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Background: Recent clinical studies have revealed that sodium glucose co-transporter 2 
inhibitors (SGLT2i) reduced cardiovascular events in type 2 diabetes. Here, we investigated 
whether empagliflozin, as a kind of SGLT2i, could alleviate atherosclerosis progression in 
non-diabetic mice.
Methods: ApoE-/- mice were fed on a western diet for 12 weeks to induce atherosclerosis. 
The treatment group of mice was treated with drinking water containing empagliflozin 
(10mg/kg/day). On the 12th week, the whole aortas of each group were harvested. HE and 
Movat staining were performed for atherosclerotic lesion area and size. CD 68 and MCP-1 
immunohistochemistry were used to evaluate inflammatory cell infiltration. Mouse serum 
lipid profiles (total cholesterol, triglyceride, low-density lipoprotein-C, and high-density 
lipoprotein-C), systemic inflammation level (IL-1β, IL-6 and IL-10), renin-angiotensin- 
aldosterone system (RAAS) and sympathetic activity (norepinephrine and neuropeptide Y) 
were measured by ELISA.
Results: Empagliflozin could reduce the atherosclerotic lesion areas. Specifically, empagli-
flozin could significantly decreased inflammatory levels, RAAS and sympathetic activity 
in vivo. In vitro studies also showed that empagliflozin could inhibit IL-1β expression in 
oxLDL-treated macrophages by regulating NF-κB signaling.
Conclusion: Empagliflozin could prevent atherosclerosis by repressing inflammation and 
sympathetic activity.
Keywords: atherosclerosis, SGLT2i, empagliflozin, sympathetic activity, RAAS

Introduction
Sodium-glucose cotransporter 2 (SGLT2) is involved in glucose reabsorption and 
excretion in the renal proximal tubule, making it a newest anti-diabetic target.1,2 

Interestingly, large clinical trials have confirmed the safety and efficacy of sodium- 
glucose cotransporter 2 inhibitor (SGLT2i) in reducing cardiovascular events and 
hospitalization for heart failure of diabetic patients.3–5 What is more, the cardioprotec-
tive and renoprotective role of SGLT2i in non-diabetic patients have been confirmed in 
some recent clinical trials, such as Dapagliflozin And Prevention of Adverse-outcomes 
in Heart Failure (DAPA-HF),6 Dapagliflozin in Patients with Chronic Kidney Disease 
(DAPA-CKD)7 and EMPagliflozin outcomE tRial in Patients With chrOnic heaRt 
Failure With Reduced Ejection Fraction (EMPEROR-Reduced).8 A number of studies 

Correspondence: Lina Kang; Biao Xu  
Department of Cardiology, Affiliated 
Drum Tower Hospital, Nanjing University 
Medical School, Nanjing, 210008, Jiangsu, 
People’s Republic of China  
Email kanglina@njglyy.com; 
xubiao62@nju.edu.cn

Journal of Inflammation Research 2021:14 2277–2287                                                     2277
© 2021 Liu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php 
and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Inflammation Research                                                         Dovepress
open access to scientific and medical research

Open Access Full Text Article

Received: 3 March 2021
Accepted: 13 May 2021
Published: 31 May 2021

Jo
ur

na
l o

f I
nf

la
m

m
at

io
n 

R
es

ea
rc

h 
do

w
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

mailto:kanglina@njglyy.com
mailto:xubiao62@nju.edu.cn
http://www.dovepress.com/permissions.php
https://www.dovepress.com


speculated that its cardioprotective effect could be related to 
the inhibition of oxidative stress,9 regulation of inflammatory 
response,10 and improved cardiac metabolism.11 Preclinical 
data found that empagliflozin could also reduce arterial stiff-
ness and atherosclerosis.12–14

Atherosclerosis, a common pathologic process impli-
cated in cardiovascular diseases, is characterized by fat 
deposition and chronic inflammation within the artery 
wall.15 Myocardial infarction and stroke, as complications 
of atherosclerosis, are a serious threat to human health, 
making it necessarily to develop effective treatments.16 

Systematic review and meta-analysis also reported that 
SGLT2i could reduce the major adverse cardiac events in 
diabetic patients.17,18 However, the potential role and 
mechanisms of SGLT2i in atherosclerosis without diabetes 
are not fully understood.

