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Abstract: This review focusses on the interactions between the etiologic agent of Chagas 
disease, Trypanosoma cruzi, and its triatomine vector. The flagellate mainly colonizes the 
intestinal tract of the insect. The effect of triatomines on trypanosomes is indicated by 
susceptibility and refractoriness phenomena that vary according to the combination of the 
strains. Other effects are apparent in the different regions of the gut. In the stomach, the 
majority of ingested blood trypomastigotes are killed while the remaining transform to round 
stages. In the small intestine, these develop into epimastigotes, the main replicative stage. In 
the rectum, the population density is the highest and is where the infectious stage develops, 
the metacyclic trypomastigote. In all regions of the gut, starvation and feeding of the 
triatomine affect T. cruzi. In the small intestine and rectum, starvation reduces the population 
density and more spheromastigotes develop. In the rectum, feeding after short-term starva-
tion induces metacyclogenesis and after long-term starvation the development of specific 
cells, containing several nuclei, kinetoplasts and flagella. When considering the effects of 
T. cruzi on triatomines, the flagellate seems to be of low pathogenicity. However, during 
stressful periods, which are normal in natural populations, effects occur often on the 
behaviour, eg, in readiness to approach the host, the period of time before defecation, 
dispersal and aggregation. In nymphs, the duration of the different instars and the mortality 
rates increase, but this seems to be induced by repeated infections or blood quality by the 
feeding on infected hosts. Starvation resistance is often reduced by infection. Longevity and 
reproduction of adults is reduced, but only after infection with some strains of T. cruzi. Only 
components of the surface coat of blood trypomastigotes induce an immune reaction. 
However, this seems to act against gut bacteria and favours the development of T. cruzi. 
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Plain Language Summary
This review focusses on the interactions between the etiologic agent of Chagas disease, 
Trypanosoma cruzi, and the vector, triatomines. This disease was once entirely confined to 
mainly rural Latin America with poor housing conditions, but in the last decades, emigrants 
brought it to a few other countries, eg, in Europe, but there is no endemic transmission 
outside the Americas. The flagellate mainly colonizes the intestinal tract of the blood-sucking 
insect. As in all parasite-vector systems, susceptibility and refractoriness phenomena are 
determined by the combination of the respective strains. The development in different 
regions of the gut is influenced by feeding and starvation of the triatomines, affecting not 
only population densities but also the development of specific stages of the flagellate. 
Considering the effects of T. cruzi on triatomines, the flagellate seems to be of low 
pathogenicity. However, during stressful periods, which are normal in natural populations, 
effects occur, often in the behaviour. In pre-adult stages, the nymphs, the duration of the 
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different instars and the mortality rates increase, but mainly after 
feeding on infected hosts. Starvation resistance of nymphs is 
often reduced as the longevity and reproduction of adults, but 
only after infection with some strains of T. cruzi. Only compo-
nents of the surface coat of blood trypomastigotes induce an 
immune reaction. However, this seems to act against gut bacteria 
and favours the development of T. cruzi.

Introduction
Chagas disease, also known as American trypanosomiasis, 
is caused by the protozoan parasite Trypanosoma cruzi 
(Chagas, 1909) (Kinetoplastida, Trypanosomatidae). It is 
the only important tropical disease in which the parasite 
has at first been detected in the vector, triatomines, and 
later on the infection of humans.1–3 In 1975/76, the World 
Health Organization classified it as one of the “Big Six” of 
tropical diseases and established a “Special Programme for 
Research and Training in Tropical Diseases”.4 After 2000, 
it has been included as one of about 17 “Neglected” 
diseases in “The Millennium Development Goals for 
Health – Rising to the Challenges”.5 All of these neglected 
diseases are of low priority to pharmaceutical companies 
regarding the development of new drugs and for govern-
ment officials and public health programs.6 More than 110 
years after the detection of T. cruzi, public health measures 
concerning Chagas disease are still lacking in many ende-
mic areas.7 In Latin America, urbanization has induced the 
movement of infected rural populations to the cities. Once 
entirely confined to Latin America, Chagas disease has 
been spread widely by infected emigrants in the last dec-
ades and is now also present in the United States of 
America, Canada, many European countries and some 
African, Eastern Mediterranean and Western Pacific 
countries.8 However, vectorial transmission is limited to 
the Americas. According to actual estimations, 6 to 
7 million people worldwide are infected with T. cruzi 
and 75 million people are at risk of infection.9

An infection in humans is possible if feces and/or urine 
of infected vectors gets into contact with the bite wound or 
other skin breaks or mucous membranes of the eyes or the 
lips (reviewed by10) An oral infection occurs after con-
sumption of infectious meat or juices of fruits or sugar 
cane contaminated with remnants of triatomines. 
Transfusion of blood or organ transplantation from 
infected people is another source as is the transmission 
from mother to child. After the infection, amastigote 
stages of T. cruzi multiply intracellularly and before rup-
turing the host cell, they transform into nonreplicative 

blood trypomastigotes that infect new host cells or enter 
the blood capillaries and circulate in the blood. In the 
course of the disease two phases occur, the initial acute 
phase and the chronic phase (reviewed by10). In the acute 
phase, nonspecific symptoms develop, such as fever and 
a swelling of lymph nodes near the location of the infec-
tion. Usually, the parasite can be found in the blood.11 

