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Abstract: L-dopa-induced dyskinesia (LID) is the most frequent motor complication associated 
with chronic L-dopa treatment in Parkinson’s disease (PD). Recent advances in the under-
standing of the pathophysiological mechanisms underlying LID suggest that abnormalities in 
multiple neurotransmitter systems, in addition to dopaminergic nigrostriatal denervation and 
altered dopamine release and reuptake dynamics at the synaptic level, are involved in LID 
development. Increased knowledge of neurobiological LID substrates has led to the development 
of several drug candidates to alleviate this motor complication. However, with the exception of 
amantadine, none of the pharmacological therapies tested in humans have demonstrated clini-
cally relevant beneficial effects. Therefore, LID management is still one of the most challenging 
problems in the treatment of PD patients. In this review, we first describe the known pathophy-
siological mechanisms of LID. We then provide an updated report of experimental pharma-
cotherapies tested in clinical trials of PD patients and drugs currently under study to alleviate 
LID. Finally, we discuss available pharmacological LID treatment approaches and offer our 
opinion of possible issues to be clarified and future therapeutic strategies. 
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Introduction
Parkinson’s disease (PD) is a common progressive neurodegenerative disease character-
ized by motor symptoms such as bradykinesia, tremor, and rigidity. PD symptoms are 
mainly the result of the loss of dopaminergic neurons in the substantia nigra.1 Non-motor 
symptoms, including cognitive, psychiatric, and neurovegetative symptoms, are also 
common in PD.2 The dopamine precursor levodopa (L-dopa) is currently the most 
effective symptomatic treatment for PD patients. However, chronic L-dopa treatment is 
associated with the development of motor fluctuations and L-dopa-induced dyskinesia 
(LID). More than 50% of patients develop LID after 5 years of L–dopa treatment, with 
a significant impact on quality of life and a consequent urge in identifying effective 
treatment strategies for this disabling motor complication.3–5 LID is characterized by 
choreic and dystonic movements affecting different body parts that occur at different 
points of the L-dopa cycle (Table 1). Risk factors for LID include an earlier age of PD 
onset, longer PD duration, longer L-dopa treatment duration, higher L–dopa total 
exposure, lower body mass index, and female gender.6–10 The role of genetic factors in 
LID development is still unclear.11

LID management is one of the most challenging problems in the treatment of PD. The 
first step in the therapeutic approach to a PD patient with LID is to recognize the clinical 
pattern of dyskinesia, since OFF period dystonia, peak-dose dyskinesia, and diphasic 
dyskinesia can be influenced differently by the modification of current antiparkinsonian 
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medication. For instance, in the case of OFF period dystonia, 
which typically occurs at night or in early morning hours, 
long-acting formulations of L-dopa can be administered at 
bedtime.12 On the other hand, while diphasic dyskinesia gen-
erally improves by increasing dopaminergic medications, 
peak-dose dyskinesia management requires the opposite 
approach. However, L–dopa dose redistribution and overall 
dopaminergic treatment reduction are sometimes followed by 
motor symptoms worsening. In these cases, antidyskinetic 
drugs may be necessary. Amantadine and clozapine are the 
only available drugs that are recognized to be clinically useful 
in counteracting LID.13 However, both have efficacy and 
safety limitations. For this reason, new molecules are needed, 
and several drugs have been proposed or are currently under 
study to treat LID. The search for new avenues in LID treat-
ment is difficult due to the complex and incompletely defined 
pathophysiology of LID. In this review, we first describe the 
main accredited pathophysiological mechanisms underlying 
LID in PD patients. We then analyse the experimental phar-
macological therapies currently under study for attenuating 
LID in PD patients. A search was conducted on 
ClinicalTrials.gov using “dyskinesias” and “Parkinson’s dis-
ease” as keywords. Studies from 2015 to the present were 
included. This search resulted in a list of drugs with diverse 
pharmacological targets that were studied in Phase I-III clin-
ical trials in the last 5 years (Table 2). Studies on drugs whose 
mechanisms of action were not supported by strong literature 
data were excluded from the literature review.

Pathophysiological Mechanisms of LID
Dopaminergic Mechanisms
The main factor responsible for LID development in PD is 
the degree of dopaminergic denervation in the nigrostriatal 
pathway. Importantly, this factor is independent of the 
duration of L-dopa exposure. Indeed, experimental studies 

have demonstrated that administering L–dopa in animals 
with severe nigrostriatal denervation determines LID 
emergence from the first doses of the drug.14–19 

Similarly, LID appeared very shortly after the initiation 
of L-dopa therapy in newly diagnosed sub-Saharan PD 
patients with advanced disease.20 In contrast, chronically 
administering dopaminergic treatment in conditions char-
acterized by an intact nigrostriatal pathway (eg, healthy 
animals, patients with restless leg syndrome) did not result 
in LID.15,17,21,22 However, severe dopaminergic denerva-
tion, although essential, is not sufficient per se to cause 
LID development. A second relevant pathophysiological 
factor is the introduction of oral short half-life L-dopa, 
which provides non-physiological pulsatile dopaminergic 
stimulation in the striatum. This approach makes dopa-
mine (DA) central levels dependent on the pharmacoki-
netic of exogenous L–dopa.17,18,22–24 This abnormality is 
indirectly related to progressive neuronal loss of dopami-
nergic terminals, which leads to altered presynaptic 
dynamics in DA conversion, release, and reuptake. In 
fact, in early PD stages, non-degenerated dopaminergic 
neurons provide for the conversion of L-dopa to DA and 
for DA storage, ensuring the important fine-tuning of DA 
release and allowing DA concentration to be maintained at 
physiological levels in the synaptic cleft. This DA buffer-
ing capacity is possible because of D2 autoreceptor and 
DA transporter (DAT) activity. However, in advanced PD 
stages, the vast majority of dopaminergic neurons are lost, 
and DA conversion and release is mainly provided by 
serotoninergic terminals, which do not have the molecular 
machinery for feedback control and DA release 
regulation.25–28 Accordingly, DA concentration cannot be 
tuned, leading to abnormal swings in extracellular DA 
following pulsatile oral intake of L–dopa.28–30 A direct 
evidence of this pathological mechanism has been recently 

