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Purpose: Plasmonic photothermal cancer therapy by gold nanorods (GNRs) emerges as 
a promising tool for cancer treatment. The goal of this study was to design cationic 
oligoethylene glycol (OEG) compounds varying in hydrophobicity and molecular electro-
static potential as ligand shells of GNRs. Three series of ligands with different length of 
OEG chain (ethylene glycol units = 3, 4, 5) and variants of quaternary ammonium salts 
(QAS) as terminal functional group were synthesized and compared to a prototypical 
quaternary ammonium ligand with alkyl chain – (16-mercaptohexadecyl)trimethylammo-
nium bromide (MTAB).
Methods: Step-by-step research approach starting with the preparation of compounds 
characterized by NMR and HRMS spectra, GNRs ligand exchange evaluation through 
characterization of cytotoxicity and GNRs cellular uptake was used. A method quantifying 
the reshaping of GNRs was applied to determine the effect of ligand structure on the heat 
transport from GNRs under fs-laser irradiation.
Results: Fourteen out of 18 synthesized OEG compounds successfully stabilized GNRs in 
the water. The colloidal stability of prepared GNRs in the cell culture medium decreased 
with the number of OEG units. In contrast, the cellular uptake of OEG+GNRs by HeLa cells 
increased with the length of OEG chain while the structure of the QAS group showed 
a minor role. Compared to MTAB, more hydrophilic OEG compounds exhibited nearly 
two order of magnitude lower cytotoxicity in free state and provided efficient cellular uptake 
of GNRs close to the level of MTAB. Regarding photothermal properties, OEG compounds 
evoked the photothermal reshaping of GNRs at lower peak fluence (14.8 mJ/cm2) of 
femtosecond laser irradiation than the alkanethiol MTAB.
Conclusion: OEG+GNRs appear to be optimal for clinical applications with systemic 
administration of NPs not-requiring irradiation at high laser intensity such as drug delivery 
and photothermal therapy inducing apoptosis.
Keywords: gold nanorods, quaternary ammonium salts, oligoethylene glycol, cellular 
uptake, photothermal stability

Introduction
Colloidal gold nanoparticles (GNPs) have been studied in a wide range of 
research areas attributable to their specific optical properties which originate 
from the interaction of light with their free conduction electrons, known as 
localized surface plasmon resonance (LSPR).1–3 Especially gold nanorods 
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(GNRs) have attracted particular attention due to their 
two distinctive extinction bands that are associated with 
transverse and longitudinal modes of LSPR. Optical 
response can be further controlled by tuning the particle 
size, shape, composition, and dielectric constants of the 
particle material as well as of the surrounding 
medium.4–6 Under light irradiation, the LSRP of GNRs 
leads to partial conversion of absorbed light into heat. In 
such a scenario, gold nanoparticles act as nanosized 
sources of heat.7 The described phenomenon attracts 
attention of scientists for its promising applications in 
biomedical fields such as plasmonic photothermal cancer 
therapy,8 controlled drug delivery and release,9 and 
microtissue surgery.10

Gold nanoshells stabilized by polyethylene glycol 
(PEG) were demonstrated as the first plasmonic nanopar-
ticle-based agents for photothermal therapy of a cancer in 
clinical trials based on their accumulation in tumor 
ascribed to the enhanced permeability and retention 
effect.11 Ethylene glycols are particularly promising 
ligands of GNPs for their minimal toxicity, increased 
polarizability, minimal interaction with biomacromole-
cules and ability to escape opsonization, the latter prevent-
ing recognition of GNPs by immune system.12–17 

Moreover, PEG increases the stability and solubility of 
the NPs under physiological conditions by increasing the 
steric distance between NPs that prevents their aggregation 
and increasing hydrophilicity of NPs due to strong surface 
hydration of ethylene glycol units.18–20 Although the PEG 
coatings improve the pharmacokinetics of NPs and 
increase the blood circulation time,21,22 they also hinder 
the desired nanoparticle uptake by cancer cells. It is known 
that the cellular uptake of neutral NPs, including 
uncharged PEGylated NPs, is much lower in comparison 
to NPs with positively and/or negatively charged 
surfaces.23–25 Additionally, the rod-like shape of NPs can 
significantly reduce the uptake of NPs by, for example, 
macrophages.26,27 These both limit the utilization of 
PEGylated gold nanorods in applications that require 
high incorporation of NPs into cells such as cell 
transfection28,29 and photothermal cancer therapy utilizing 
the tumor tropic properties of stem cells to deliver NPs to 
the tumor area.30–32

Depending on the light excitation, one can trigger 
a variety of photothermally induced effects, namely nano-
particle fragmentation,33 nanoparticle reshaping,34 micro-
bubble generation,35,36 or generation of acoustic and shock 
waves37 that may occur during the photothermal ablation 

of cancer cells. Several studies reveal underlying mechan-
isms of the photothermal conversion consisting of 
a sequence of events, namely the plasmon excitation, 
electron-phonon thermalization, and heat diffusion.7,38 

Recent advances in the thermoplasmonics propose both 
theoretically and experimentally that the solvation layer 
of nanoparticles may considerably influence the heat trans-
fer from the nanoparticle to its surroundings, especially for 
the case of pulsed illumination.39–44 Horiguchi et al42 

showed that the photothermal reshaping of GNRs depends 
on the type of their surface modification when nanosecond 
pulsed laser irradiation induced larger spectral changes of 
PEG-GNRs and phosphatidylcholine (PC)-passivated 
GNRs than in the case of poly(ethylenesulfonate hydro-
chloride) (PSS)- and poly(vinylpyrrolidone) (PVP)-passi-
vated GNRs. Similarly, a method of transient absorption 
spectroscopy revealed that the thermal dissipation from 
photoexcited GNRs depends on the ligand chemistry and 
on the ligand ability to exclude water from the surface of 
the GNRs that makes the phonon transport between the 
GNRs and solvent less efficient.43 The role of ligand 
hydrophilicity was confirmed by Wu et al,44 who demon-
strated that the effective thermal conductance of the 
GNRs/surfactant layer/water system is higher for GNRs 
modified by hydrophilic PEG than for GNRs modified by 
hydrophobic cetyltrimethylammonium bromide (CTAB) 
with the same length of surfactant layer. Possibly the 
covalent bonding between Au and thiol-containing PEG 
and water penetration into the PEG layer are the reasons of 
enhanced heat dissipation. In addition, Centi et al45 found 
that relatively small thiols (methylbenzenethiol) dramati-
cally enhance the thermal stability of GNRs during anneal-
ing in an oven set to 90°C and their photostability during 
photoacoustic monitoring compared to PEG (MW 
5,000 Da).