In our study, we hypothesized that empagliflozin can 
inhibit the progression of atherosclerosis in a non-diabetic 
model in terms of lipid lowering, anti-inflammation 
response, and regulation of sympathetic activity and RAAS.

Materials and Methods
Animals
ApoE(−/−) male mice (6–8 weeks) were purchased from 
Model Animal Research Center of Nanjing University and 
kept in the animal room of Nanjing Drum Tower Hospital. 
Mice were kept under 12 h/12 h light/dark cycles with free 
access to food and water. After 1 week of adaptation to the 
housing environment, the mice were divided into three 
groups according to drug administration: (1) the Control 
group fed a chow diet; (2) the AS group fed a western diet 
containing 0.2% (wt/wt) cholesterol and 42% fat 
(#TP26303, TROPHIC Co., Ltd, Jiangsu) for 12 weeks; 
(3) the EMPA group fed a western diet plus received 
drinking water containing 10 mg/kg/d of empagliflozin 
(CAS No: 864070–44-0, MedChemExpress, China) for 
12 weeks. Each group had 6 mice. All mouse studies 
were approved by the Nanjing University Animal Care 
and Use Committee (No. 2019AE01062) and were in 
accordance with the ARRIVE guidelines.

Histological and Immunohistochemical 
Analysis
After 12 weeks, mice were killed after cervical dislocation. 
After perfusion of phosphate buffer saline, the heart and 
the whole aorta were exposed and separated. To measure 
the atherosclerotic lesion area in aortic sinus, the lower 

ventricular portion of heart was removed at the site of 
0.5 cm below the line connecting the left and right auri-
cles. The remaining part of heart and proximal aorta was 
fixed in 4% paraformaldehyde for 24 hours at room tem-
perature and embedded in paraffin. Serial 10-μm-thick 
sections from the ascending aortic segment to the aortic 
sinus were collected. Slides were stained with hematoxy-
lin-eosin or Movat (Sevicebio, Wuhan). For immunohisto-
chemistry, slides were incubated with CD68 (Abcam, 
ab125212) and MCP-1 (R&D, AF479) overnight and sub-
sequent goat anti-mouse secondary antibody. Images were 
captured using the high-resolution camera. A person blind 
to treatment group measured aortic atherosclerosis lesion. 
Lesion size was analyzed with Images J software (NIH, 
USA) by averaging 3 sections of each aorta (n=6).

Enzyme-Linked Immunosorbent Assay
At the end of study, blood samples were collected and bio-
chemical variables were measured using standard methods 
after mice had been fasted for 8 h. Lipids (triacylglycerol 
[TG; JEB-12909], total-cholesterol [TC; JEB-12596], HDL- 
cholesterol [HDL-C; JEB-12844] and LDL-cholesterol 
[LDL-C; JEB-12978]), inflammatory factors (IL-1β [JEB- 
12786], IL-6 [JEB-12267] and IL-10 [JEB-12260]), RAAS 
mediators (renin [JEB-12525], angiotensin II [JEB-12350] 
and aldosterone [JEB-15659]), sympathetic mediators (nor-
epinephrine [JEB-12971] and neuropeptide Y [JEB-12756]) 
and glucose (JEB-15224) were measured by mouse ELISA 
kits (Jin Yibai Biological Technology Co. Ltd, Nanjing) 
according to the manufacturer’s instructions using standard 
curve. The sensitivities for these indexes were 0.16 mmol/L 
(TC), 0.32 mmol/L (TG), 0.2 mmol/L (LDL-C), 0.2 mmol/L 
(HDL-C), 5 ng/L (IL-1β), 5 pg/mL (IL-6), 30 pg/mL (IL-10), 
5 ng/L (renin), 20 ng/L (AngII), 5 ng/L (ALD), 5 ng/L (NE), 
and 4.5 ng/L (NPY). The optical densities of the samples 
were detected using a microplate reader (BIOTEK, USA) at 
a wavelength of 450 nm. All results are shown in Table 1.