Table 1 Types of Dyskinesia in Parkinson’s Disease

Type of Movement Areas 
Interested

Other Features

“Peak dose”, “benefit of 

dose”, “ON” dyskinesia

Choreic. In early phase, only “action” 

chorea. Dystonic components may be 

present

Neck, axial, 

proximal 

upper limbs

Usually not disabling or painful. Poor awareness. Impact on 

quality of life often absent.

“Diphasic” or 

“beginning and end of 
dose” dyskinesia

Dystonic-ballistic-stereotypic Lower limbs Disabling, often painful. Significant impact on quality of life. 

Possible concomitant tremor in the upper limbs and 
hypomimia.

“OFF” period dystonia Prolonged spasms and postures Foot The most common form is early morning dystonia.
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Table 2 Investigational Drugs for LID

Drug Mechanism of Action Clinical Trial Results

Glutamate receptor antagonists and modulators

Gocovri (extended- 

release amantadine)

Non-competitive antagonist at glutamate NMDA 

receptor

Significant reduction in UDysRS scores, increase in ON time without 

troublesome dyskinesia and decrease in OFF time, from EASE LID 

(NCT02136914) and EASE LID 3 (NCT02274766) trials.

Dipraglurant Negative allosteric modulator of mGlu5 receptor Phase II randomized, double-blind, placebo-controlled study 

(NCT01336088) showed safety and tolerability and antidyskinetic 

efficacy.

Foliglurax Positive allosteric modulator of mGlu4 receptor Phase IIa randomized, double-blind, placebo-controlled study 

(NCT03162874) failed in showing efficacy on LID.

L-4-chlorokynurenine Inhibition of glutamate NMDA receptor activation 

(selective antagonism of glycine’s modulatory binding 

site)

Phase II randomized, double-blind, placebo-controlled, crossover 

proof-of-concept study (NCT04147949) will test efficacy on LID.

Naftazone Glutamate release inhibitor Phase II randomized, double-blind, placebo-controlled crossover study 

(NCT02641054) did not show efficacy on LID.

Serotonin receptor agonists

Eltoprazine Serotonin 5-HT1A/B receptor agonist Phase I/IIa study proved safety, tolerability and antidyskinetic properties 

of 5 mg eltoprazine. Multicenter phase II, randomized, double-blind, 

placebo-controlled crossover dose-finding study (NCT02439125) has 

no posted results yet.

Buspirone Serotonin 5-HT1A receptor agonist, D2 receptor 

antagonist, alpha-1 receptor agonist

Phase I randomized, placebo-controlled, double-blind study 

(NCT02589340) is testing efficacy of combination therapy with 

buspirone and amantadine on LID.

JM-010 Serotonin 5-HT1A and 5-HT1B/D receptor agonist Phase II randomized, double-blind, double dummy, placebo-controlled 

study (NCT03956979) is testing efficacy of two doses of JM-010 on 

LID.

5-hydroxytryptophan Serotonin precursor Phase IIa randomized, double-blind, placebo-controlled crossover 

study showed a significant improvement in LID as assessed by 

UDysRS and UPDRS part IV scores.

Drugs acting on other targets

Mesdopetam Dopamine D3 receptor antagonist Phase IIa study (NCT03368170) showed tolerability and reduction in 

LID severity. A phase IIb/III randomized, double-blind, placebo- 

controlled study (NCT04435431) is investigating Mesdopetam efficacy 

in 140 patients.

Pridopidine σ1 receptor agonist Phase II randomized, double-blind, placebo-controlled study to assess 

efficacy, safety, and pharmacokinetics of pridopidine for LID 

(NCT03922711) with no results posted yet.

Zonisamide Inhibition of voltage-gated sodium channels, T-type 

calcium channels, MAO-B and carbonic anhydrase. 

GABA receptor agonist

Randomized, phase IV, open-label pilot study investigating tolerability 

and efficacy in treating LID has currently passed its completion date 

and has not been recently updated (NCT03034538).

Continuous 

intracerebroventricular 

(ICV) dopamine 

administration

Proof-of-concept phase I/IIb study of continuous ICV A-dopamine 

administration, to assess safety and feasibility and a subsequent 

2-month, phase IIb, single-blind, randomized crossover study to assess 

efficacy on LID (NCT04332276) is ongoing.
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provided in rats, where ectopically expressing the D2 
autoreceptor in serotoninergic neurons prevented DA 
swings and blocked LID development, even using high 
L-dopa doses.31

The combination of severe dopaminergic denervation 
and the lack of physiological tonic dopaminergic stimula-
tion in the nigrostriatal circuit causes alterations in DA 
receptor-mediated signalling and corticostriatal synaptic 
plasticity. D1 receptor sensitization and D1-related signal-
ling cascade and direct pathway neuron overactivity are 
postsynaptic abnormalities associated with LID. Molecular 
biology studies show that excessive intracellular activation 
in the ERK1/2 and cAMP/PKA signalling of striatal neu-
rons and other signalling pathway changes contribute to 
D1 hyperactivity in LID.17,18,32 The role of D1 overactiva-
tion in LID development is supported by studies demon-
strating that D1 receptor agonists and optogenetic D1 
stimulation induce dyskinesia, while genetic and pharma-
cological D1 blockages decrease LID.24,33–35 Although the 
contribution of the D2 receptor is less clear, recent find-
ings suggest an association between overall inhibition of 
the indirect pathway and LID. Indeed, dyskinesia deter-
mines synaptic modifications in indirect pathway neurons, 
and the stimulation of these neurons improves LID.18,36–38