Recently, we developed the GNRs stabilized by sur-
factant composed of the short ethylene glycol chain with 
thiol moiety and quaternary ammonium head (trimethy-
lammonium) as terminal functional group – N,N, 
N-trimethyl-3,6,9,12,15-pentaoxaheptadecyl-17-sulfanyl- 
1-ammonium bromide (POSAB).46 While the polar ethy-
lene glycol chain strongly reduced the compound cyto-
toxicity in free state compared to the common alkyl 
chain, quaternary ammonium salt (QAS) provided 
GNRs high cellular uptake. In connection with these 
results here we investigated the role of different length 
of oligoethylene glycol (OEG) chain and various struc-
ture of quaternary ammonium head on the physical– 
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chemical and biological properties of free compound as 
well as ligand shell of GNRs. Three series of ligands 
with 3, 4 and 5 ethylene glycol units and six variants of 
quaternary ammonium heads were rationally designed 
and synthesized. Their ability to ensure the colloidal 
stability of GNRs, the rate of GNRs cellular uptake and 
cytotoxicity of GNRs as well as free ligands were eval-
uated. Finally, the effect of solvation layer on GNRs 
thermal stability under the femtosecond (fs) laser irradia-
tion was measured for the representative OEG ligands 
showing high cellular uptake and good stability and was 
compared to a known alkyl analogue (16-mercaptohex-
adecyl)trimethylammonium bromide; MTAB).47,48

Materials and Methods
Chemicals and Antibodies
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT), 4ʹ,6-diamidino-2-phenylindole (DAPI, 
D9542), ascorbic acid, bovine serum albumin (BSA), 
hydrogen tetrachloroaurate(III) trihydrate (HAuCl4. 
3H2O), cetyltrimethylammonium bromide (CTAB), sil-
ver nitrate (AgNO3) and sodium borohydride (NaBH4) 
were purchased from Sigma-Aldrich (St. Louis, MO, 
USA). Antibody against lysosome-associated membrane 
protein 1 (LAMP-1; sc-20011) was from Santa Cruz 
Biotechnology (Dallas, TX, USA). Alexa Fluor 488 
phalloidin (A12379), Alexa Fluor 488-conjugated sec-
ondary antibody and ProLong Gold Antifade Mountant 
were from Invitrogen (Carlsbad, CA, USA). Milli-Q 
water (18.2 MΩ at 25°C) used for nanoparticle synthesis 
was from Ardeapharma a. s., Sevetin, Czech Republic.

Cell Cultures
Human cervical carcinoma cell line HeLa obtained from 
ATCC (Manassas, VA, USA) was cultured in Dulbecco᾿s 
Modified Eagle᾿s Medium (DMEM; Biochrom AG, 
Berlin, Germany; containing 4.5 g/L glucose) supplemen-
ted with 10% Fetal Bovine Serum (FBS; Gibco; Grand 
Island, NY, USA). Chinese hamster ovary cell line CHO- 
K1 from ECACC (Salisbury, UK) was cultured in 
Nutrient Mixture F-12 Ham (Sigma-Aldrich) growth 
medium supplemented with 10% FBS (Sigma-Aldrich). 
Both culture media were supplemented with penicillin 
(100 U/mL) and streptomycin (100 µg/mL; Sigma- 
Aldrich). Cells were cultivated at 37°C under 5% CO2 

atmosphere and 95% humidity.

Experimental Evaluation and Calculation 
of the Hydrophobicity of Prepared 
Ligands
Hydrophobicity of final compounds expressed as 
ClogP was calculated in Open Babel, version 2.3.1 
(http://openbabel.org, accessed October 2011). The corre-
lation with experimental evaluation of hydrophobicity by 
high performance liquid chromatography (HPLC) with 
isocratic elution (logk) is described in the Supplementary 
Material.

Calculation of Molecular Electrostatic 
Potential (ESP)
The models of prepared compounds were pre-designed in 
HyperChem 8.0 software (Hypercube, Gainesville, FL, 
USA) as free cations and exported as mol files for further 
calculations. In Spartan 14 (Wavefunction, Irvine, CA, 
USA), semi-empirical quantum chemistry PM6 method 
was used for determination of the compound equilibrium 
geometry in vacuum. Electrostatic potential of the geome-
trical optimized conformers in the local minimum of 
potential energy was mapped on the electron isodensity 
surface of 0.002 e/b3. The atomic partial charges were 
determined on the same level of theory in Spartan 14 
applying CHELP algorithm for a least-square fit of the 
partial charges to the molecular electrostatic potential (ie, 
ESP atomic partial charges). Additional computational 
models obtained by molecular dynamic based conforma-
tional analyses with the semi-empirical method RM1 are 
described in the Supplementary Material.

Cell Viability Assessment of Ligands in 
Free State
In order to compare the cytotoxic effect of the studied 
compounds standard MTT assay (3-(4,5-dimethylthiazol- 
2-yl)-2,5-diphenyltetrazolium bromide) was utilized 
according to the manufacturer's protocol using the CHO- 
K1 cells.49 The protocol is described in detail in the 
Supplementary Material.

Preparation of Cetyltrimethylammonium 
Bromide (CTAB)-Stabilized Gold 
Nanorods and Their Functionalization by 
OEG Compounds
Gold nanorods (GNRs) were prepared by a modification of 
the seeded-growth method in the presence of silver nitrate 
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according to the protocols described previously.48,50,51 The 
protocol is described in detail in the Supplementary 
Material.

To modify GNRs by OEG compounds and by MTAB, 
CTAB-coated GNRs (5.7 mL of GNRs tuned to 633 nm 
or 7.0 mL of GNRs tuned to NIR) were purified by two 
cycles of centrifugation (4,700 ×g for GNRs tuned to 633 
nm or 7,400 ×g for GNRs tuned to NIR for 20 minutes), 
redispersation of sedimented GNRs in the Milli-Q water 
and concentration to 1 mL (residual CTAB in solution 
was ≤0.5 mM). After that, 1 mL of 5 mM aqueous 
solution of MTAB or cationic OEG compounds was 
directly added to the concentrated GNRs dispersion and 
kept at room temperature for a minimum of 7 days. Next, 
the GNRs solution was diluted by Milli-Q water (7 mL) 
and sonicated at 85 W and 45°C for 2 hours. Afterwards, 
the residual unconjugated ligand was removed by two 
cycles of centrifugation in the following 2 days. The 
final concentration of prepared GNRs ranged from 0.35 
mM to 0.45 mM of gold atoms (Au0) in the nanoparticle 
dispersion as calculated by formula Au0 [mM] = 0.355 × 
A390 nm/path length [cm].48,52 To assess the colloidal 
stability of GNRs, the UV-VIS-NIR absorption spectra 
of GNRs dispersions were measured by a DU 730 Life 
Science UV/VIS Spectrophotometer (Beckman Coulter, 
Fullerton, CA, USA).

