles of lncRNAs in the occurrence, develop-
ment, and progression of DFU is still in its infancy. Based 
on the evidence reviewed in this article, aberrant expres-
sion of lncRNAs disrupts the orderly process of wound 
healing in DFU, and the lncRNAs exert their effect on 
gene regulation through sponging to miRNAs (H19, 
MALAT1, etc.), recruiting epigenetic related enzymes 
(WAKMAR1, TETILA, H19, etc.), regulating protein sta-
bility (Lethe, Plod1, etc.), and other processes (Figure 1). 

Figure 1 Schematic diagram of functional lncRNAs in wound healing of diabetic foot ulcers. Dysregulation of these lncRNAs is related to the pathogenesis of diabetic foot 
ulcers. Red arrows indicate the upregulated lncRNAs (GAS5, TETILA, URIDS) and blue arrows indicate the downregulated lncRNAs (WAKMAR1, WAKMAR2, Lethe, 
ANRIL). The application of H19 and MALAT1 can accelerate the wound healing of diabetic foot ulcers through different mechanisms.
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The annotated lncRNAs discussed in this review are just 
the tip of the iceberg, and many questions remain unan-
swered. Therefore, we suggest that future studies could 
pay attention to the following questions. First, significant 
efforts should be made to clarify the function of unanno-
tated lncRNAs related to DFU, which could provide 
a more comprehensive insight into the molecular basis of 
the disease and lead to new promising therapeutics and 
diagnostics. Moreover, existing research on wound healing 
focuses on the proliferation stage, including the re- 
epithelialization and neovascularization process. More 
research should focus on other wound healing stages, 
such as the inflammation and remodeling stages. Small- 
molecule targeted therapies have been carried out in many 
disease areas, and further research should be conducted to 
explore nucleic acid-based and particularly lncRNA-based 
therapeutics in DFU. Furthermore, many challenges exist 
in transferring the significant results of cell and animal 
experiments to the final clinical applications. For example, 
differences between in vitro and in vivo experiments are 
unpredictable. Therefore, detailed functional verification 
in various models of DFU is indispensable for the con-
firmation of lncRNAs with potential for clinical 
application.
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