Finally, D3 receptor activity changes also play a role in 
LID. In mice, increased D3 receptor levels in the dorsal 
striatum of 6-OHDA rats are associated with LID, whereas 
D3 receptor levels were reduced in a D3 receptor gene 
knockout model and LID decreased accordingly.39 

Increased D3 receptor expression was also observed with 
PET using the D3 receptor-preferring radioligand [11C] 
PHNO in the dorsal striatum of PD patients chronically 
treated with L-dopa and in the globus pallidus of patients 
with LID.40 Interestingly, D3 overactivation seems to be 
functionally related to D1 pathway modification,39 and 
recent evidence suggests that aberrant D1-D3 receptor 
interactions may also contribute to LID.41

Concerning the alterations in corticostriatal synaptic 
plasticity, evidence from animal studies suggests that 
“bidirectional plasticity” impairment may be the electro-
physiological hallmark of LID.42,43 Bidirectional plasti-
city reflects the property to undergo synaptic 
neurotransmission depression or potentiation with the 
same plasticity-inducing protocol, depending on the dif-
ferent receptor state. Bidirectional plasticity also encom-
passes the capacity of potentiated synapses to return to 
normal activity levels after specific stimulation proto-
cols, a physiological phenomenon known as 

“depotentiation”. Interestingly, experimental studies 
have shown that L-dopa can restore long–term potentia-
tion (LTP) plasticity in parkinsonian animals, whereas 
striatal LTP is not susceptible to depotentiation in ani-
mals with LID.42–46 A similar finding has also been 
described at the motor cortex level in PD patients.47 In 
summary, synaptic plasticity becomes less “plastic” as 
LID develops.

Glutamatergic Mechanisms
Besides dopaminergic mechanisms, alterations in several non- 
dopaminergic systems have been linked to LID pathophysiol-
ogy in the last two decades. First, significantly enhanced 
glutamatergic neurotransmission has been consistently found 
at multiple levels within the basal ganglia-thalamo-cortical 
circuit.48–52 The excitatory effect of glutamate (Glu) is 
mediated by ionotropic (NMDA - GluN, AMPA - GluA, and 
kainate - GluK) and metabotropic (mGlu) receptors. Excessive 
amounts of NMDA and AMPA receptors are present in the 
striatum of parkinsonian patients and animals with LID.50,53 

Moreover, neuroimaging studies have shown increased levels 
of NMDA-related Glu both in the striatum and motor cortical 
areas in dyskinetic, but not in non-dyskinetic, PD patients after 
L–dopa administration, confirming the role of abnormal Glu 
release in LID.54 NMDA receptors also undergo several mole-
cular structural and functional changes, including altered phos-
phorylation, trafficking, GluN2A and GluN2B subunit 
composition rearrangement, and abnormal GluN2A and 
GluN2B striatal expression (ie, increased and reduced expres-
sion of GluN2A and GluN2B, respectively), which eventually 
enhance glutamatergic excitatory activity in the corticostriatal 
synapses.48–50,55,56 A confirmation of the link between 
increased NMDA-related Glu and LID also comes from phar-
macological studies using NMDA antagonist drugs, which 
have been demonstrated to be effective in reducing dyskinesia 
in animals57–60 and humans (see below). The involvement of 
mGlu receptors in LID pathophysiology has also been clearly 
demonstrated, and mGlu receptors have been found to mod-
ulate Glu intracellular signalling without affecting Glu excita-
tory action on synaptic neurotransmission. Three main groups 
of mGlu receptors exist according to sequence homology and 
G-protein coupling and ligand-binding profile.51 Group 
I receptors (mGluR1 and mGluR5) are coupled with phospho-
lipase Cβ and modulate intracellular calcium release through 
inositol-triphosphate formation and protein kinase 
C activation, while group II (mGluR2 and mGluR3) and III 
receptors (mGluR4, mGluR6, mGluR7, and mGluR8) are 
coupled with inhibitory G proteins and reduce the formation 
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of cyclic adenosine monophosphate (cAMP).51,61 Group 
I receptors amplify NMDA receptor currents and increase D1- 
related pathway activity. Animal studies have shown that stria-
tal mGluR5 levels increase in parallel with LID 
development.62,63 Similarly, mGluR5 is enhanced in the puta-
men and globus pallidus of dyskinetic PD patients.64 In line 
with these data, mGluR5 antagonist drugs were shown to be 
effective in attenuating LID in various animal models of PD.65 

In contrast to the effect of group I receptors, group II mGlu 
stimulation inhibits Glu release in corticostriatal and subthala-
monigral terminals,51,66 while group III mGlu activation 
reduces glutamatergic neurotransmission in the globus 
pallidus.67–69 Finally, a recent study in patients with PD 
demonstrated that a specific neurophysiological measure 
reflecting non-NMDA glutamatergic activity in the primary 
motor cortex is abnormally enhanced in dyskinetic patients, 
but can be normalized by using safinamide, a drug that inhibits 
glutamate release by blocking voltage-gated sodium 
channels.52,70

Figure 1 shows the main alterations in dopaminergic 
and glutamatergic synapses in the striatum.