Quantification of Ligand Packing Density 
by Inductively Coupled Plasma-Optical 
Emission Spectrometry (ICP-OES)
To quantify the ligand packing density, the GNRs functiona-
lized by cationic ligands were analyzed by ICP-OES 
(Spectro Arcos MV, Spectro Analytical Instruments, Kleve, 
Germany; see the Supplementary Material for detailed mea-
surement conditions). The ligand packing density on GNRs 
was then calculated from the ratio of the mass fraction of 
sulfur (S) and gold (Au) as described previously.53,54 The 
parameters of GNRs were estimated from FE-SEM size 
analysis of 300 NPs, the calculation is shown in the 
Supplementary Material. The packing density σcalc. was cal-
culated by the equation:

σcalc ¼ wS
1

wAu
NAρGNRsVGNRs

1
MS

1
SGNRs 

where wAu and wS are the Au and S mass 
fractions determined using ICP-OES, NA is the Avogadro 
constant, ρGNRs is the density of gold, MS is the molar mass 

of S, VGNRs and SGNRs are the volume and surface of 
GNRs, respectively. Data were expressed as a mean of 
two independent functionalizations of GNRs measured in 
the triplicate.

Cellular Uptake of GNRs Determined by 
Confocal Microscopy and 
Fluorescence-Activated Cell Sorting (FACS)
HeLa cells were seeded onto coverslips or 6-well plates -
(4×104 cells per coverslip and 3×105 cells per well) and 
allowed to attach overnight (16 hours). Then the cells were 
incubated with MTABGNRs or OEG+GNRs at 
a concentration 20 µM (Au0) diluted into serum-contain-
ing cell culture medium for 24 hours. Cells cultured in 
nanoparticle-free media were used as controls.

For microscopic analysis, the cells were washed 3× 
with phosphate buffered saline (PBS), fixed with 4% for-
maldehyde (15 minutes, r.t.) and permeabilized with 0.2% 
Triton X-100 (10 minutes). Washed cells were blocked 
with 3% BSA (30 minutes) and incubated with Alexa 
Fluor 488-conjugated phalloidin for F-actin staining 
(diluted 1:200 in PBS/3% BSA; 37°C; 1 hour in dark) or 
with anti-LAMP-1 primary antibody (diluted 1:250 in 
PBS/0.1% Tween-20; 1 hour), washed and stained by 
Alexa 488-conjugated secondary antibody (diluted 
1:1,000 in PBS/0.1% Tween-20; 1 hour in the dark). 
After the final wash, the nuclei were stained by 4ʹ,6-dia-
midino-2-phenylindole (DAPI; 1 µg/mL) and coverslips 
were mounted with the ProLong mounting medium. The 
fluorescence and back-scattered laser light from the long-
itudinal LSPR mode of GNRs was detected with Leica 
TCS SP8 AOBS confocal microscope (Leica 
Microsystems, Wetzlar, Germany) using the following 
excitation and detection wavelengths: DAPI (405/413 – 
488 nm), Alexa Fluor 488 (498/510 – 560 nm) and 
GNRs (633/630 – 636 nm) as described previously.48

For FACS analysis, the cells in 6-well plates were 
washed 3× with PBS, trypsinized with 0.25% trypsin/ 
0.53 mM EDTA and after centrifugation (700 ×g; 3 min-
utes) fixed with 4% formaldehyde (15 minutes, r.t.). The 
cells were counted by BD LSR II (BD Biosciences, San 
Jose, CA, USA). The scattered light of the longitudinal 
LSPR mode of GNRs was detected using 633 nm laser in 
the side scatter mode of the cytometer at 635±10 nm, as 
described previously.48 Data were expressed as a mean 
value and SD of triplicate experiments.
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Evaluation of the Plasmonic Photothermal 
Stability of GNRs
MTABGNRs or OEG+GNRs were deposited on the formvar 
coated TEM locator grid. The extra thick layer of formvar 
was resistant to applied fs-laser irradiation, the locator grid 
allowed to characterize the same area of the sample before 
and after the laser exposition on FE-SEM. Desired distri-
bution of GNRs on the TEM grid was accomplished by 
depositing a droplet of GNRs solution of known concen-
tration and subsequent control of the deposition time and 
air humidity. After the deposition process, TEM grids were 
carefully washed in ultrapure water and imaged on JSM- 
7500f JEOL FE-SEM. Laser exposition was performed on 
an upright two-photon excitation microscope (2PEM, 
Bruker Ultima IntraVital, Middleton, WI, USA; equipped 
with Coherent Chameleon Ultra I laser, Santa Clara, CA, 
USA) using the following layered setup: microscope 
slide – TEM grid – water droplet – cover glass – water 
droplet – objective (25× water immersion objective with 
a 1.1 numerical aperture). Samples were exposed to 140 fs 
laser pulses at 750 nm with a repetition rate of 80 MHz 

and peak fluence ranging from 14.8 mJ/cm2 to 148.5 mJ/ 
cm2. After the laser irradiation, the TEM grid was left to 
dry out and the selected areas were again characterized on 
FE-SEM. The statistical data from more than 300 nano-
particles were extracted by software analysis of acquired 
micrographs.

Statistical Analysis
Student’s t-test was used to determine the statistical sig-
nificance of arithmetic means’ differences among groups: 
not significant (ns), P<0.05 (*), P<0.01 (**), and 
P<0.001 (***).

Results
Organic Synthesis
The preparation of monoquaternary thiol with OEG side 
chain was based on commercially available symmetrical 
diols 1–3 with required length of chain (Figure 1A; for 
details see Supplementary Figure S1). Briefly, the desym-
metrization reaction of two chemically equivalent hydro-
xyl groups was made in the first step by the introduction of 

Figure 1 Retrosynthesis and structure of prepared cationic compounds for functionalization of GNRs (n, number of ethylene glycol units). (A) Retrosynthetic scheme of 
preparation quaternary ammonium compounds based on oligoethylene glycol chain. (B) Chemical structures of utilized compounds 22–24a–f and MTAB tethered to the 
surface of GNRs via S-Au bond and of CTAB non-covalently bonded to the GNRs surface. (C) Scheme of CTAB bilayer compared to monolayer of MTAB and OEG-ligands 
stabilizing the GNRs.
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the dimethoxytrityl group, which provided monoprotected 
alcohol intermediates 4–6. The subsequent step was the 
tosylation of the remaining free hydroxyl with following 
nucleophilic substitution of the tosyl group with potassium 
thioacetate to obtain intermediates 10–12. Further, thioa-
cetates 13–15 were prepared by selective deprotection of 
dimethoxytrityl under acidic condition and consequent 
brominated thioacetates 16–18 via formation of triphenyl-
phosphonium salt and following nucleophilic substitution. 
The quaternization of brominated thioacetates 16–18 were 
made by Menshutkin-like reaction with appropriate amine 
leading to quaternary thioacetates 19–21a–f. Deprotection 
of the thiol group was carried out in a mixture of anhy-
drous solvents (methanol, dichloromethane) by in situ gen-
erated hydrogen chloride. Synthesized QAS were obtained 
in 35–53% overall yields for final products 22–24a– 
e (Supplementary Table S1) after seven steps. For quino-
linium based QAS (22–24f) the overall yields were 
15–28%. The ligands were grouped into four series 
according to their side chain: ligands with ethylene glycol 
chain with different number of units, namely with three 
(OEG3 series; cpd. 22a–f), four (OEG4 series; cpd. 23a–f), 
and five (OEG5 series; cpd. 24a–f) ethylene glycol units 
and the ligand with alkyl chain (MTAB) (Figure 1B 
and C).