After about 1–2 months, the disease passes over to the 
chronic phase beginning with a latent phase, the indeter-
minate form, lasting from several years to decades with 
hardly any symptoms.10 Hardly any parasites are present 
in the blood.11 In the final chronic phase, the intracellular 
development and destruction of cells induces 
a dysfunction of organs. Large muscular hollow organs – 
intestinal tract and heart – increase in diameter, 
a megaorgan syndrome. Especially, pathological effects 
in the heart may be lethal.10,12

Whereas the mammalian host provides cells for the 
intracellular development and constitutes a very stable 
environment in the blood offering glucose and a stable 
temperature, pH, viscosity and osmolality to the blood 
trypomastigotes, the infection of a vector is a stressful 
event for T. cruzi. In the triatomine, the exclusive extra-
cellular development is restricted to the lumen of the gut 
and the Malpighian tubules.13 In the stomach, glucose 
from the blood is only available for a short period of 
time, but proteins, amino acids and lipids must be used 
for metabolism. In addition, the pH becomes increasingly 
acidic.14 In this totally different environment, the blood 
trypomastigotes have to survive and differentiate 
(reviewed by15,16). They transform into spheromastigotes 
and epimastigotes, the latter multiplying more intensively 
than spheromastigotes. Finally, metacyclic trypomasti-
gotes develop, possessing a kinetoplast in a more sub-
terminal position than in blood trypomastigotes 
(reviewed by17).

Trypanosoma cruzi: Taxonomy and 
Strain Peculiarities
Trypanosoma cruzi is a protozoan hemoflagellate that multi-
plies by longitudinal divisions that result in a clonal genetic 
structure of the populations. Genetic recombinations are 
restricted but seem to occur.18 Initial groupings of the strains 
were based on isoenzyme patterns, but multilocus sequence 
typing separates six genetic subgroups (discrete typing 
units), named TcI-VI, plus two associated genotypes of bat 
trypanosomes.19 This grouping does not correlate with 
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biological characteristics, eg, multiplication rates during 
in vitro cultivation or in the vector or mammalian hosts, 
and also virulence and pathogenicity for mammals and the 
development of infectious stages in the vector (reviewed 
by17). In Bolivia and Brazil, strains of all or nearly all typing 
units are present, but not all in other countries. A mixture of 
strains/clones can occur in the mammalian hosts or vectors 
(eg,20–22). Analysing the geographical and host origin of 
discrete typing units of over 6000 strains, TcI is widely 
distributed geographically and predominates in sylvatic 
and domestic cycles, strains of TcV and TcVI in the 
latter.23 The connection of some discrete typing units with 
humans and the domestic cycle or with wild mammals and 
sylvatic vectors cannot be generalized because presumably 
human migration and the change of many mammals 
between sylvatic and domestic habitats transfer strains to 
new regions. Wild marsupials often enter houses and are 
optimal reservoir hosts.24 After experimental infection, 
stages of T. cruzi that usually occur only in the vector 
develop in the anal scent glands of marsupials.25 During 
evolution, sylvatic mammals seem to be the primary hosts of 
T. cruzi, transmitting the parasite orally by carnivorous 
behaviour. Millions of years later, hematophagous triato-
mines evolved, and the dixenous life cycle of T. cruzi 
developed.25 Thereby, stages occurring in the scent glands 
of marsupials develop in the triatomines.

Triatomines
Distribution of Triatomines
Triatomines are the biggest blood-sucking insects and are 
predominantly found on the American continent from lati-
tude 42° N to 46° S, a region between the Great Lakes of 
North America and Argentina.26 A few species are present 
in Asia and Oceania, without a transmission of 
T. cruzi.27,28 Triatoma rubrofasciata (De Geer, 1773) is 
associated with rats in many tropical and subtropical har-
bours, also outside the Americas.29 The majority of the 
150 recognized species live in sylvatic areas and are vec-
tors in the sylvatic transmission cycle of T. cruzi.28,29 

Other species live peridomestically and feed on domestic 
animals, eg, chicken and guinea pigs, but also invade 
houses.30,31 Only some species are strictly adapted to 
houses and main vectors in the domestic cycle, eg, 
Triatoma infestans (Klug, 1834), Rhodnius prolixus Stål, 
1859, Panstrongylus megistus (Burmeister, 1835) and 
Triatoma dimidiata (Latreille, 1811).30,31