Serotoninergic Mechanisms
While the bulk of evidence supports the role of abnormal 
glutamatergic activity in LID pathophysiology, some data 
suggest the involvement of additional non-dopaminergic 
systems. The involvement of the serotoninergic system in 
LID is supported by data showing significant striatal 
hyper-innervation in parkinsonian animals71,72 and 
enhanced 5-HT transporter (SERT) binding and increased 
SERT-to–DAT binding ratio in the putamen and globus 
pallidus of dyskinetic patients.73–76 The contribution of the 
serotoninergic system is also corroborated by evidence in 
animal models that 5-HT1A and 5-HT1B receptor agonist 
drugs normalize serotoninergic neurotransmission, attenu-
ate excessive DA release following L–dopa administra-
tion, and reduce LID.77–82 Also, Vilazodone, a selective 
serotonin reuptake inhibitor and partial 5-HT1A agonist, 
significantly suppressed developing and established LID 
without compromising the promotor effects of L-dopa in 
6-hydroxydopamine-lesioned hemi-parkinsonian rats.83 

Moreover, drugs directly or indirectly modulating SERT, 
like citalopram, paroxetine and UWA-101/121/122, as well 
as the combination of SERT- and 5-HT1A-targeting com-
pounds, showed definite antidyskinetic effects in 
animals.84 In this regard, a recent clinical study conducted 
in 111 patients demonstrated that the early SSRI exposure 
in the PD course delays LID onset.85 Increased 

extracellular DA levels after L-dopa intake have been 
confirmed in dyskinetic PD patients using positron emis-
sion tomography (PET) imaging,86 and buspirone, a partial 
5-HT1A agonist, was able to decrease this abnormality.87

Other Mechanisms
For instance, cholinergic neurotransmission mediated by nico-
tinic receptors has been putatively implicated in dyskinesia in 
PD.88 Indeed, nicotinic receptors are located close to dopami-
nergic receptors, are similarly distributed, and their activation 
modulates DA release.89 In addition, both nicotine and nico-
tinic receptor agonists were found to prevent or alleviate LID 
in mice, rat, and primate PD models.90–95 Alpha adrenergic 
receptors are also located in the striatum and modulate GABA 
release.96 Alpha receptor stimulation activates the direct path-
way, thus possibly contributing to LID generation mechan-
isms. In further support of this hypothesis, alpha adrenergic 
receptor antagonists were found to reduce dyskinesia in animal 
studies.97,98 Alterations in opioid peptide expression and 
opioid receptor-mediated intracellular signalling are also 
described in PD patients and animal models of PD with 
LID.99 The µ opioid receptors (OPRM1) are located in the 
striatum and their expression is reduced in LID, while 
OPRM1-related signal transduction is increased in the dyski-
netic state.100 Moreover, drugs blocking or downregulating 
OPRM1 activity attenuated dyskinesia in parkinsonian 
monkeys.101,102 Finally, the dysregulation of calcium channels 
has been hypothesized as a mechanism involved in LID. 
Supporting this idea, in a recent study, a genetic silencing of 
striatal CaV1.3 voltage-gated L-type calcium channels was 
found to completely prevent LID in severely parkinsonian 
rats and to ameliorate pre-existing severe LID.103

All the events described in this section (Figure 2) con-
tribute to pathological changes in neuronal firing patterns, 
which in turn lead to excessive disinhibition of thalamocor-
tical neurons and overactivation of cortical motor areas, and 
ultimately determine LID development.17,18

Experimental Pharmacological 
Therapies for LID in PD Patients
Glutamate Receptor Antagonists and 
Modulators
Amantadine hydrochloride (HCl) is currently considered the 
most effective drug for the treatment of LID in patients with 
PD.104 Originally developed as an anti-influenza agent, it acts 
as an uncompetitive antagonist at the glutamate NMDA 
receptor and has predictable anticholinergic (eg, dry mouth, 
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urinary retention, constipation) and anti-glutamatergic (eg, 
hallucinations) adverse effects. Its immediate-release formu-
lation (amantadine IR) has been extensively used over the 
years for the treatment of LID. Gocovri (ADS-5102) is 
a capsule containing 137 mg of extended-release amantadine 
developed by Adamas Pharmaceuticals in order to provide 
a therapeutic level of amantadine in the blood for a longer 
period of time than amantadine IR. Gocovri is administered 
at bedtime (two capsules (274 mg) corresponding to 340 mg 
of amantadine HCl) and was formulated to achieve a slow 
increase in amantadine blood levels during sleep, peak con-
centrations in the morning, and sustained concentrations 
throughout the day. Two Phase III randomized, double- 
blind, placebo-controlled studies (EASE LID 
(ClinicalTrials.gov identifier: NCT02136914) and EASE 

LID 3 (ClinicalTrials.gov identifier: NCT02274766)) were 
carried out between 2014 and 2016 to test Gocovri efficacy in 
treating LID as measured by changes in Unified Dyskinesia 
Rating Scale (UDysRS) scores.105,106 The trials included 121 
and 75 patients, respectively, and had similar designs, apart 
from an additional timepoint of 24 weeks in the EASE LID 
trial and other secondary outcomes. Both trials included PD 
patients with LID (score of at least 2 on question 4.2 of the 
Unified Parkinson’s Disease Rating Scale - UPDRS), at least 
two episodes of ON time with troublesome dyskinesia lasting 
30 minutes, and stable antiparkinsonian medication during 
the last 30 days, with L-dopa administered at least 3 times 
daily. Both trials demonstrated that Gocovri treatment deter-
mined a significant reduction in UDysRS scores, an increase 
in ON time without troublesome dyskinesia, and a decrease 