Cell Culture
The RAW 264.7 macrophages were obtained from ATCC 
and cultured in DMEM medium supplemented with 10% 
fetal bovine serum and 1% penicillin/streptomycin in 
humidified air, 5% CO2 at 37°C. A group of cells was 
treated with oxLDL (50 ug/mL) for 24 hours while treat-
ment group was incubated with oxLDL (50 ug/mL) and 
EMPA (10 μM) for 24 hours. The group of cells incubated 
with PBS was set as control.
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Lipid Uptake Assay
When reaching a good growth condition, macrophages 
were cultured in starvation medium without serum for 16 
hours and then treated with fluorescence-labeled oxLDL 
(Dil-oxLDL; 30 μg/mL) for an additional 4 hours. Cells 
were then washed and examined by flow cytometry. The 
uptake of oxLDL was measured as mean fluorescent inten-
sity by flowJo.

MTT Assay
The viability of cells was determined using the standard 
MTT [3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazo-
lium bromide] assay. All treatments were done using 
1×104 cells/well in 96 wells plate and allowed to grow 
for 24 h. On the last day, the supernatant of each well 
was removed and washed twice with PBS. Then, 20 µL 
of MTT solution and 100 µL of medium were added. 
After incubation for 1h, dimethyl sulfoxide (100 µL) 
was added and the absorbance intensity measured by 
a microplate reader (BioTek, USA) at 490 nm with 
a reference wavelength of 620 nm. All experiments 
were performed in triplicate, and the relative cell viabi-
lity (%) was expressed as a percentage relative to the 
untreated control cells.

Real-Time Quantitative Polymerase Chain 
Reaction Analysis
Total RNA was extracted from the RAW 264.7 macro-
phages using RNAiso plus (TaKaRa; Japan) according to 
the manufacturer’s instructions. 1 μg of RNA was reverse 
transcribed into cDNA with HiScriptII Q RT SuperMix 
(Vazyme; China) and quantitative RT-PCR was performed 
with ChamQ SYBR qPCR Master Mix (Vazyme; China) 
according to the protocol. All the results were normalized 
against glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) expression.

Western Blotting
Total protein was extracted from RAW 264.7 cells using 
a RIPA buffer. The protein concentrations were deter-
mined using a BCA kit (Thermo Fisher Scientific, USA). 
Protein lysate was subjected to SDS-PAGE, and the sepa-
rated proteins were transferred to polyvinylidene fluoride 
(PVDF) membranes (Millipore, USA) as previously 
described. After blocking for 2 hours with 5% non-fat 
milk at room temperature, the PVDF membranes were 
incubated with the corresponding primary antibodies over-
night at 4°C before being incubated with goat anti-rabbit 
IgG secondary antibodies for 1 hour at room temperature.