Hydrophobicity and Molecular 
Electrostatic Potential of Prepared 
Compounds
As the organic compounds are an important constituent 
part of the ligand-GNRs complex that can modify nano-
particle-cell interactions, cytotoxicity of NPs and their 
health-related applications,55–57 several theoretical and 
experimental molecular descriptors including the hydro-
phobicity and molecular electrostatic potential (ESP) of 
free compounds were assessed. Hydrophobicity supports 
transmembrane penetration, while the hydrophilicity 
provides the solubility in aqueous environment.58–60 In 
addition, cytotoxicity of QAS is closely related to their 
hydrophobicity and especially the ability to incorporate 
the side chain of QAS compounds into phospholipid 
bilayer membrane.61,62 The hydrophobicity of final pro-
ducts was expressed as ClogP calculated in Open Babel 
2.3.2 software. The relationship between ClogP and 
cytotoxic potential of compounds is shown in Figure 
2A. The calculated data proved that the compound 
with an alkyl chain (MTAB) and its analogue without 

thiol moiety (CTAB) are more hydrophobic than com-
pounds with OEG chain (see Supplementary Table S1 
for values of ClogP). Moreover, the correlation of 
ClogP with experimental evaluation of hydrophobicity 
expressed as logk63 is described in detail in the 
Supplementary Material (see Supplementary Figure 
S2A). For OEG compounds, the hydrophobicity slightly 
increased with the length of OEG chains. Based on 
different structures of the cation, the compounds with 
trimethylammonium head (22–24a) followed by pyridi-
nium salts (22–24b) showed the lowest hydrophobicity. 
Increased and comparable hydrophobicity was found for 
quinolinium (22–24f), isoquinolinium (22–24e), and 
benzalkonium (22–24d) salts. The most hydrophobic 
compounds were the phenylpyridinium salts (22–24c).

The interaction of NPs with proteins, the rate of their 
cellular uptake as well as their organ and sub-organ 
distribution strongly depend on the surface charge of 
NPs.24,64,65 Therefore, the ESP mapped on the frontier 
electron isodensity surface (ie, 0.002 e/b3, covering 
99.1% of the total electron density) and the ESP atomic 
partial charge projected on the atomic nucleus on iso-
density surface of the quaternary nitrogen were calcu-
lated in Spartan 14 software by semi-empirical quantum 
chemistry PM6 methods (see Figure 2B for selected 
compounds, Supplementary Table S1 and 
Supplementary Figure S3A for all final products and 
Supplementary Figure S3B for additional computational 
models obtained by conformational analyses on the 
semi-empirical method RM1).61,63 As expected, the 
OEG chain exhibited higher fluctuation of ESP than 
the alkyl chain due to the presence of oxygen, which 
caused variation in electron distribution along the chain. 
However, the disparity between the OEG chain with 
a different number of ethylene glycol units (22a and 
24a) and alkyl chain (MTAB) did not exhibit 
a significant influence on the charge of quaternary nitro-
gen. In contrast, the introduction of quaternary ammo-
nium nitrogen in the heteroaromatic system or solely 
aliphatic substitution exhibited substantial influence on 
the nitrogen ESP partial charge. Apparently, the nitrogen 
with the methyl substituent, namely trimethylammonium 
(24a) and benzalkonium (24d) salt, exhibited the highest 
partial ESP charge due to the electron-donating effect of 
the methyl group. In the case of compounds with qua-
ternary nitrogen in the aromatic system, the partial 
charge was distributed through the aromatic ring.
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Functionalization of GNRs by OEG 
Compounds and Evaluation of Colloidal 
Stability and Ligand Packing Density of 
Cationic GNRs
The GNRs coated by novel ligand shell (OEG+GNRs) were 
prepared by a ligand exchange of CTABGNRs (56.3±4.9 nm 
in length and 28.2±3.9 nm in width; see Supplementary 
Figure S4A and C for size distribution of GNRs and their 
UV-Vis-NIR spectra, respectively) according to our 

protocol published previously.46,48 The presence of silver, 
which is a common reagent used in synthesis of GNRs, in 
OEG+GNRs was measured by elementary analysis (ICP- 
OES) and was approx. 2% (Ag/Au). The dimensions of 
GNRs were designed to obtain the nanorods with light 
absorption in the red region of VIS (633 nm) to enable 
visualization and determination of their behavior in living 
cells by commonly available equipment (confocal micro-
scopes and fluorescence-activated cell sorter). The functio-
nalization of GNRs by cationic OEG ligands allowed to 

Figure 2 Hydrophobicity, models of molecular electrostatic potential and cytotoxicity of prepared compounds in free state. (A) Correlation between cytotoxicity (logIC50) 
and calculated hydrophobicity (ClogP) of cationic compounds with OEG chain (22–24a–f) and alkyl chain (MTAB, CTAB). (B) Electrostatic potential maps and ESP atomic 
partial charges on the quaternary nitrogen (NESP) of selected compounds determined in Spartan 14 molecular modeling and computational chemistry software.
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prepare stable colloidal GNRs without affecting their 
shape, as was confirmed by measurements of UV-VIS- 
NIR absorption spectra. The typical absorption spectrum 
of GNRs consisted of the transverse (λmax ~ 520 nm) and 
longitudinal (λmax ~ 610–630 nm) absorption peaks 
(Figure 3A). Nevertheless, the ligand exchange was not 
successful for ligands 23a, 23c, 23f, and 24f. In this case, 
UV-VIS-NIR absorption spectra measured after functiona-
lization of GNRs showed that GNRs tend to aggregate 
together as demonstrated by extensive change of the 
GNRs absorption spectrum. The decrease in the ratio of 
longitudinal and transverse absorption peak intensity 
accompanied by duplication/broadening and shifting of 
the longitudinal peak to longer wavelengths was observed. 
23a,c,fGNRs and 24fGNRs were thus excluded from further 
biological evaluation.