Digestion and Excretion of Triatomines
All post-embryonic stages of all species of triatomines are 
obligatorily hematophagous, attacking all warm-blooded 
animals and ingesting about 6–12 times their own body 
weight.31 Such full engorgement or several smaller 
volumes of blood are required for the development to 
the next of the five pre-adult instars and oogenesis in 
females.31 In addition, mutualistic symbionts are required, 
at least during final nymphal instars and for 
oogenesis.32,33 So far, in only three species of triatomines 
the mutualistic symbionts have been identified, all 
Actinomycetales.32 After a full engorgement, triatomines 
can starve for up to 1 year, depending on the develop-
mental stage.31 In particular, temperature and carbon 
dioxide in exhaled air attract triatomines, but also com-
pounds simulating the human skin.34,35 Having 
approached the vertebrate host, they push the rostrum 
that protects the mouthparts onto the skin and the speci-
fically interlocked maxillae penetrate the tissue by rapidly 
moving back and forth.36 The blood passes through the 
first region of the midgut, the cardia, and is stored in the 
following region of the midgut, the distensible stomach. 
There it remains mainly undigested, but ions and water 
are withdrawn, sugars resorbed and erythrocytes lysed.31 

A most recent investigation indicates digestion processes 
in the stomach,37 but presumably serum proteins and not 
hemoglobin are digested. After the withdrawal of com-
pounds without nutritional value, the concentrated blood 
possesses a jelly-like consistency, but after ingestion of 
blood from guinea pigs by R. prolixus the hemoglobin 
crystallizes.38,39 Small portions of blood are passed to the 
final region of the midgut, the small intestine, where the 
cells of the intestinal tract secrete extracellular membrane 
layers containing different glycoproteins and separating 
the intestinal content from the microvillar border of the 
cells.40–42 There digestion of hemoglobin starts 
immediately,14,43–46 generating amino acids, including 
the amino acid tyrosine, but also free iron and heme that 
are toxic to triatomines.47,48 Whereas iron is absorbed and 
excreted, tyrosine and heme are metabolized, the latter to 
avoid the production of reactive oxygen species.47,48 

Remnants of digestion are stored in the rectum before 
defecation. The rectal content contains different metabo-
lites, eg, peptides, amino acids, fatty acids, steroids, gly-
cerolipids, nucleotides and sugars.49

The increase in the size of the abdomen during blood 
ingestion is monitored by stretch receptors and induces the 
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secretion of diuretic hormones and the activity of the most 
effective excretory system in the animal kingdom (reviewed 
by31). Within 24 hours after blood ingestion, the excretion by 
the Malpighian tubules decreases the bug’s body weight by 
about 40%. Since the tubules end at the border to the rectum, 
the first urine sweeps out the dark remnants of digestion. 
Later yellow-white crystals follow and then new remnants of 
digestion (reviewed by50). During these phases of excretion, 
pH, osmolality and the concentrations of the different ions 
change rapidly.51

Immune System of Triatomines
As in other animals, the immune system of triatomines 
consists of cellular and humoral components that respond 
to pathogens and parasites,52–54 also including behavioural 
fever responses.55 Cellular components have only been 
found in the hemolymph and not in any section of the 
intestine. If viruses, bacteria, fungi and parasites gain 
access to the intestine, the humoral immunity is activated 
via the immune deficiency (IMD), Toll and JAK-STAT 
pathways52,56 that induce the production of different anti-
microbial peptides (eg, lysozymes, defensins, prolixin, 
prophenoloxidase cascade), unidentified bacteriolytic com-
pounds and antimicrobial molecules (eg, nitric oxide).57–59 

The importance of the antimicrobial peptides is reflected 
by the high number of genes. In Triatoma pallidipennis 
Stål, 1872, 12 different genes encode for three defensins.60 

Presumably as a possibility to reduce infections, in fifth 
instar nymphs of T. infestans antibacterial activities 
increase after feeding in the stomach and the small intes-
tine, the latter possessing a much lower activity than the 
stomach,61 corresponding to the expression levels of genes 
encoding defensin and lysozyme62,63 and the prophenolox-
idase activities in the Mexican T. pallidipennis.64

Development of Trypanosoma cruzi 
in the Vector – Effects of the Vector
The combination of the respective strain of T. cruzi and the 
species of the triatomine result in refractoriness or suscept-
ibility phenomena of the vector.30 In many parasite-vector 
systems, eg, Plasmodium and mosquitoes, an infection 
induces anti-parasitic responses of the vector, affecting 
the success of the parasite for the establishment and the 
intensity of the parasitation.31 These aspects have only 
been considered in a low number of triatomine species 
using a low number of strains of T. cruzi (reviewed 
by17,30).

Development of T. cruzi in the Stomach
During the initial period immediately after blood inges-
tion, different compounds from the triatomine are present 
in or secreted into the stomach. Agglutinins, hemolysins 
and anticoagulatory and antimicrobial compounds origi-
nate from the saliva of the triatomines and the wall of the 
stomach.52,65 Bacteria are also present in the saliva of 
triatomines66 and presumably ingested together with the 
blood and added to the intestinal bacteria. Effects on the 
trypanosomes have only been investigated for the salivary 
gland-secreted antimicrobial peptide trialysin, produced by 
T. infestans, which lyses blood trypomastigotes67 and is 
apparently neutralized by T. cruzi epimastigotes.68 

Agglutinins and hemolysins seem to determine the initial 
establishment of epimastigotes of T. cruzi in the vector 
(summarized by69) but blood trypomastigotes must be 
included in such investigations. None of these factors has 
been connected to the specific developmental steps of 
trypanosomes in the stomach.