Figure 1 Alterations in glutamatergic and dopaminergic synapses in the striatum. The most relevant abnormalities in glutamatergic (Glu – left) and dopaminergic (DA – right) 
neurotransmission are illustrated. Increased expression of AMPA, NMDA and mGluR5 receptors, as well as structural and functional changes in NMDA receptors, are associated 
with overactive Glu neurotransmission. DA neurons have the molecular machinery for feedback control and dopamine release regulation, ie, DA transporter (DAT) and D2 
autoreceptors. The latter can decrease dopamine synthesis and release and increase dopamine reuptake through DAT activity modulation. The progressive loss of DA terminals 
leads to abnormal swings in extracellular dopamine following the L-dopa intake, which are associated with alterations in D1 and D3 receptor-mediated signalling.
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in OFF time, while no differences were observed in UPDRS 
parts I, II, and III scores, suggesting no interaction with 
motor function. Common recorded adverse effects were 
visual hallucinations, peripheral edema, dizziness, orthostatic 
hypotension, dry mouth, and constipation. Based on the 
results of these trials, Gocovri was approved in 2017 by the 
Food and Drug Administration for the treatment of LID in 
PD patients on concomitant L-dopa-based therapy. The drug 
underwent a final 2-year open-label trial in 223 PD patients 
with LID and showed long-term safety, tolerability, and 

efficacy on dyskinesia and OFF time.107 However, the drug 
is not available outside the US.

ADX48621 or dipraglurant is a negative allosteric 
modulator of the metabotropic glutamate 5 receptor devel-
oped by Addex Therapeutics. Its antidyskinetic properties 
had already been tested in the 1-methyl-4-phenyl- 
1,2,3,6-tetrahydropyridine (MPTP) macaque model.108 

A Phase II randomized, double-blind, placebo-controlled 
study on 76 participants testing dose escalation from 
50 mg once daily to 100 mg three times a day 

Figure 2 Pathophysiological mechanisms of LID. The diagram summarizes the known pathophysiological changes leading to LID development. Pre- and post-synaptic 
abnormalities are shown in the yellow and orange, respectively. Alterations in non-dopaminergic systems are indicated in the green boxes. 
Abbreviations: DA, dopamine; Glu, glutamate; 5-HT, serotonin.
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(ClinicalTrials.gov identifier: NCT01336088) showed that 
dipraglurant was safe and well tolerated and determined 
a statistically significant improvement (32% reduction in 
LID severity with 100 mg three times a day) at day 14 in 
peak-dose dyskinesia as measured by the modified 
Abnormal Involuntary Movement Scale (mAIMS). 
However, a strong placebo response at day 28 resulted in 
significance being lost.109 A phase IIb/III pivotal clinical 
trial on 140 PD patients with LID that was postponed due 
to the Covid-19 pandemic is scheduled to start at the end 
of 2020 and will use the UDysRS instead of the mAIMS to 
measure efficacy of the primary endpoint. Concerning 
these two scales, the mAIMS focuses on anatomical dis-
tribution and severity of dyskinesia whereas the UDysRS 
combines both patient-based and objective evaluation of 
dyskinesia severity and related disability.110,111 The 
UDysRS was shown to be more sensitive to treatment 
effects and less prone to placebo responses than 
mAIMS.112

With regard to the possible role of group II and III 
metabotropic glutamate receptors in PD and LID, a new 
molecule, foliglurax (PXT002331), an mGlu4 receptor 
positive allosteric modulator, showed improvement in par-
kinsonian symptoms and dyskinesia in MPTP macaque 
disease models.113 However, a phase IIa randomized, dou-
ble-blind, placebo-controlled study involving 157 PD 
patients experiencing end-of-dose wearing-off and LID 
(AMBLED; ClinicalTrials.gov identifier: NCT03162874) 
failed to show a significant reduction in OFF time or 
dyskinesia after 4 weeks of foliglurax treatment. As 
a consequence, the foliglurax development program was 
terminated.

L-4-chlorokynurenine (AV-101) inhibits glutamate 
NMDA receptor activation by selective antagonism of 
glycine’s modulatory binding site on this receptor.114 

L-4-chlorokynurenine efficacy in mitigating overactive 
glutamatergic transmission has been investigated in 
a previous Phase I study in patients suffering from neu-
ropathic pain. The drug showed an excellent safety pro-
file, and was effective in reducing allodynia and 
mechanical and heat hyperalgesia.115 Due to extensive 
preclinical and clinical evidence linking excessive gluta-
matergic transmission to LID pathogenesis, VistaGen 
Therapeutics has agreed to sponsor a phase II rando-
mized, double-blind, placebo-controlled, crossover 
proof-of-concept study to test the efficacy and safety of 
L-4-chlorokynurenine in PD patients with LID 
(ClinicalTrials.gov identifier: NCT04147949). The study 

will include 20 participants (30 to 80 years of age) with 
PD and moderate dyskinesia for at least 25% of the day 
who will be randomly assigned to L-4-chlorokynurenine 
or placebo administration for 14 days, with a 1-week 
washout period before crossover. Primary outcomes are 
the area under the curve and peak UDysRS part III score 
at day 14. The secondary outcome is UPDRS part III 
score. The study is currently not yet recruiting partici-
pants and will end in April 2022.