The good colloidal stability of GNRs in biological 
media containing salts, low molecular compounds and 
biopolymers is a prerequisite for their further biological 
utilization. Therefore, the ability of cationic OEG ligands 
to stabilize GNRs in colloidal solution was assessed in the 
cell culture medium. The water stable OEG+GNRs prepara-
tions were diluted to DMEM supplemented with 10% FBS 
(Figure 3B). Except MTAB analogue ligand 22a that 
underwent aggregation, the GNRs modified by OEG3 ser-
ies showed similar colloidal stability in cell culture media 
as in water solution. In contrast, the OEG4 and OEG5 

series provided less stable colloidal nanoparticles as indi-
cated by changes of GNRs absorption spectra in most 
cases from slight reshaping of absorption peaks up to the 
fusion of transverse and longitudinal peaks and their 
extension to longer wavelengths demonstrating extensive 
GNRs aggregation (namely ligands 23b in OEG4 and 24a 
and 24b in OEG5 series). The colloidal stability of cationic 
GNRs according to the side chain of compounds decreased 
in the following order: MTAB alkyl chain > OEG3 chain > 
OEG4/OEG5 chains (for absorption spectra of MTABGNRs, 
see Supplementary Figure S5A). According to the diver-
gent structure of cationic heads, the best colloidal stability 
was obtained for the benzalkonium (d) and isoquinolinium 
(e) ligands that showed in all tested lengths of OEG chain 
a sufficient stability demonstrated by a stable spectrum in 
the cell culture medium (OEG3 and OEG5 series for qua-
ternary ammonium head d; OEG3 and OEG4 series for e) 
or the altered spectrum still consisting of two distinctive 
plasmonic peaks (OEG4 series for d; OEG5 for e).

The packing density of OEG-coated GNRs was calcu-
lated based on the ratio of the mass fraction of sulfur (S) 

and gold (Au) measured simultaneously by ICP-OES,53 

where the gold-to-sulfur ratio depends proportionally on 
the volume-to-surface area ratio.54 Assuming complete 
removal of free ligand by centrifugation during sample 
preparation, the ligand coverage was estimated for all 
OEG+GNRs, including unstable colloidal dispersion of 
GNRs (23a, 23c, 23f, and 24f; Figure 3C). Importantly, 
the ligands that did not allow us to prepare stable GNRs in 
colloidal solution after the ligand exchange, reached less 
than half the ligand packing density compared to MTAB 
providing the highly stable colloid of GNRs. The different 
length of OEG chain did not have a significant influence 
on coverage of GNRs. However, the different packing 
density was conspicuous in comparison of each terminal 
cationic group. The more effective GNRs coverage exhib-
ited the OEG ligands with benzalkonium salt (d) that in 
the combination with five ethylene glycol units (OEG5; 
24d) reached a similar packing density (6.10±1.04 
molecules/nm2) to MTAB (6.30±0.72 molecules/nm2).

Assessment of Cytotoxicity of Cationic 
Ligands in Free State and in Complex 
with GNRs
Previously, we showed that the cationic alkanethiol- 
(MTAB)-stabilized GNRs are non-toxic both in vitro and 
in vivo.66 Similarly, no significant decrease in viability of 
HeLa cells was observed for all OEG+GNRs tested at 
a concentration range from 30–50 µM (Au0) 
(Supplementary Figure S6). However, the possibility of 
ligand release from the surface of GNRs motivated us to 
evaluate the cytotoxicity of free compounds by colori-
metric MTT assay as a half maximal inhibitory concentra-
tion (IC50).67 CHO-K1 cells previously established for the 
evaluation of cellular toxicity of QAS63,68 were used for 
the cell viability assay. As we showed recently,46 the 
compound with alkyl chain (MTAB) showed more than 
two orders of magnitude higher cytotoxicity than its ana-
log with OEG chain of similar length (24a). This corre-
lated with higher hydrophobicity of alkanethiols 
compared to the OEG compound (see Figure 2A and 
Supplementary Table S1). Comparing the cytotoxicity of 
each quaternary ammonium head, compounds containing 
trimethylammonium group exhibited in the chain with 
four and five ethylene glycol units (23–24a) almost one 
order of magnitude lower in cytotoxicity compared to 
other OEG compounds (Supplementary Table S1). 
Additionally, the increasing length of chain of the 
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Figure 3 Colloidal stability and ligand packing density of GNRs stabilized by cationic OEG compounds. (A) UV-VIS-NIR spectra of GNRs modified by OEG compounds with 
3, 4, and 5 ethylene glycol units (OEG3, OEG4, and OEG5 series) and various quaternary ammonium heads (a–f) after surface ligand exchange in storage solution (water) 
normalized to 50 µM (Au0) concentration and (B) dispersed in 10% FBS/DMEM at 50 µM (Au0) concentration. (C) Quantification of ligand packing density on GNRs using 
ICP-OES.
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aromatic compounds and the compound with aromatic 
side chain (b–f) led to slightly higher cytotoxicity 
(Supplementary Figure S2B), but still nearly two orders 
of magnitude better to MTAB. This finding leads to the 
conclusion that compounds with OEG chain are, in gen-
eral, less toxic and more suitable for usage in living cells 
than the compounds with alkyl chain.

Estimation of Cellular Uptake of OEG+GNRs
The cellular uptake of GNRs modified by different ligands 
was evaluated in HeLa cells using confocal microscopy at 
a 20 µM (Au0) GNRs concentration. The experiment con-
firmed that the OEG+GNRs are effectively absorbed by 
cells and localized into the perinuclear space (Figure 
4A). Moreover, for all cationic GNRs, transport of GNRs 
into lysosomal compartment was confirmed by a co-asso-
ciation with lysosomal marker LAMP-1 (Supplementary 
Figure S7). Next, the GNRs level was semi-quantitatively 
estimated by fluorescence-activated cell sorting (FACS; 
Figure 4B). The median of scattered intensity of OEG 

+GNRs taken up by the cell was normalized to the signal 
of MTABGNRs known for their highly efficient cellular 
uptake.47,48 In line with microscopic analyses, the FACS 
results showed a trend to increase the cellular absorption 
of OEG+GNRs depending on the length of the side chain of 
cationic ligand, where the ligands with four (OEG4) and 
five (OEG5) ethylene glycol units in the chain were taken 
up more effectively compared to ligands with three ethy-
lene glycol units in the chain (OEG3). In addition, the level 
of OEG4 and OEG5 series ligands reached or exceeded the 
intensity of alkyl chain ligand (MTAB). Nevertheless, any 
correlation of cellular uptake in dependency on the differ-
ent cationic ligand head was not observed.