According to the first detailed study of the morphological 
transformations of T. cruzi in the stomach of P. megistus, in the 
first days post-infection (pi) blood trypomastigotes and some 
intermediate forms occur. Later on, rounded parasites without 
changes indicating multiplications are present.70 Round and 
pear-shaped forms, aggregating a few days later, also develop 
in T. infestans and R. prolixus (eg,71,72). Finally, transitions to 
epimastigotes develop, elongated spheromastigotes.

In R. prolixus, the number of blood trypomastigotes of 
three strains/clones is strongly reduced within the first 24 
hours pi,73,74 and after 96 hours pi no parasites are found.74 

According to qPCR, then only a few dozen parasites are 
present.73,74 The high mortality rate of blood trypomastigotes 
seems to be caused by compounds secreted into the stomach 
after blood feeding as indicated by in vitro incubations of 
blood trypomastigotes with extracts of the stomachs of either 
unfed or recent blood-fed R. prolixus.74

The stomach is not totally hostile to epimastigotes. If after 
the molt the residues of the blood are passed to the small 
intestine, the colour of the intestinal contents becomes 
brownish and epimastigotes are present, presumably by 
a reflux from the small intestine. These epimastigotes survive 
or are killed after feeding on mice or hens, respectively.75

Development of T. cruzi in the Small Intestine
After ingestion of infectious blood, epimastigotes develop 
only in the small intestine and rectum. There, spheromasti-
gotes and especially epimastigotes multiply enormously.76 
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One week after an initial uptake of 8000 to 10,000 blood 
trypomastigotes/second instar nymph of T. infestans, there 
are about 30,000 parasites per small intestine. Using starva-
tion periods of three or four weeks before blood-feeding the 
following instars and dissection of cohorts in weekly inter-
vals, the number of trypanosomes is always slightly reduced 
before feeding, but increasing in each successive 
nymphal instar, up to a 20-fold higher population density at 
12 weeks pi.76

The flagellates are rarely in direct contact with the 
microvillar border of the cells of the intestinal wall, and 
more often they are present near the perimicrovillar mem-
branes, which develop after blood ingestion and are 
reduced during starvation (reviewed by13). However, the 
development of T. cruzi is reduced by changing hormonal 
concentrations or feeding antibodies against perimicrovil-
lar membranes.77–79 Presumably epimastigotes attach to 
the perimicrovillar membranes through different com-
pounds, including cruzipain, heparin-binding molecules, 
cysteine peptidases and glycoinositol phospholipids 
(eg,80–83). These membranes also contain many different 
glycoproteins, suggested to interact with the flagellate.42

Development of T. cruzi in the Rectum
The rectum contains the highest density of trypanosomes, 
in T. infestans about three times more than in the small 
intestine, although the volume and surface area are much 
smaller in the rectum.76 Presumably, one reason for the 
difference in population densities is the possibility of 
optimal attachment, and about 60% of the rectal trypano-
some population is attached to the rectal cuticle. A small 
hydrophobic region on the flagellum of epimastigotes 
seems to bind to the wax layer that covers the whole rectal 
cuticle (reviewed by13). In transmission electron micro-
scopy flagella are enlarged in the contact region and pos-
sess hemidesmosome-like material beneath the plasma 
membrane.84 Also, surface mucins of T. cruzi seem to be 
involved in the attachment, but Gp35/50 kDa mucins 
cover the whole body of the epimastigotes, not only the 
small hydrophobic region.85

Attachment is important for metacyclogenesis,86 pre-
sumably for at least one mode of metacyclogenesis, the 
unequal cell division of the epimastigotes, resulting in one 
daughter epimastigote and one daughter metacyclic trypo-
mastigote, the latter possessing no properties for attach-
ment by the short free flagellum and the thicker surface 
coat. Metacyclic trypomastigotes also develop from unat-
tached long and short epimastigotes and spheromastigotes, 

as indicated by the translocation of the kinetoplast.76 

Metacyclic trypomastigotes also occur in the small intes-
tine, but mainly in the rectum. They possess a kinetoplast 
in a more subterminal position than in blood 
trypomastigotes.17 At two weeks pi 25% of the entire 
rectal population are trypomastigotes and from 10 weeks 
pi onwards it increases to 50%.76 In addition, after main-
tenance of infected R. prolixus at 26, 28 and 30°C, more 
metacyclic trypomastigotes are present at the latter tem-
perature than at other temperatures.87

A clear effect of the vector on metacyclogenesis in the 
rectum is evident after blood ingestion by short-term 
starved nymphs. Within four hours, the proportion of 
slender intermediate stages increases significantly from 
<7% to 10%, but only of these intermediates between 
unattached epimastigotes and trypomastigotes. Although 
pH, osmolarity and ion concentrations change drastically, 
the inducing factors are hemolymph proteins of about 17 
kDa that pass into the rectum presumably via the 
Malpighian tubules at the beginning of diuresis.13,51,86 