Table 1 The Results of ELISA Between Sham, AS and EMPA Group

Sham Group, n=6 AS Group, n=6 EMPA Group, n=6

TG, mmol/L 1.46±0.30 4.71±1.11*** 3.44±0.43#

TC, mmol/L 30.1±8.9 70.5±7.3*** 74.9±3.9

HDL, mmol/L 5.67±1.79 8.57±2.32* 10.88±1.53

LDL, mmol/L 6.41±1.06 15.69±1.66*** 16.86±1.57

IL-1β, ng/L 59.99±1.63 60.95±2.92 51.83±2.52###

IL-6, ng/L 71.78±1.04 85.08±4.65*** 74.52±1.78###

IL-10, ng/L 346.3±11.52 444.1±9.80*** 365.3±10.94###

Renin, ng/L 140.2±5.68 158.3±6.06*** 143.0±5.17##

Ang II, ng/L 258.4±25.53 289.4±12.70 293.3±24.43

ALD, ng/L 111.9±6.79 132.5±7.49*** 113.5±6.12###

NE, ng/L 69.12±7.78 86.87±4.29** 70.73±5.86##

NPY, ng/L 88.70±6.11 99.38±2.47* 93.28±5.30#

Notes: *P<0.05, **P<0.01 and ***P<0.001 vs Sham group; #P<0.05, ##P<0.01 and ###P<0.001 vs AS group.
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Statistical Analysis
Data was presented as mean± standard deviation. One-way 
analysis of variance with the Bonferroni post hoc test was 
used for multiple comparisons. P<0.05 was considered 
statistically significant. P<0.05 was considered as statisti-
cal significance. All statistical analyses were performed 
using Prism 8 (GraphPad Software, USA).

Results
SGLT2i Attenuated Atherosclerotic 
Lesion Area and Size
HE (Figure 1A) and Movat staining (Figure 1B) analysis 
showed that AS group had significant plaque accumulating 
in the aortic sinus, while empagliflozin treatment at a dose 
of 10 mg/kg/day for 12 weeks significantly reduced lesion 

Figure 1 Empagliflozin attenuated atherosclerotic lesion areas. Representative HE staining (A), Movat staining (B), CD68 immunohistochemistry (C) ang MCP-1 
immunohistochemistry (D) of Sham, AS and EMPA group. #p<0.05, ##p<0.01.
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size in EMPA group (~29% vs 19%, p<0.01). 
Immunohistochemistry results also showed that the 
expression of CD68 (Figure 1C) and MCP-1 (Figure 
1D), markers of inflammatory cells infiltration, were 
downregulated in EMPA group. These results suggested 
that SGLT2i significantly inhibited inflammation response 
and mitigated atherogenesis process.

SGLT2i Minimally Decreased Lipid Level 
in Atherosclerosis
Excess lipid deposits contributed to the initiation of athero-
sclerosis. Therefore, we evaluated the effect of empagliflozin 
on lipid profiles. Our results showed that the mice in the 
EMPA groups appeared a significant reduction in triglyceride 
levels (3.44 mmol/L in the EMPA group vs 4.71 mmol/L in 
the AS group, p<0.01) after 12 weeks of treatment (Figure 

2A). While total-cholesterol (Figure 2B) and LDL-cholesterol 
(Figure 2C) in EMPA group were not significantly different 
between groups. HDL-cholesterol levels (Figure 2D) in 
empagliflozin-treated mice were higher than those in the 
control or AS groups (10.88 vs 8.57 mmol/L, p=0.12).

SGLT2i Alleviated Systemic Inflammation 
in Atherosclerosis
Chronic inflammation is also an important trigger of athero-
sclerosis. To evaluate the effect of EMPA treatment on the 
expression of inflammatory factors (IL-1β, IL-6, IL-10), total 
RNAs were isolated and analyzed using real-time quantita-
tive RT-PCR. We found that EMPA treatment significantly 
reduced IL-1β (51.8 ng/L vs 61.0 ng/L, p<0.001; Figure 3A), 
IL-6 (74.5 pg/mL vs 85.1 pg/mL, p<0.001; Figure 3B), and 
IL-10 (365.3 pg/mL vs 444.1 pg/mL, p<0.001; Figure 3C) 

Figure 2 The serum level of triglyceride (A), total cholesterol (B), LDL (C) and HDL (D) between Sham, AS and EMPA group. ##p<0.01.
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expression compared to AS group. These results suggested 
that EMPA played a great anti-inflammation role.