Estimation of the Photothermal Stability 
of Differently Coated Cationic GNRs
To assess the effect of the ligand structure on the photother-
mal properties of GNRs, we used synthesized GNRs tuned to 
near-infrared (NIR) region (81.5±24.2 nm in length and 27.9 
±3.4 nm in width; see Supplementary Figure S4B and D for 
size distribution of GNRs and their UV-Vis-NIR spectra, 
respectively), where tissues exhibit lower absorption.4,69 As 
the results obtained by FACS analysis showed that the uptake 
of GNRs by cells increases with the length of OEG chain, the 
ligands from the series with the highest number of ethylene 
glycol units (OEG5) were selected for subsequent evaluation 
of photothermal stability. From OEG5 series, ligands 

providing the highest surface coverage density and satisfac-
tory colloidal stability of GNRs both in water and cell culture 
medium (24c and 24d) were evaluated as the most promising 
and selected as the representative samples. 24c- and 24d- 
coated GNRs (see Supplementary Figure S5B for UV-Vis- 
NIR spectra of ligand-modified GNRs) were deposited on 
TEM grids and then were irradiated by 140 fs pulses with 80 
MHz repetition rate, central wavelength of 750 nm, and peak 
fluence set to 14.8 mJ/cm2, 45.0 mJ/cm2, and 142.5 mJ/cm2 

on two-photon excitation microscope. The sets of samples 
were characterized prior to and after the laser irradiation on 
FE-SEM using specialized particle shape recognition soft-
ware package70 (see Supplementary Figures S8 and S9). 
Morphological stability of metal nanoparticles of 24cGNR 
and 24dGNRs was compared to MTABGNRs. As revealed in 
Table 1, the highest fluence (142.5 mJ/cm2) caused reshaping 
of all GNRs regardless of their solvation layer due to tran-
sient accumulation of heat in or around GNRs. In all cases, 
reshaping of GNRs resulted in a decrease of rod length and 
their aspect ratio (Figure 5A). However, for 24d-coated 
GNRs, the fluence of 14.8 mJ/cm2 triggered already morpho-
logical changes of GNRs as indicated by a decrease of GNRs 
aspect ratio from 2.7±0.5 to 2.1±0.4 and a decrease of GNRs 
length from 28.6±4.0 to 23.8±4.2. Similarly, the photother-
mal stability of 24c-coated GNRs saturated already at 45.0 
mJ/cm2 (see Figure 5B), when aspect ratio of GNRs 
decreased from 2.7±0.5 to 1.6±0.5 and rods length from 
29.1±4.0 to 20.8±4.4. Under femtosecond laser irradiation, 
the reshaping of GNRs is competitive to the thermal diffusion 
across the shell layer of NPs.71 Our results thus indicate 
lower thermal stability and lower thermal transport into the 
surrounding environment from heated OEG+GNRs in compar-
ison to alkanethiol-stabilized MTABGNRs.

Discussion
Rationale and Design of Quaternary 
Ammonium Salts with OEG Chain
Due to high application potential of GNPs in clinical 
medicine,11,72–74 in this study we prepared various OEG 
compounds containing the positive charge in the terminal 
group. Our aim was to improve the cellular uptake of 
GNRs compared to PEGylated GNRs and to decrease the 
toxicity of free surfactant compared to alkanethiols. 
Moreover, it was hypothesized that the ligands with the 
OEG-chains will provide a less compact passivating layer 
due to their ability to absorb molecules of water, which 
could lead to conveniently modified photothermal 
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Figure 4 Efficiency of cellular uptake and intracellular localization of GNRs stabilized by QAS. (A) Cellular uptake of various cationic GNRs modified by ligands with OEG 
(OEG3, OEG4, and OEG5 series) chain and different terminal QAS group (a–f) and by QAS-ligand with alkyl chain (MTAB) determined by confocal microscopy in HeLa cells 
incubated with 20 µM (Au0) GNRs for 24 hours (a back-scattered light from the longitudinal LSPR mode of GNRs was utilized to visualize GNRs; the actin and nuclei were 
stained by phalloidin and DAPI, respectively; whole cells were scanned as a series of z-stacks) and (B) semi-quantified by FACS in HeLa cells after 24 h-incubation with 20 µM 
(Au0) GNRs (the median of scattered intensity of OEG+GNRs was normalized to MTABGNRs). Bar, 10 µm; Student’s t-test: P<0.05 (*), P<0.01 (**), and P<0.001 (***).
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characteristics.15,75,76 Vigderman et al47 previously 
demonstrated that cationic alkanethiol ligand MTAB of 
the same length of alkane chain as a CTAB used to 
cover the GNRs during synthesis allows the complete 
ligand exchange and highly increases the colloidal stability 
of GNRs. Therefore, here we designed the analogues of 
MTAB (C16) with OEG chain considering the divergent 
bond lengths, bond angles, and spatial arrangement of 
atoms in molecules. The OEG/PEG can adopt helical or 
all-trans conformation and ratio between these two forms 
is a function of many factors. The attachment of (EG)n via 
sulfur group on flat gold surface allows both conformation 
such as for n≥6 helical and for n=4 a mix of helical and 
all-trans conformations.77,78 Based on that, OEG com-
pounds with three different lengths of chain (22–24) and 
with six various quaternary ammonium heads were pre-
pared: QAS with sole aliphatic substitution (quaternary 
heads a, d) or as a part of heteroaromatic system (quatern-
ary heads b, c, e, f). The various properties of QAS such as 
the different conformation of OEG chain, ESP charge 
distribution and hydrophobicity could have an important 
influence on the ligand cytotoxicity and its packing density 
on GNRs and thus on the GNRs colloidal stability, cellular 
uptake, as well as on the photothermal properties of 
GNRs.

Cytotoxicity of Cationic OEG Ligands
The utilization of thiol-containing compounds as the 
ligand for GNRs stabilization may also exhibit some dis-
advantages. Thiol-containing small molecules such as 
dithiothreitol or amino acids such as methionine and 
cysteine at physiological concentrations can cause release 
of the thiol ligand and subsequently bind to vacant adsorp-
tion sites on the nanoparticle surface.15,79,80 In contrast to 
the formerly accepted view, recent research demonstrating 
that the gold-sulfur coupling in gold–thiol self-assembled 
monolayers (SAMs) has a physisorbed rather than chemi-
sorbed (or covalent) character supports the possibility of 
ligand release.81,82 Moreover, a ligand desorption can be 
caused by heating83 and by an intensive fs-laser irradiation 
of GNPs, leading to their reshaping and melting that 
trigger the breaking of the S-Au bond.84,85 In the blood 
stream, the released free ligands can then cause toxicity or 
induce tissue pathology.86–89 Despite the GNRs being 
capped with cationic alkanethiol (MTAB)47,66 as well as 
OEG ligands being evaluated non-cytotoxic, the excessive 
ligand release during the exalted or repeated GNRs dose or 
photothermal therapy may increase the probability of free Ta
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Figure 5 Photothermal stability of GNRs coated by selected ligands. (A) Representative FE-SEM images of MTAB, 24c-and 24d-coated GNRs (tuned to NIR region) before 
and after two-photon irradiation by 140 fs pulses with 80 MHz repetition rate at wavelength of 750 nm and peak fluence (FPEAK) set to 14.8 mJ/cm2, 45.0 mJ/cm2, and 142.5 
mJ/cm2 (bar, 250 nm). (B) Tukey box plot showing median of aspect ratio of GNRs (solid line inside the box) before and after the laser irradiation for MTAB, 24c and 24d 
and three values of laser peak fluence. Whiskers extend to outliers up to 1.5-times the interquartile range and further outliers are marked as dots above boxes; Student’s t- 
test: not significant (ns), P<0.01 (**), and P<0.001 (***).
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ligand toxicity in vivo. For this reason, the cell viability 
assay of free compounds was performed on non-cancerous 
CHO-K1 cells. In general, the cytotoxicity of quaternary 
ammonium compounds increases with their increasing 
hydrophobicity, mainly attributable to their efficient incor-
poration into cell phospholipid membrane and formation 
of mixed micelles with membrane constituents causing the 
membrane ruptures and leakage of cytosol.49,90,91 Our 
results showed that all synthesized QAS with OEG chain 
exhibit almost two orders of magnitude lower cytotoxicity 
compared to conventional QAS with the alkyl chain, 
which is in agreement with lower hydrophobicity of 
OEG compounds. Similarly, OEG compounds containing 
aliphatic trimethylammonium group that showed the low-
est hydrophobicity of the QAS heads also exhibited nearly 
one order of magnitude lower toxicity against cells when 
combined with the chain of four and five ethylene glycol 
units (OEG4 and OEG5). The introduction of aromatic 
system led to a slight increase of cytotoxicity when the 
cytotoxic effect was endorsed by the prolongation of OEG 
chain, which is also in agreement with the hydrophobic 
descriptors (Supplementary Table S1 and Supplementary 
Figure S2B).

