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Purpose: Antimicrobial resistance, especially carbapenem resistance Enterobacteriaceae and 
plasmid mediated mobile colistin resistance, is a serious issue worldwide. This study was 
designed to determine the epidemiological characteristics of plasmid mediated colistin resistance 
and carbapenem resistant Enterobacteriaceae from tertiary A hospital located in Hefei, China.
Methods: Totally, 158 carbapenems resistant Enterobacteriaceae (CRE) were screened for 
antibiotic susceptibility, mcr-1, extended spectrum β-lactamases (ESBLs), metallo-β- 
lactamases (MBLs), and fosfomycin resistance genes using PCR and sequencing. The 
sequence types were identified by multilocus sequence typing (MLST). Plasmid profiles 
were determined by PCR based replicon typing (PBRT), and the plasmid sizes were 
confirmed by southern blotting.
Results: The isolates showed high MIC50 and MIC90 for all antimicrobials, except tigecycline, 
meropenem, and colistin. The main Carbapenemase genes were blaKPC-2 (90.5%), blaNDM-1 

(3.7%), blaOXA-48(5.6%) and fosA3 (14.5%). The blaCTXM-15 found 36.7%, mcr-1 (3.7%) 
recorded in six isolates. PBRT revealed blaKPC-2 in K. pneumoniae on IncR, IncFII, and 
IncA/C. blaNDM-1 in E. coli on IncFII, whereas in E. cloacae noticed on IncHI2 plasmid. mcr- 
1 was recorded among IncFIIK, IncFII, and IncF in E. coli, K. pneumoniae, and E. cloacae. 
Resistance genes (mcr-1, blaNDM-1, blaKPC-2) harboring plasmids are successfully trans- 
conjugant to EC-600. A high incidence of ST11 was observed in K. pneumoniae carbapenem 
resistant isolates. While in E. coli, multiple STs were identified. However, mcr-1 in ST23 was 
identified for the first time in Anhui Province. Among Enterobacter cloacae, ST270 detected 
carrying blaNDM-1. Southern-hybridization confirmed the plasmid sizes 35–150kb.
Conclusion: This study indicates the co-carrying of mcr-1, blaKPC-2, and blaNDM-1 among 
clinical isolates, the prevalence of different Enterobacteriaceae STs is alarming, especially in 
E. coli. Holding such a resistance profile is a threat for humans and animals, which may be 
transferred between the strains through plasmid transfusion. Persistent control actions are 
immediately necessary to combat this hazard.
Keywords: ESBL, MBL, KPC2, mcr-1, NDM-1, CTXM-15

Introduction
The extensive practice of carbapenems in medical treatment and colistin in animal farms 
has intensified severe community health problems.1 Carbapenem resistant 
Enterobacteriaceae (CRE) comprises various types of bacteria, and each one has its 
mechanism of drug resistance.2 Counting them, the K. pneumoniae carbapenem resis-
tance accounts for about sixty percent, followed by Escherichia coli and Enterobacter 
cloacae.3,4 With carbapenemases, blaKPC-2 and blaNDM-1 are the maximum predominant 
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ones in the K. pneumoniae and carbapenem resistant E. coli, 
respectively.5,6 Even the latest research reports indicate the 
spread of multiple resistance determinants in a single strain.7,8 

Worldwide colistin usage in veterinary farms may increase to 
67% by 2030, estimated mostly by BRICS (Brazil, Russia, 
India, China, and South Africa). Significant and severe farm-
ing processes are essential to increase income and animal 
protein utilization.9 Colistin is another last therapeutic option 
to combat infectious diseases caused by gram negative multi-
drug resistant bacilli.10

The rising mobile colistin resistant gene mcr-1 encodes 
phosphoethanolamine transferase, vital community health 
problem,11 after its initial discovery in china, the global 
research reports on mcr-1 propagates. Different 
Enterobacteriaceae species carrying the mcr-1 gene on various 
plasmids have been reported in clinical and veterinary bacter-
ial isolates in Europe, Asia, Africa, South, and North 
America.12 Many countries reported the co-occurring of 
mcr-1 with many other resistance genes, especially with 
blaKPC-2 and blaNDM-1 in clinical settings and veterinary 
livestock.13 The reports mainly show more than two carbape-
nem determinants in a single plasmid, thus alarming us for 
their plasmid nature transmission.