Another molecule, naftazone (CVXL-0107), 
a glutamate release inhibitor, showed antidyskinetic prop-
erties in the MPTP macaque model.116 A subsequent phase 
II randomized, double-blind, placebo-controlled crossover 
study (ClinicalTrials.gov identifier: NCT02641054) in 16 
PD patients did not show any significant differences in 
motor symptoms (UPDRS part III) or dyskinesia 
(mAIMS).117

Serotonin Receptor Agonists
Eltoprazine (originally DU-28853) is a strong 5-HT1A/B 
receptor agonist initially developed for the treatment of 
pathological aggression in intellectually disabled 
patients.118 The antidyskinetic properties of this molecule 
are due to 5-HT1A- and 5-HT1B-mediated inhibition of 
serotonin neurons responsible for the uncontrolled stimu-
lation of supersensitized dopamine D1 receptors, which is 
characteristic of LID state. Acute administration of elto-
prazine reduced LID in 6-OHDA lesioned rats and in 
MPTP monkeys treated with L-dopa.79

Based on the antidyskinetic properties shown in pre-
clinical studies, the drug underwent a phase I/IIa study 
with three tested doses (2.5 mg, 5 mg, and 7.5 mg) in 22 
PD patients with LID to evaluate its safety profile and 
antidyskinetic properties. Besides proving its safety and 
tolerability, this study showed that only the 5 mg dose 
determined a significant improvement in dyskinesia (12% 
reduction in maximum LID severity) as compared with 
randomized placebo dosing.119 A multicenter Phase II, 
randomized, double-blind, placebo-controlled crossover 
dose-finding study on eltoprazine safety, tolerability, and 
efficacy in LID (as measured by total UDysRS change) 
began in 2015 with an estimated enrollment of 60 partici-
pants, and was estimated to end in December 2017 
(ClinicalTrials.gov identifier: NCT02439125). However, 
the study’s recruitment status is currently listed as 
“unknown” and no results have been posted yet.

Buspirone, a 5-HT1A receptor agonist, weak D2 recep-
tor antagonist, and alpha-1 receptor agonist, is an 
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anxiolytic whose activity on serotonergic neurons has been 
exploited to test its efficacy in treating LID. In a study on 
7 patients with LID, buspirone administered at 10 mg 
twice daily determined a significant reduction in LID 
severity in 5 patients with more severe dyskinesia, but 
not in the remaining 2 patients with less severe 
dyskinesia.120 In a study in 3 patients with OFF-state 
dyskinesia post transplantation with dopamine-rich fetal 
mesencephalic tissue who displayed excessive serotoner-
gic innervation of the grafted striatum in neuroimaging 
analysis, the administration of buspirone significantly atte-
nuated dyskinesia, further supporting the serotonergic 
hypothesis of LID pathophysiology.121 A randomized, pla-
cebo-controlled, double-blind, two–period crossover phase 
I study (ClinicalTrials.gov identifier: NCT02589340) 
began in 2015 to test the efficacy of combination therapy 
with buspirone and amantadine on LID. The study is 
enrolling participants 18 to 99 years of age with mild 
dyskinesia treated with amantadine (200–500 mg/day) 
with insufficient benefit on LID and will randomize them 
to placebo or buspirone titrated to 30 mg/day over 2 
weeks. The primary outcomes are area under the curve 
measurements for dyskinesia for a 6-hour L-dopa dose 
cycle, total UDysRS change after 6 weeks, and adverse 
events monitoring. The study’s estimated primary comple-
tion date is December 2020 and is currently listed as 
“active, not recruiting” on ClinicalTrials.gov.

Building on buspirone’s potential for LID treatment, 
a new drug, JM-010, was developed by Contera Pharma 
and combines buspirone’s agonist properties on 5-HT1A 
receptors with zolmitriptan’s 5-HT1B/5-HT1D agonist 
properties. JM-010 was shown to be effective in improv-
ing dyskinesia in the 6-OHDA rat model. A previous 
phase IIa/proof-of-concept study in 30 PD patients with 
LID in South Africa met the criteria for efficacy and safety 
(ClinicalTrials.gov identifier: NCT02439203). A phase II 
randomized, double-blind, double dummy, placebo- 
controlled parallel group study (ASTORIA study) 
(ClinicalTrials.gov identifier: NCT03956979) sponsored 
by Contera Pharma is currently ongoing to study the 
efficacy of two dose levels of JM-010 (4 mg 
buspirone/0.8 mg zolmitriptan and 8 mg 
buspirone/0.8 mg zolmitriptan) as compared with placebo 
in PD patients 18 to 80 years of age on a stable L-dopa 
regimen experiencing stable peak-dose dyskinesia (at least 
1 hour of ON-state LID). The primary outcome is total 
UDysRS score over 12 weeks. The study is currently listed 
as “recruiting” and should end in 2022.

Building on the results of a preclinical study in the 
6-OHDA lesioned rat,122 Meloni et al carried out a phase 
IIa randomized, double-blind, placebo-controlled cross-
over study to assess the efficacy of the serotonin precursor 
5-hydroxytryptophan (5-HTP) in treating LID in PD 
patients.123 The study enrolled 12 participants with LID 
and motor fluctuations randomized to 50 mg of 5-HTP or 
placebo for 16 weeks in a crossover design over a period 
of 4 weeks and showed a significant improvement in 
dyskinesia as assessed by UDysRS and UPDRS part IV 
scores, with no modifications in motor performance as 
measured by UPDRS part III. The authors hypothesized 
two antidyskinetic mechanisms for 5-HTA: i) competition 
between increased intracellular 5-HTP-derived serotonin 
and L-dopa-derived dopamine for storage in serotonin 
synaptic vesicles, leading to a reduction in uncontrolled 
dopamine release from serotonergic neurons; ii) activation 
of serotonin autoreceptors resulting in a reduced serotonin 
neuron firing rate.