Colloidal Stability Studies of GNRs 
Modified by Cationic OEG Compounds
Agglomeration/aggregation may dramatically affect nano-
particle properties which can mediate their biological 
effects.92,93 This underlines the importance of evaluation 
of colloidal stability in relevant media such as water or cell 
culture medium. Although most prepared OEG ligands 
provided stable colloidal dispersion of GNRs in the 
water, OEG+GNRs tended to aggregate in the serum-con-
taining cell culture medium. It is known that the blood 
serum, a cocktail of proteins, is amenable to unguided 
attachment onto NPs and is responsible for the colloidal 
stability or anti-aggregation effect.48,94 Thus the ability of 
OEG chain to reduce protein adsorption on the surface of 
NPs14 induces likely lower GNRs colloidal stability in the 
cell culture medium where the high content of salts pro-
motes their aggregation.95

In addition, the ligand packing density on NPs plays an 
important role.96,97 In agreement with a previous report 
showing that the grafting densities of high molecular 
weight PEG on GNP are significantly lower than those 
of thiols80 we observed lower GNRs coverage also by 
most of OEG compared to ligands with alkyl chain of 

similar length. Lower number of cationic nitrogen groups 
bound to the surface of GNRs that provides the electro-
static repulsion between NPs may result in lower colloidal 
stability of GNRs in aqueous environment.18 In relation to 
the different structure of cationic head, the benzalkonium 
salts (22–24d) that provided good colloidal stability of 
GNRs in the cell culture medium also showed the highest 
packing density on GNRs. Surprisingly, the different 
length of OEG chain did not show any significant differ-
ences in ligand coverage of GNRs, while the colloidal 
stability of GNRs decreased with the number of ethylene 
glycol units. Likely the structural diversity of OEG com-
pounds itself may lead to different orderliness of organic 
shell on GNRs surface due to different intermolecular 
forces and thus to diverse tendency to form aggregates in 
aqueous environment. The differing structure of 
quaternary ammonium head led to different inter- and 
intra-molecular interaction, such as electron-donating/ 
withdrawing effects of substituents, aromatic π–π interac-
tions or cation–π interactions.97–99 The bulky positively 
charged head groups can control ligand density via volume 
of the terminal groups and repulsive forces between 
them.47,97,100 For example, ligand without aromatic moiety 
24a exhibited almost half coverage of analogous ligand 
with aromatic ring 24d despite both substituents having 
similar NESP and thus should be presumed to have similar 
repulsion of cationic parts. Moreover, the ligand 24d can 
occupy larger space due to the presence of aromatic ring. 
The introduction of aromatic ring itself can therefore con-
tribute to colloidal stabilization of the ligand packed- 
GNRs and the flexible linkers can help to avoid a jam of 
head groups by slight alteration of their conformations.100

Cellular Uptake and Intracellular 
Localization of Cationic OEG-Modified 
GNR
The cellular uptake of GNRs was firstly studied by con-
focal microscopy including the determination of GNRs 
localization and subsequently quantified by FACS. 
Similarly to MTABGNRs,48 OEG+GNRs adhered onto the 
cell plasma membrane were engulfed and trafficked to 
lysosomes. A semi-quantitative estimation revealed that 
the cellular uptake of OEG+GNRs increases with the 
length of OEG chain and thus with increasing hydropho-
bicity of the ligand. This is consistent with a study by 
Lorenz et al,101 demonstrating that with the increasing 
hydrophobicity of a linear alkyl side chain the absorption 
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of poly(alkyl methacrylate) nanoparticles by HeLa, pri-
mary human bone marrow-derived MSCs, KG1a, and 
Jurkat cells significantly increases. However, no correla-
tion was observed in relation to differences in cationic 
heads that also provide a different degree of hydrophobi-
city. It has been shown that cationic surface charge 
enhances the cellular absorption of NPs compared to 
anionic and neutral charge.24,94 However, the initial sur-
face charge may not be a simple predictor of nanoparticle 
uptake. Against expectation, the methyl-containing com-
pounds that exhibited the highest EPS partial charge on 
the quaternary nitrogen did not show the highest level of 
cellular absorption in all tested series. On the other hand, 
the cellular uptake of OEG+GNRs correlated with decreas-
ing stability of GNRs in the cell culture medium and with 
increasing formation of nanoparticle aggregates. 
Previously, we showed that the aggregated nanorods are 
endocytosed via macropinocytosis, while clathrin- 
mediated endocytosis (CME) is a preferential mechanism 
for individual nanorods.48 Therefore, the enhanced ten-
dency to form aggregates may increase the amount of 
internalized GNRs on behalf of macropinocytosis, that 
is the dominant endocytic pathway for NPs.48,102 Thus, 
the affinity to form aggregates was probably a major 
factor determining the mechanism and level of cellular 
uptake of OEG+GNRs.