Another feeding-induced peculiar effect is evident after 
a long starvation period: One day after feeding, “giant 
cells” are present, ie, multiple cell division stages, contain-
ing several nuclei, kinetoplasts and flagella. Up to three 
days after blood-feeding, these “giant cells” represent on 
average 30 to 50% of the total parasite population. 
However, between 5 and 10 days after feeding they dis-
appear, correlated with a strong increase in the rectal 
population density.88

In addition to feeding, starvation of the vector affects 
the rectal population. During starvation, the number of 
dead flagellates increases, but even then, all recta are 
colonized, sometimes restricted to the rectal pads 
(reviewed by13). Not only do population densities change 
but also the percentages of the different stages.89 At 20 
days after blood-feeding, 2% and 1% of the population are 
either spheromastigotes or drop-like forms, ie intermedi-
ates between either sphero-, epi- or trypomastigotes, 
respectively. The percentage of spheromastigotes increases 
to about 20% after an additional 40 and 70 days.

Effects of T. cruzi on Triatomines
Since trypanosomes are classified as parasites, an infection 
with T. cruzi without any effect is improbable, but strong 
effects only occur regularly in infections of triatomines 
with other species of trypanosomatids (reviewed by90). We 
classify T. cruzi as weak pathogenic or subpathogenic, ie, 
pathologic effects only develop under adverse conditions 
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by the presence of stressors, eg, starvation and missing 
mutualistic symbionts (reviewed by91). However, neither 
T. cruzi nor the vector are a homogenous group of organ-
isms, and effects or missing effects should not be general-
ized for all T. cruzi-vector systems. The importance of the 
T. cruzi-strain is indicated by infections with different 
T. cruzi-strains which differently affect the same 
vector.92,93

According to many investigations, T. cruzi affects the 
behaviour and the development of nymphs and adults, 
their physiology and life history traits (reviewed 
by16,91,94–96). However, investigations in the laboratory 
are affected by the choice of the system, the mode of 
maintenance of the triatomines and the supply with mutua-
listic symbionts. In addition, a very important aspect is the 
source of blood. The optimal system consists of colonies 
of triatomines which possess a nymphal mortality rate of 
<10%. The strains of T. cruzi should originate from the 
respective strain/species of triatomines, belong to different 
typing units and should be maintained by cyclical passages 
between vector and mammalian host or be stored frozen. 
Permanent passages between mice or in vitro cultivation 
should be avoided (Schaub unpublished). The colonies of 
triatomines should be maintained under optimal tempera-
ture, humidity and illumination conditions, choosing group 
sizes that exclude crowding stress.97 The presence of 
mutualistic symbionts in the nymphs is crucial and needs 
to be arranged. The development of the symbionts in the 
different regions of the intestine is regulated by the triato-
mines, resulting in high population densities in the sto-
mach and very low numbers in the small intestine and 
rectum.98 When beginning with experimental groups of 
first instar nymphs, an addition of some males to the 
cohort provides the nymphs with the opportunity to 
acquire symbionts. In vitro culture-derived mutualistic 
symbionts can be given to experimental groups of nymphs 
after blood-feeding, but only in those species of triato-
mines, for which the mutualistic symbionts are known.32 

Without the identification of the mutualistic symbiont, 
rectal bacteria originating from adult triatomines captured 
in the field can be cultured on agar plates. The supply of 
the experimental groups with a mixture of all slow- 
growing actinomycetales avoids investigations of aposym-
biotic bugs (Schaub unpublished). In aposymbiotic 
nymphs, a feeding on live hens and mice enables normal 
nymphal development. Artificial feeding devices using 
defibrinated or citrated blood of cows, sheep or humans 
usually affect the development of nymphs and adults 

(Schaub unpublished). Only the use of defibrinated blood 
of pigs is optimal32 and equivalent to a feeding on live 
hosts. Also, in other laboratory investigations, the blood 
source affects the development of triatomines (eg,99–101).

Effects of T. cruzi on the Behaviour of 
Triatomines
In the majority of the wide range of behaviours of triato-
mines (reviewed by102) the effects of the flagellate have 
not been investigated. Considering the attraction of triato-
mines by the host, blood-feeding and subsequent defeca-
tion results differ. No effects of T. cruzi are evident after 
experimental infection of R. prolixus and Triatoma rubro-
varia (Blanchard, 1843): infected and uninfected indivi-
duals probe similarly frequently, require identical periods 
of times for feeding on live hosts, ingest similar volumes 
of blood and begin to defecate after identical periods of 
times.103,104

However, using second instar nymphs of Triatoma 
longipennis Usinger, 1939 and T. pallidipennis that were 
fed after the infection on uninfected mice, only third instar 
nymphs but not the following nymphal instars react more 
rapidly to human odor than uninfected nymphs.35 