D3 Receptor Antagonists
The potential use of D3 receptor antagonists in LID treat-
ment is supported by studies showing increased D3 recep-
tor expression in the striatum of animals with LID 
chronically treated with L-dopa (see Pathophysiological 
Mechanisms of LID).39,124

Mesdopetam (IRL-790), developed by Integrative 
Research Laboratories, is a preferential dopamine D3 
receptor antagonist with psychomotor stabilizing 
properties.125 A phase Ib study with mesdopetam as an 
adjunct treatment to regular antiparkinsonian medication 
in 15 PD patients experiencing peak-dose dyskinesia 
showed a median UDysRS score reduction of 11.5 points 
vs placebo.126 In 2019, a randomized, double-blind, pla-
cebo-controlled, multicenter phase IIa study on the efficacy 
and tolerability of mesdopetam was carried out in 74 PD 
patients with LID on stable antiparkinsonian medication 
(ClinicalTrials.gov identifier: NCT03368170). The study 
showed a meaningful reduction in LID severity as assessed 
by UDysRS, UPDRS part IV, and patient-reported diaries 
(Hauser diaries), and no side effects were reported. A larger 
phase IIb/III randomized, double-blind, placebo-controlled 
study (ClinicalTrials.gov identifier: NCT04435431) began 
in November 2020 to investigate the efficacy of mesdope-
tam (three dose groups) vs placebo in 140 PD patients with 
LID. The primary outcome measure was the change in 
average daily hours of ON time without troublesome dys-
kinesia as assessed by 24-hour patient home diaries from 

Journal of Experimental Pharmacology 2021:13                                                                                    http://doi.org/10.2147/JEP.S265282                                                                                                                                                                                                                       

DovePress                                                                                                                         
477

Dovepress                                                                                                                                                Fabbrini and Guerra

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


baseline to the end of treatment (week 12). The study’s 
estimated completion date is January 2022.

Other Targets
Pridopidine is a molecule originally developed for the treat-
ment of Huntington’s disease (HD) that has a high affinity for 
the σ1 receptor and a moderate-to-low affinity for other 
central nervous system receptors, including D2, D3, σ2, 
adrenergic α2A and α2C, 5-HT1A, 5-HT2A, and 5-HT7 
receptors. In a study in 6-OHDA lesioned mice, pridopidine 
administration determined neuroprotective effects on dopa-
minergic cell bodies and increased dopaminergic fiber den-
sity in the striatum and striatal upregulation of several growth 
factors.127 In a further study in the MPTP macaque model of 
PD with LID, pridopidine determined a significant reduction 
in dyskinesia (71% reduction), reduced ON time with dis-
abling dyskinesia, and no change in the antiparkinsonian 
benefit of L-dopa administration.128 Since safety and toler-
ability were established in previous studies in HD 
patients,129,130 a phase II randomized, double-blind, placebo- 
controlled study was carried out to assess the efficacy, safety, 
and pharmacokinetics of pridopidine (in 2 dose regimens) vs 
placebo for the treatment of LID in PD patients 
(ClinicalTrials.gov identifier: NCT03922711). The trial is 
currently listed as “terminated” due to Covid-19 issues after 
enrolling 23 of the originally estimated 135 participants, and 
no results have been posted.

Zonisamide, an antiepileptic drug with inhibitory activity 
on voltage-gated sodium channels, T-type calcium channels, 
MAO-B and carbonic anhydrase and with enhancing proper-
ties on GABA receptor activity, has previously proved its 
efficacy in treating wearing-OFF symptoms,131 and is cur-
rently approved for the treatment of motor fluctuations in 
Japan. Zonisamide efficacy in treating LID has been investi-
gated in preclinical studies carried out in 6-OHDA rat and 
mouse models of PD, showing improving and detrimental 
effects on LID, respectively.132,133 A randomized, Phase IV, 
12-week open-label pilot study investigating zonisamide tol-
erability and efficacy in treating LID has currently passed its 
completion date and has not been recently updated 
(ClinicalTrials.gov Identifier: NCT03034538).

In 2017, Laloux et al carried out a study in chronic MPTP 
lesioned mice and acute 6–OHDA lesioned rats to assess the 
feasibility and efficacy of continuous intracerebroventricular 
(ICV) dopamine administration on motor function. ICV 
dopamine administration can be performed through an 
abdominal pump connected by a subcutaneous catheter to 
the lateral ventricle, close to the lateral striatum. Previous 

preclinical and human attempts to administer dopamine this 
way had failed as a result of dopamine oxidation causing 
excessive oxidative stress or dopamine metabolism and 
tachyphylaxis.134–136 The study by Laloux used an anaerobic 
dopamine preparation (A-dopamine) to reduce oxidative 
stress and programmable pumps to minimize tachyphylaxis. 
The study showed that A-dopamine effectively restored 
motor function in preclinical animal models without indu-
cing tachyphylaxis or motor complications, such as dyskine-
sia, and had a broader therapeutic index than peripheral 
L-dopa treatment. Furthermore, in the MPTP mouse model, 
A-dopamine induced a dose-dependent increase in nigros-
triatal dopaminergic neurons that was not evident with either 
O-dopamine (aerobically prepared dopamine) or peripheral 
L-dopa.137,138 Based on these results, a proof-of-concept 
phase I/IIb study of continuous ICV A-dopamine administra-
tion, with a 1-month phase I trial to assess safety and feasi-
bility and a subsequent 2-month, phase IIb, single-blind, 
randomized crossover study to assess efficacy on motor 
fluctuations, including LID, over optimized oral treatment 
began in September 2020 (ClinicalTrials.gov identifier: 
NCT04332276). The study will enroll 20 participants and 
the primary outcome measure is the percentage of time that 
bradykinesia, as measured by actimetry, exceeds 
a prespecified target (26). The study is currently listed as 
“not yet recruiting” and should end in 2023.