Thermal Stability and the Heat Transport 
from GNRs during Exposure to 
Femtosecond Laser Irradiation
The thermal therapy by GNPs promises progress in non- 
invasive cancer treatment.103,104 Upon interaction of 
GNPs with the laser pulses, the rate of heat dissipation 
from the hot metal particle to the surrounding media 
determines the efficiency of the thermal killing of cancer 
cells. In case of metal NPs coated with water soluble 
surfactant, the effective thermal conductance (Geff) 
includes the thermal conductance of the metal/surfactant 
interface, the intrinsic thermal conductance of the sur-
face molecules, and the thermal conductance of the 
surfactant/water interface.44 Previously, the transient 
absorption measurements as well as computer simula-
tions were applied to study the heat transfer from GNPs 
to their surroundings.39,40,43,44 Here, we utilized the 
method evaluating the photothermal stability of GNRs 
under the femtosecond laser irradiation. Particle cooling 
depends on the metal/surfactant interface thermal 

conductance. The excessive accumulation of heat energy 
may result in NPs fragmentation or changes in their size 
and shape.30,34,71 This approach allows to determine 
a risk of secondary cytotoxic and genotoxic effects of 
“reshaped” NPs on cells surviving the laser irradiation 
and neighbouring/unexposed cells.

According to the surface ligand properties, several 
studies reported higher thermal conductivity for ligands 
with higher hydrophilicity that brings associated water 
molecules near the GNRs surface.40,43,44 As the direct 
contact between water molecules and gold provides an 
additional thermal path, the thermal conductance of the 
Au/hydrophilic PEG (~23 ethylene glycol units) interface 
comprises GAu-PEG and GAu-Water components. While the 
calculated value of GAu-PEG is comparable to the Au/ 
lipophilic alkanedithiol interfacial thermal 
conductance,105,106 the additional thermal path between 
Au and water (GAu-Water) increased the overall thermal 
conductivity of the GNR-PEG system about half.44 

Besides the hydrophilicity, the type of solvent,107 bond 
strength between the Au and surface ligand44 as well as 
ligand packing density40,108 determine the efficiency of 
the heat transport from the GNPs. In case of CTAB- 
stabilized GNRs, the thermal interface conductance 
decreased with the increasing concentration of free 
hydrophobic CTAB.108 In contrast, for hydrophilic mole-
cules, the thermal conductivity of the GNRs polyelectro-
lyte layer increased with the increasing number of poly 
(acrylic acid) (PAA) layers and slightly decreased with 
increasing number of polyallylamine hydrochloride 
(PAH) layers.40 Our results showed that despite less 
hydrophobic OEG-chain, the cationic OEG-GNRs lost 
the photothermal stability at lower laser fluence and 
thus heat transport to the surrounding was less effective 
than for similar cationic alkanethiol-GNRs. The differ-
ence in ligand packing density could lead to 
a discrepancy in the rate of heat dissipation. However, 
the OEG ligands used for evaluation of photothermal 
stability reached nearly analogous ligand packing density 
as MTAB. This indicates that also other factors that 
reflect the divergent chemical structures of MTAB and 
OEG compounds such as different assembly kinetics of 
thiolated ligands and orderliness of the formed ligand 
shell may influence the photothermal properties of 
GNRs.109

In terms of thermal effectiveness, the OEG-GNRs 
are thus suitable for photothermal therapy to induce 
cancer cell death by programmed cell death pathway – 
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apoptosis, with avoidance of necrosis.104 Upon these 
settings, the cells are heated only to a temperature 
around 42–43°C.110 However, lower heat dissipation 
and higher risk of NPs fragmentation in applications 
requiring irradiation by high laser intensity such as 
tissue micro-surgery111,112 may lead to lower effective-
ness and cytotoxic and genotoxic damage of nanoparti-
cle remnants.

Conclusion
In conclusion, the physico-chemical and biological prop-
erties of 18 newly-designed and synthesized cationic 
OEG compounds have been examined as ligand shells 
of GNRs and compared to each other as well as to their 
alkyl analogue – MTAB (summarized in Table 2). Our 
results showed that while the ability of cationic OEG 
ligands to stabilize the colloidal dispersion of GNRs in 
water and in serum-containing cell culture medium 
decreases with length of OEG chain, the cellular uptake 
of GNRs by cancer cells increases. The most promising 
QAS group appears to be the benzalkonium moiety that 
allowed to prepare GNRs with sufficient colloidal stabi-
lity, high ligand packing density and reasonable cellular 
uptake in combination with all tested chain lengths. In 
comparison to the alkyl-QAS ligand, all OEG com-
pounds exhibited nearly two orders of magnitude lower 
cytotoxicity in free state. Despite of the aggregation in 
cell culture medium, the series of OEG ligands with 4 
and 5 ethylene glycol units in the chain revealed the 
comparable level of GNRs absorbed by cell as their 
alkyl analogue MTAB. The effect of ligand shell on 
the heat transport from GNRs under fs-laser irradiation 
was determined using a novel approach quantifying the 
reshaping of more than 300 GNRs by software analysis 
of FE-SEM micrographs that allows the assessment of 
biological risk of fragmented GNRs. However, the ther-
mal stability of OEG+GNRs and thus the heat dissipation 
to the surrounding media was lower than for 
MTABGNRs. Based on these divergent properties, OEG 

+GNRs appear to be optimal for clinical applications 
requiring systemic administration of NPs/NPs treated 
cells such as drug delivery and photothermal therapy 
inducing apoptosis, while the alkanethiol-modified 
GNRs may be more suitable for local application with 
high intensity laser irradiation such as tissue micro- 
surgery. Ta
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Abbreviations
AcCl, acetyl chloride; ACN, acetonitrile; cpd, compound; 
CTAB, cetyltrimethylammonium bromide; DCE, 
1,2-dichloroethane; DCM, dichloromethane; DCM, dichlor-
omethane; DMAP, 4-(dimethylamino)pyridine; DMEM, 
Dulbecco᾿s Modified Eagle᾿s Medium; DMTrCl, 4,4′- 
dimethoxytrityl chloride; EDTA, ethylenediaminetetraacetic 
acid; ESP, molecular electrostatic potential; EtOAc, ethyl 
acetate; FACS, fluorescence-activated cell sorting; FBS, 
fetal bovine serum; FE-SEM, field emission scanning elec-
tron microscopy; G, thermal conductance; GNPs, gold nano-
particles; GNRs, gold nanorods; IC50, half maximal 
inhibitory concentration; ICP-OES, inductively coupled 
plasma – optical emission spectrometry; KSAc, potassium 
thioacetate; LAMP-1, lysosomal associated membrane pro-
tein 1; LC-MS, liquid chromatography-mass spectrometry; 
LSRP, localized surface plasmon resonance; MEK, methyl 
ethyl ketone; MeOH, methanol; MTT, 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyltetrazolium bromide; NIR, near-infra-
red region; NMR, nuclear magnetic resonance; OEG, 
oligoethylene glycol; PBS, phosphate buffered saline; PEG, 
polyethylene glycol; POSAB, N,N,N-trimethyl-3,6,9,12,15- 
pentaoxaheptadecyl-17-sulfanyl-1-ammonium bromide; 
QAS, quaternary ammonium salts; PPh3, triphenylpho-
sphine; p-TsCl, p-toluenesulfonyl chloride; r.t., room tem-
perature; TCA, trichloroacetic acid; TEA, triethylamine.
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