However, third instar nymphs are also more active than 
fifth instar nymphs indicating perhaps a more advanced 
physiological state of starvation. Also, long-term infected 
fifth instar nymphs of an indigenous species of Chile, 
Mepraia spinolai (Porter, 1934), starved for seven weeks 
after molting, orient themselves to the vertebrate host 
twice as fast as uninfected nymphs.105 In these infected 
nymphs, the number of probings is increased, and they 
begin to defecate earlier than uninfected bugs. The latter 
also occurs in fifth instar nymphs of T. infestans.106 

Naturally infected R. prolixus nymphs feed less frequently 
than uninfected nymphs. Perhaps, the earlier defecation, 
the lower frequency of feeding and the lower volumes of 
ingested blood are induced by starvation: After long per-
iods of starvation of 5–6 months, uninfected R. prolixus 
ingest lower volumes of blood but defecate earlier than 
bugs fasted for 2–3 months.103

An earlier defecation increases the transmission risk, 
but defecation behaviour differs between species and 
developmental stages, eg, in Triatoma rubida (Uhler, 
1894).107 The earlier approach to the host seems to be 
without an effect on the transmission rate considering the 
usual single feeding per nymphal instar. It also remains to 
be investigated whether or not the earlier approach is an 
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effect of the study design. If T. cruzi and the vector 
compete for nutritional resources, then infected nymphs 
may possess a more advanced state of starvation in com-
parison to uninfected nymphs of the identical age. The 
hypothesis that the behavioral changes observed can be 
related to a reduction in essential components of the blood 
is supported by a field study, in which infected M. spinolai 
possess a lower standardized body mass index than unin-
fected ones, and in which more T. cruzi-infected bugs are 
captured within the first hour of exposition of humans as 
hosts.108

There are several investigations considering effects on 
locomotion. A competition for nutritional resources seems 
to have reduced the locomotion of infected fifth instars of 
R. prolixus by 20% as compared to uninfected 
individuals.109 About 8–12 days after infection of adult 
Rhodnius pallescens Barber, 1932 using a mixture of epi-
mastigotes and blood, the infected females fly faster than 
infected males in a flight mill.110 Although T. cruzi- 
infected males and females collected in the field have 
larger wings than uninfected individuals,111 the dispersal 
capabilities of females of T. dimidiata are increased by an 
infection, but similar in T. cruzi-infected and uninfected 
males.112 One possibility is that females include nutrients 
in the eggs that are deposited resulting in a lower weight 
and nutritional status of infected females than of infected 
males. In T. infestans, especially starvation increases flight 
initiation.113 In the laboratory, levels of negative geotaxis 
and aggregation are higher in both female and male adults 
of T. infestans infected with T. cruzi.114 Comparing the 
ecological niches of seven Mexican triatomine species, the 
ecological niche used by T. cruzi-infected populations is 
often reduced in comparison to uninfected populations, 
perhaps caused by an effect of T. cruzi on insect fitness.115

Effects of T. cruzi on Nymphs of 
Triatomines
Considering the effects of T. cruzi on nymphs, the results 
differ. The developmental time of individually maintained 
first instar nymphs increases fivefold and T. cruzi retards 
also the development of older infected nymphs of 
T. infestans.116 Retardations are also evident in 
M. spinolai, after blood-feeding on T. cruzi-infected 
mice, and nymphs are significantly lighter than controls. 
In addition, the mortality rate of fourth and fifth instar 
nymphs of M. spinolai is increased compared to unin-
fected nymphs.117,118 However, after blood-feeding on 

T. cruzi-infected mice, the period of time until molting of 
first instar nymphs of Triatoma brasiliensis Neiva, 1911 is 
increased, but development and mortality rates of older 
nymphs are unaffected.119 The difference between both 
systems is a feeding of the older instar nymphs of 
M. spinolai on infected mice and of T. brasiliensis on 
uninfected mice. Perhaps repeated infections strongly 
increase the population density of the flagellate in the 
vector or T. cruzi affects the nutritive value and/or on the 
concentration of essential unknown compounds of the 
blood of infected mice. This can be compensated by either 
increasing the number of blood-feeds and/or the volume of 
blood ingested: Infected nymphs of T. rubrovaria, ingest 
significantly more blood than uninfected nymphs.104 The 
indication to the population density or the quality of blood 
is supported by the normal development of nymphs of 
T. infestans after infection via mice and subsequent feed-
ings on uninfected mice or hens.120–122 The mortality rates 
of these nymphs of T. infestans are in the normal range and 
also the nymphal development of P. megistus and 
T. brasiliensis.119,123 Temperature modifies the effects: 
after a single feeding of second instar nymphs of 
R. prolixus via an artificial feeder with a mixture of 
human blood and epimastigotes and a maintenance 
between 21 and 30°C, the molts of infected second instar 
nymphs are strongly delayed by 6–11 days.124 Whereas, at 
90 days pi, the starvation induced mortality rate is high 
and similar in uninfected and infected groups maintained 
at 21 and 30°C, it is significantly increased by the infec-
tion at 24 and 27°C, temperatures at which R. prolixus is 
found in the wild.100,124