SGLT2i Inhibited Renin-Angiotensin- 
Aldosterone System (RAAS) and Reduces 
Sympathetic Activity in Atherosclerosis
The chronic activation of RAAS was a detrimental factor in 
the cardiovascular diseases. Our results showed that renin 
(Figure 4A), angiotensin II (Figure 4B) and aldosterone 
(Figure 4C) were increased in AS group while they were 
inhibited in EMPA group (143.0 ng/L vs 158.3 ng/L for 
Renin, p<0.01; 113.5 ng/L vs 132.5 ng/L for ALD, 
p<0.01) other than angiotensin II. It indicated that empagli-
flozin could alleviate the activation of RAAS. In addition to 
RAAS, sympathetic activation also speeds up the progres-
sion of atherosclerosis. We found that norepinephrine (70.7 
ng/L vs 86.9 ng/L, p<0.01; Figure 5A) and neuropeptide 

Y (93.3 ng/L vs 99.4 ng/L, p<0.01; Figure 5B) were partially 
inhibited in the EMPA group. Interestingly, empagliflozin 
also decreased the body weight gain (Figure 5C) of AS mice 
to a degree (−2.78 g, p<0.001). Additionally, empagliflozin 
administration did not affect glucose levels (Figure 5D).

SGLT2i Reduced the Expression of IL-1β 
by Inhibiting NF-κB Signaling in 
Macrophages
To observe the effect of SGLT2i on macrophage, we treated 
oxLDL-stimulated macrophages with empagliflozin. MTT 
results showed that cell viability was not significantly differ-
ent between groups (Figure 6A), excluding the possibility of 
affecting the cell number. Besides, flow cytometry showed 
that empagliflozin had no effect on the uptake of Dil-labeled 
oxLDL in macrophage (Figure 6B). Interestingly, empagli-
flozin could significantly reduce the expression of IL-1β 

Figure 3 The serum level of IL-1β (A), IL-6 (B), and IL-10 (C) between Sham, AS and EMPA group. ###p<0.001.

https://doi.org/10.2147/JIR.S309427                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 2282

Liu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


mRNA and protein (Figure 6C and D). It was observed that 
IκBα was decreased while p65 was upregulated upon empa-
gliflozin treatment, suggesting of an anti-inflammatory role 
by modulating NF-κB signaling pathway (Figure 6E).

Discussion
This study demonstrated that empagliflozin could alleviate 
atherosclerosis progression by mitigating systemic and 
local inflammation, RAAS and sympathetic activity in 
ApoE-/- mice. However, the lipid-lowering effect was 
not significant. In vitro results also showed that empagli-
flozin inhibited inflammation by downregulating NF-κB 
signaling.

A magnitude of investigations supported that inflam-
matory cells and mediators promoted the atherosclerosis 
progression, while anti-inflammatory treatments could 
reduce the risk of atherosclerosis.19,20 The inflammatory 
mediators contribute to virtually all stages of the 

atherosclerotic process, including endothelial dysfunc-
tion, lipid oxidation and plaque destabilization/rupture.21 

Our study found that inflammatory cytokines were 
decreased in the serum of atherosclerotic mouse treated 
with empagliflozin, indicating the anti-inflammatory 
property of empagliflozin. In vitro experiments also 
show that IL-1β was significantly decreased after empa-
gliflozin treatment. CANTOS trial showed that IL-1β 
antibody exerted cardioprotective effects.22 So, we 
speculated that IL-1β reduction by empagliflozin may 
be of additional value in terms of atherosclerosis pro-
gression. In consistent with our results, Lee et al 
reported that SGLT2i could modulate inflammation 
response by Toll-like receptor 4/nuclear factor-kappa 
B signaling pathway in a normoglycemic rabbit 
model.23 Other studies also demonstrated that SGLT2i 
could attenuate inflammation by promoting M2 polariza-
tion and inhibiting inflammasome activity.24–27