Discussion and Concluding Remarks
Pharmacological treatment of LID is a major challenge in 
PD patients. First, LID is a complex clinical phenomenon 
characterized by a combination of choreic and dystonic 
abnormal movements in different body parts, with specific 
features linked to each L-dopa cycle. A significant limita-
tion in many clinical trials is that LID assessment has often 
been based on patient self-assessment diaries. However, 
PD patients may not be completely aware of LID, and 
therefore data collected through self-assessment question-
naires may be biased.139 An important step to overcome 
this limitation has been the introduction and validation of 
the UDysRS, a new LID rating scale that is now increas-
ingly used in clinical trials. UDysRS, indeed, has four 
parts and part III and IV consist in the objective evaluation 
by the researcher of LID severity and related disability, 
thus excluding possible biases due to the patient’s subjec-
tive perceptions. Importantly, the objective sections of 
UDysRS have demonstrated high internal consistency 
and good inter- and intra-rater reliability.111 However, 
because different pathophysiological substrates possibly 

http://doi.org/10.2147/JEP.S265282                                                                                                                                                                                                                                     

DovePress                                                                                                                                         

Journal of Experimental Pharmacology 2021:13 478

Fabbrini and Guerra                                                                                                                                                Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


underlie dyskinesia, the drugs tested for LID treatment 
may be effective for only a specific type of dyskinesia 
(eg, for peak-dose dyskinesia, not onset- or end-of-dose 
dyskinesia). Finding the right drug for LID is also proble-
matic since LID pathophysiology is complex and may 
involve several neurochemical pathways and neurophysio-
logical mechanisms.

To date, pharmacological possibilities to reduce LID in PD 
patients include a few indirect and only two direct approaches. 
Indirect approaches are based on the idea that replacing pulsa-
tile exogenous administration of L-dopa by strategies possibly 
mimicking physiological tonic dopaminergic stimulation of 
nigrostriatal pathways prevents the synaptic alterations and 
abnormalities in multiple neurotransmitter systems that con-
tribute to LID pathophysiology.140,141 The administration of 
extended-release dopamine agonists, and particularly the early 
use of systems allowing continuous dopaminergic drug deliv-
ery, including subcutaneous apomorphine and intrajejunal 
L-dopa infusion, has demonstrated to be effective in attenuat-
ing blood L–dopa peaks and produced relatively good results 
on LID.142–146 Multicenter trials using intrajejunal L–dopa 
infusion, for instance, showed a significant increase in the 
ON time without troublesome dyskinesia (2–4 hours) and 
decrease in the ON time with troublesome dyskinesia (≈2 
hours) at both short term and long term.144,147,148 Future 
approaches for continuous L-dopa delivery in the brain may 
include the use of viral vectors. In a recent proof-of-principle 
study, an adenovirus-associated vector was applied to deliver 
two L-dopa synthesizing enzymes in the striatum of parkinso-
nian monkeys, and this treatment determined a significant 
improvement in motor functions without pro-dyskinetic 
effects.149 Based on clinical data showing a direct correlation 
between the risk of LID development and the total amount of 
L-dopa intake,150 another strategy consists in reducing the 
daily L-dopa dosage using L-dopa-sparing pharmacological 
(ie, combination of low L-dopa doses with non-dopaminergic 
therapies) and non–pharmacological interventions (ie, deep 
brain stimulation).13,22,151–153

Regarding direct approaches, the only drugs currently 
approved for LID treatment are amantadine and 
clozapine.13 Amantadine demonstrated moderate antidys-
kinetic effects in clinical studies,104,154 but achieving LID 
improvement usually requires high doses, which can 
induce relevant side effects (eg, confusion, hallucinations, 
peripheral edema, livedo reticularis, and dizziness).154 

Clozapine is an atypical neuroleptic with anti- 
dopaminergic, anti-serotonergic, anti-muscarinic, and anti- 
adrenergic properties.155 However, despite the fact that 

a double-blind placebo-controlled study conducted in 50 
patients demonstrated positive results,156 clozapine’s 
safety profile is affected by the risk of serious adverse 
events, such as agranulocytosis.

LID treatment therefore remains an unmet need in PD 
patients. Based on the experimental data reported in this 
review, promising drug candidates are mainly directed at 
modulating altered glutamatergic and serotoninergic neu-
rotransmission. However, although pharmacological stu-
dies using allosteric modulators of metabotropic 
glutamate receptors and 5-HT1 agonists produced positive 
results in animals, the majority of recent clinical trials in 
patients showed no or minimal LID improvement. 
Moreover, regarding compounds with 5-HT1 agonist prop-
erties, the possibility for an additional worsening of motor 
function ascribable to a global reduction in dopamine 
availability should be considered.157 Notably, none of the 
therapies currently under investigation (apart from 
extended-release amantadine) reached a phase III clinical 
trial.

We believe that further research is needed to clarify 
neurophysiological and neurobiological LID substrates, 
including whether and to what extent abnormalities in 
different neurotransmitter systems interact with each 
other. This would possibly determine the discovery of 
new altered mechanisms to target. However, beyond 
researching new potential targets for attenuating LID, we 
believe that future studies should clarify the reason for the 
discrepancy between the positive results in animals and 
negative results in human clinical trials. One possibility 
could be that placebo effects in PD patients may mask the 
efficacy of drug candidates due to the strong beneficial 
effects observed in placebo groups.158 In addition, most 
clinical trials reviewed in Experimental Pharmacological 
Therapies for LID in PD Patients involved a relatively 
small number of participants, and weak, though signifi-
cant, effects may have been lost. Finally, since LID patho-
physiology includes abnormalities in multiple 
dopaminergic and non-dopaminergic pathways, normaliz-
ing alterations in a single system could be insufficient to 
determine clinically relevant effects on LID in humans. In 
this regard, an interesting study in MPTP-treated monkeys 
showed that eltoprazine and amantadine act synergistically 
to counteract LID, and the combination of these drugs 
determined a marked increase in ON time without LID.79 

Future clinical trials may test whether using a combination 
of (potentially effective) drugs acting on different 
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neurotransmitter systems determines a strong and reliable 
LID reduction in PD patients.
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