Not only do temperatures vary in the field but also the 
availabilities of hosts. During monitorings in the field, 
high percentages of starved individuals are 
common.125,126 The data regarding whether or not the 
starvation capacity is affected by the infection differ. The 
period of time before the death of either third and fourth 
instar nymphs or adults of M. spinolai from the field is 
unaffected by the infection after feeding two times on 
uninfected mice before starvation.127 However, after an 
infection of fifth instar nymphs of T. pallidipennis, the 
starvation capacity is reduced.64 In experimental infections 
of first instar nymphs of T. infestans, followed by either 
one, two or three additional uninfected blood feedings to 
the subsequent nymphal instars on hens, the mean periods 
of survival of the resulting fourth and fifth instar nymphs 
are, respectively, 14 and 17% significantly shorter than 
those of uninfected nymphs.128 Death is not caused by 
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a depletion of hemoglobin because more infected than 
uninfected nymphs contain the brown hemoglobin rem-
nants of the blood in their small intestines. Therefore, 
T. cruzi and its vector seem to compete for essential 
metabolites whose depletion results in death. Since many 
trypanosomes die from starved nymphs, an accumulation 
of toxic products by T. cruzi seems unlikely.13

Effects of T. cruzi on Adults of Triatomines
Similar to nymphs, investigations of adults also show 
contradictory results considering fecundity and longevity. 
In M. spinolai fed on T. cruzi-infected mice, the weight of 
the gonads and the body size is reduced in comparison to 
females fed on uninfected mice,117 perhaps due to differ-
ences in the population densities or the quality of blood. 
This is also possible in four groupings of infected and 
uninfected females and males, in which uninfected females 
produced more and heavier eggs independently of the 
infection status of the males.129 In T. infestans fed on 
hens, the infection seems to reduce slightly both the egg- 
laying rate during the first weeks of oviposition and the 
hatching rate.130 After an in vitro infection of second instar 
nymphs of R. prolixus with epimastigotes, the period of 
time before the first egg laying is similar in infected and 
uninfected females.131 Comparing a maintenance at 25°C 
and 30°C, the latter decreases the fecundity of infected 
females in the first reproductive cycle and significantly 
fewer nymphs hatch from eggs laid in the third reproduc-
tive cycle.131 Also, infected couples of P. megistus, 
infected in the first instar on mice and fed in the following 
instars on defibrinated sheep blood, produce less eggs, 
fertile eggs and resulting nymphs.123 Similar effects are 
evident after infection of fifth instar nymphs of 
T. pallidipennis on mice and a subsequent feeding on 
uninfected mice.93 In T. infestans spermatogenesis is simi-
lar in uninfected and infected males.132 The importance of 
the respective strain of T. cruzi is highlighted after an 
infection of Colombian R. prolixus fifth instar nymphs 
with five different Colombian TcI strains and subsequent 
feedings on hens.92 In a comparison to uninfected adults, 
some T. cruzi strains significantly reduce survival while 
others have no effect.92 The reproduction is also reduced 
by one of these strains.133 Also, in Triatoma sp. and 
R. prolixus, the longevity of T. cruzi-infected adults is 
reduced,134,135 in the latter even more after feeding on 
T. cruzi-infected guinea pigs compared to groups fed on 
uninfected guinea pigs. After feeding on uninfected hosts, 
no effects of T. cruzi infection are evident on the mean 

lifespan of both adult males and females of T. brasiliensis 
and T. dimidiata, as well as the hatching rate of eggs, the 
period of time before oviposition, the number of oviposi-
tions, and both the total number of eggs laid and number 
of fertile eggs.119,136

Effects of T. cruzi on Immunity Responses 
of Triatomines
In addition to access of bacteria, ingestion of T. cruzi 
induces an immune response, not only in the intestine but 
also synergistically in the hemolymph and other organs 
(summarized by90). A methodological problem is the use 
of the whole intestinal tract because the immune reactions 
in different regions differ strongly (see above). In addition, 
investigations using a mixture of epimastigotes and blood 
do not reflect the natural conditions. Epimastigotes are only 
ingested during coprophagy and then after blood ingestion, 
avoiding contact of fecal material with the blood.16 

Describing the long-term effects of T. cruzi on the immu-
nity, such investigations can be considered. The importance 
of the respective stage is indicated by the comparison of 
infections with epimastigotes and blood trypomastigotes.137 

The surface of the latter is highly organized and contains 
lipid-driven domains with different protein compositions 
(eg,138). Shedding of the surface coat of blood trypomasti-
gotes can be induced by strong centrifugation forces and 
incubation in a protein-free buffer,139 as well as during 
a forced passage through a fine (ie, high gauge) syringe 
needle, increasing the shearing forces. After feeding fifth 
instar nymphs of T. infestans on T. cruzi-infected rats or 
a mixture of complement-inactivated rat blood with epimas-
tigotes, the separated surface coat of the blood trypomasti-
gotes and the resulting “naked” trypomastigotes, up to 5 
days after feeding, antibacterial activity is significantly 
increased in the small intestine of nymphs that ingested 
either separated surface coats or intact blood trypomasti-
gotes, but not “naked” trypomastigotes or in vitro culture- 
derived epimastigotes.137