On the other hand, the information on these antimicro-
bials’ susceptibilities on CRE plus colistin are still incom-
plete. The complete and accurate epidemiological 
scientific information of each region is critical and essen-
tial for future points of view and the proper identification 
of each resistive determinant. Our study’s main aim is to 
investigate comprehensive and precise epidemiological 
scientific information of colistin plus carbapenem resis-
tance Enterobacteriaceae.

Overall, in our investigation, 158 carbapenem resistant 
Enterobacteriaceae (CRE) samples were received from 
a tertiary A hospital in Hefei, Anhui province, China. To 
find the epidemiological characteristics of CRE, we per-
formed the antibiotic susceptibility, identification of resistant 
variants, multilocus sequence typing (MLST), PCR-based 
replicon typing (PBRT) of resistant determinants, pulse 
field gel electrophoresis (PFGE), and southern blot 
hybridization.

Materials and Methods
Samples Collection Identification and 
Study Design
To identify the spread of CRE, especially with mobilized 
colistin resistance gene mcr (1–5) among medical isolates. 

We performed a study in a tertiary A hospital, strains 
collected from March 2018 to April 2019. One hundred 
fifty-eight samples, including sputum (n=95), urine 
(n=43), wound (n=12), and blood (n=8), were collected 
from the first affiliated hospital of USTC in Hefei Anhui 
province, China. The bacterial models include 
K. pneumoniae (n=88), E. coli (n=38), E. cloacae 
(n=26), and Serratia marcescens (n=6). All the isolates 
were grown on MacConkey agar at 37°C overnight. The 
next morning the single colony was selected from 
MacConkey agar plate and grown on Luria-Bertani (LB) 
broth 10–12 hours or overnight to identify specific bacteria 
16s rRNA gene was screened from LB broth and 
sequenced. Sequencing data were then analyzed by using 
BLAST (www.ncbi.nlm.nih.gov/blast) and (www.ezbio 
cloud.net).

Antimicrobial Susceptibility Testing
Seventeen different antibiotics were used for the antimi-
crobial susceptibility testing. Antibiotics included are ami-
kacin (AMK), ampicillin (AMP), aztreonam (ATM), 
ceftriaxone (CRO), cefuroxime (CXM), ceftazidime 
(CAZ), ciprofloxacin (CIP), cefazolin (CFZ), ertapenem 
(ETP), gentamicin (GEN), imipenem (IPM), levofloxacin 
(LVX), cefepime (FEP), cefotaxime (CTX), meropenem 
(MEM), tigecycline (TGC), and colistin (CST). The 
broth microdilution method (BMDM) was used to test all 
of them. The clinical and Laboratory Standards Institute 
(CLSI 2019) recommendations were followed for result 
interpretation.13 As the breakpoint value of colistin is 
missing in CLSI. We consider the European Committee’s 
breakpoint value on Antimicrobials Susceptibility Testing 
(EUCAST) (www.eucast.org) colistin greater than 2μg/ 
mL. For carbapenem, the breakpoint value was described 
as a MIC of ≥ 4 μg/mL.

Detection of Antibiotic Resistant Genes 
(ARGs)
The boiling method was performed for the extraction of 
bacterial DNA templates.14 Colistin resistant genes for 
the detection were included mcr (1–5), Carbapemases 
genes for detection were (bla KPC, blaAIM, blaOXA, 
blaDIM, blaNDM, blaGIM, blaSIM, blaSPM, blaVIM, 
blaIMP, and blaGES). Extended-spectrum genes were 
included (blaCTX, blaTEM, blaSHV, blaVEB, and blaPER) 
according to the protocols defined previously.15–17 The 
amplified PCR results were directed for sequencing to 
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General Biosystems Co., Ltd. (Hefei-China), and the 
sequencing data was then analyzed and confirmed by 
using BLAST (www.ncbi.nlm.nih.gov/blast).

Multilocus Sequence Typing (MLST)
Carbapenem resistant K. pneumoniae STs were identified by 
MLST, with the screening of seven house-keeping genes 
comprising (gapA, mdh, pgi, infB, phoE, rpoB, and tonB), 
and were sequenced as defined previously.18 The sequencing 
data was analyzed by the Pasteur online database (www.pas 
teur.fr/mlst/Kpneumoniae.html). For the identical and proper 
alleles sequence type identification of E. coli, the seven house- 
keeping genes used were (adk, gyrB, icd, mdh, fumC, purA, 
and recA), and the data was analyzed by https://bigsdb.pasteur. 
fr/Ecoli/ecoli.html. The MLST database (http://pubmlst.org/ 
Ecloacae/) was used to identify E. cloacae sequence types. 
The essential seven genes of E. cloacae screened and 
sequenced from the E. cloacae colony were (dnaA, gyrB, 
leuS, fusA, pyrG, rplB, and rpoB).