Figure 4 The serum level of renin (A), angiotensin II (B) and aldosterone (C) between groups. ##p<0.01 and ###p<0.001.
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The chronic activation of Renin-Angiotensin- 
Aldosterone System (RAAS)28 and sympathetic 
activation29 were detrimental factors in the progression 
of atherosclerosis. We also showed that empagliflozin sig-
nificantly reduced expressions of norepinephrine as well as 
renin, and aldosterone. However, angiotensin II was not 
statistically changed by empagliflozin treatment, which 
could be supplemented from other source. Maybe it was 
better to measure the urine Ang II and angiotensinogen 
levels.30 What is more, body weight of the empagliflozin- 
treated group was also lower than those of the untreated 
group. Weight-loss effects of canagliflozin, another type of 
SGLT2i, have been demonstrated in clinical trials,31 and 
our data supported their results. SGLT2i could regulate the 
differentiation of epicardial adipose tissue and perivascular 
adipose tissue, as well as improve insulin resistance and 

fat distribution.32 So, we speculated that empagliflozin 
could decrease fat mass induced by a high fat diet.

Strikingly, lipid-lowering effect was not obvious in 
our results. Serum lipid profiles were not significant 
changed except triglyceride, which was consistent with 
previous results that SGLT2i lead to decreased levels of 
triglyceride and increased levels of LDL-C in human,33 

which was due to reduced clearance of LDL from the 
circulation and greater lipolysis of triglyceride-rich lipo-
proteins. In terms of HDL-cholesterol, our data were in 
line with previous results that empagliflozin, resulted in 
increased HDL.34 Our in vitro results also showed that 
empagliflozin had no effect on lipid uptake of macro-
phages. Additionally, empagliflozin administration did 
not affect glucose levels. Our results were in consistent 
with a previous study.35

Figure 5 The serum level of norepinephrine (A) and neuropeptide Y (B) and body weight (C) and glucose (D) between Sham, AS and EMPA group. ##p<0.01 and 
###p<0.001.

https://doi.org/10.2147/JIR.S309427                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2021:14 2284

Liu et al                                                                                                                                                               Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


The mechanisms underlying the vascular beneficial 
effect of SGLT2i have attracted much attention. In diabetic 
states, SGLT2i might enhance glycemic control and lipopro-
tein clearance,36 while lowering sympathetic activation.37 

While in non-diabetic conditions, SGLT2i protected athero-
sclerosis possibly via the prevention of inflammation rather 
than of hyperlipidemia.38 Also, SGLT2i could increase adi-
ponectin levels and reduce expression of adhesion molecules 
and cytokine.39 Besides, Gaspari et al found SGLT2i atte-
nuated human vascular endothelial cell activation and 
induced vasorelaxation to inhibit atherogenesis.40 SGLT2i 
had a beneficial effect on the progression of atherosclerosis, 
partially explaining its cardioprotective effect. The molecu-
lar mechanism deserved to be investigated in the future 
experiments. Besides, this study was an animal experiment, 

and further clinical trials should be conducted for its appli-
cation in atherosclerosis.

In summary, SGLT2i could mitigate the progression of 
atherosclerotic plaques in ApoE-/- mice by inhibiting sys-
tematic inflammation and local inflammatory cells infiltra-
tion, which laid a foundation for the prevention and 
treatment of atherosclerosis in the clinical practice.

Data Sharing Statement
All data are available from the corresponding author upon 
reasonable request.

Ethical Approval
The study was approved by the Nanjing University Animal 
Care and Use Committee (No. 2019AE01062)

Figure 6 The cell viability of each group was examined by MTT assay (A). Qualitative (B; Left) and quantitative (B; Right) intensity of Dil-labeled oxLDL taken by 
macrophages between groups was examined by flow cytometry. The expression of IL-1β mRNA (C) and IL-1β protein (D) after empagliflozin treatment. (E) The protein 
expression of IκBα and p65. #p<0.05.
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