Several investigations report the effects of T. cruzi on 
antimicrobial peptides. Using the whole intestine of 
R. prolixus, at 7 and 14 days pi with blood trypomasti-
gotes, the expression of a gene of the most intestinally 
active lysozyme is increased >20-fold.140 At 20 days pi 
with epimastigotes, in the small intestine of T. brasiliensis, 
the expression of the gene encoding a defensin is nearly 
10-fold higher than in uninfected nymphs.141 In the sto-
mach of T. infestans at 24 hours pi on infected mice, the 
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expression of genes encoding lysozyme, cathepsin D, 
a nitrophorin-like protein and a putative 14 kDa protein 
are all significantly upregulated, while the gene encoding 
thioredoxin reductase is downregulated. Expression of 
genes encoding infestin, lipocalins, and defensins are 
unchanged.142 The activity of cathepsin D is higher in 
the small intestine of R. prolixus at 1 day and 3 days pi 
with epimastigotes,143 and a synergistic activity with lyso-
zyme in the degradation of intestinal bacteria is 
discussed.14 Expression of the gene that encodes 
a cysteine protease inhibitor and perhaps acting against 
the enzyme of T. cruzi is significantly higher than in 
uninfected adults of T. infestans.144

Not only is the production of antimicrobial peptides 
and enzymes induced but also that of other antimicrobial 
compounds. Investigating one of these, nitric oxides, the 
concentrations cannot be determined directly, only via its 
metabolites, nitrite and nitrate. In R. prolixus, at 1 and 2 
days pi concentrations of nitrite are higher than in unin-
fected blood-fed controls in both midgut regions.145 

However, it is also increased in the stomach at 2 weeks 
pi, although no parasites are present there, and in the 
rectum, even before the parasites have passed to this 
region.145 Compared to uninfected blood-fed controls, the 
expression of the gene encoding nitric oxide synthase 
increases in the stomach at 1 day or 2 days pi when the 
development of T. cruzi is confined to this region. In the 
stomach of T. pallidipennis, the activities of prophenolox-
idases are significantly higher in infected fifth instar 
nymphs at 28 days pi, while those of phenoloxidases are 
significantly lower at 9 days pi.146 In this system, the 
increase in prophenoloxidase activity is evident at 15 
days pi and at 20°C, but not at 30°C and 34°C.64

The initial induction of these immune reactions seems 
to be without adverse effects on T. cruzi. However, after 
knockdown of antibacterial proteins, more bacteria are 
present in the stomach and the number of trypanosomes 
is significantly lower than in controls without a silencing 
of the antimicrobial proteins.147–149 Therefore, a short- 
term upregulation of immune proteins by blood trypomas-
tigotes suppresses the development of the bacteria.147–151 

However, in long-term infections, T. cruzi seems to induce 
an immune suppression in the intestine. After feeding third 
instar nymphs with a mixture of blood trypomastigotes and 
different microorganisms, high numbers of fungi and bac-
teria are present only in T. cruzi-infected fifth instar 
nymphs, but not in uninfected controls.98

Conclusions and Open Questions
There are many reports on the effects of the vector on 
T. cruzi and vice versa. However, in some of them the effects 
seem to be caused by infections with attenuated strains of 
T. cruzi or by a sub-optimal maintenance of triatomines. In 
optimal systems both components originate from the same 
locality. Thereby, the virulence of different strains of T. cruzi 
can be compared.152 In optimal colonies of the triatomines, 
the access to mutualistic symbionts is supported. However, 
these symbionts must be identified in the majority of species 
of triatomines and also the function of the microbiota.153

Focussing on the development of T. cruzi in the different 
regions of the triatomine intestine, some interesting questions 
still require further investigation. Regarding the development 
of T. cruzi in the stomach, the use of optimal parasite-vector 
systems might clarify whether or not the initial death of the 
majority of blood trypomastigotes can be generalized for all 
species of triatomines and all lineages of T. cruzi. With regard 
to the population in the rectum, the molecules of the hydro-
phobic attachment zone of the flagellum of epimastigotes 
remain to be identified. Metacyclogenesis is another fascinat-
ing phenomenon investigated in detail using in vitro cultures 
(eg,154). However, determination of the concentrations of 
oxygen and free amino acids and the pattern of lipids and 
proteins/peptides is required to compare them with the fac-
tors inducing metacyclogenesis in vitro. Investigations of the 
effects of T. cruzi on the vector must avoid stress conditions 
and use blood trypomastigotes. Considering the interesting 
T. cruzi-induced manipulation of the microbiome of triato-
mines by the induction of immune reactions, different 
lineages of T. cruzi should be used and the population den-
sities of the respective bacteria should be determined, con-
sidering also the mutualistic symbiont of the respective 
species. The available genomic and proteomic data of triato-
mines, symbionts and T. cruzi46,155–159 can be connected to 
gain insight into the molecular base of the interactions and to 
find new potential targets for vector control.
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