PCR Based Replicon Typing (PBRT)
Among the CRE, the incompatibility of plasmid groups 
and the plasmid of colistin resistant determinants were 
identified by performing PCR-based replicon typing 
(PBRT). KIT 2.0 (DIATHEVA, Italy) was used for the 
identification of thirty different plasmids; IncHI1, 
IncHI2, IncI1, IncI2, IncX1, IncX2, IncX3, IncX4, 
IncL, IncFIIs, IncFIIk, IncFIB-KN, IncFIB-KQ, IncW, 
IncY, IncP1, IncA/C, IncM, IncN, IncFIA, IncFIC, 
IncFII, IncB/O, IncT, IncK, IncU, IncR, IncHIB-M, 
IncFIB-M, and IncFIB were used according to the 
protocol.19

Conjugation Experiment
To investigate the transferability of resistance determi-
nants, six mcr-1 resistant strains (2 K. pneumoniae, 2 
E. cloacae, and 2 E. coli), six blaNDM-1 (4 E. cloacae 
and 1 K. pneumonia and 1 E. coli), and six blaKPC-2 

K. pneumoniae resistant strains were selected as 
donors. The recipient bacteria used for conjugation 
assays was EC-600 (NalR, RifR), according to the pro-
tocol as previously defined.20 Confirmation of trans- 
conjugants was done by antimicrobial susceptibility 
followed by PCR band recognition and finally con-
firmed by PBRT.

Pulsed Field Gel Electrophoresis (PFGE) 
and Southern Hybridization
To find the genomic similarity and identify the position of 
transmissible mcr-1, blaKPC-2, and blaNDM-1, isolates were 
categorized by S1-PFGE and southern hybridization 
through a specific probe of mcr-1, blaKPC-2, and 
blaNDM-1. S1 nuclease was used to digest each genome 
and then examined through PFGE as described 
previously.21 According to the manufacturer’s directions, 
southern hybridization of plasmid DNA was accomplished 
with a digoxin-labeled mcr-1, blaKPC-2, and blaNDM-1 

specific probe (Roche Diagnostics, Mannheim, 32 
Germany) as previously described.22

Results
Bacterial Isolation and Antimicrobial 
Susceptibility
The clinical isolates were collected from various depart-
ments, including 51/158 (32.27%) high prevalence 
recorded in the respiratory unit, 37/158 (23.4%) collected 
from intensive care unit ICU, 23/158 (14.55%) from the 
urinary surgery department, 17/158 (10.75%) from neuro-
surgery, 10/158 (6.32%) from gerontology, 9/158 (5.69%) 
from pediatric, 7/158 (4.43%) from orthopedic and 4/158 
(2.53%) from oncology, and the distribution of each bac-
terial species among the collected samples are listed in the 
(Supplemental Figure 1). Overall, 158 different bacterial 
strains were collected from the First Affiliated Hospital of 
USTC. All the samples were observed to be carbapenem 
and colistin non-susceptible by phenotypic approach. The 
frequency rate of each strain found was K. pneumoniae 88/ 
158 (55.7%), E. coli 38/158 (24%), E. cloacae 26/158 
(16.45%), and S. marcescens 6/158 (3.79%) 
(Supplemental Table 1). The high frequency was observed 
in sputum 95/158 (60.12%), followed by urine 43/158 
(27.21%), wound 12/158 (7.59%), and blood was 8/158 
(5.06%) (Supplemental Figure 2). The antimicrobial sen-
sitivity testing for all collected isolates was performed by 
broth microdilution method against 17 Antibiotics, in 
which tigecycline was detected as the most susceptible 
drug having a sensitivity of 93%. Likewise, the resistivity 
against the meropenem and colistin were 78.8% and 
43.2%, respectively. The sensitivity and resistivity profile 
for all 17 drugs against collected strain and their MIC 
values are presented in Table 1.
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Prevalence of Resistance Determinants in 
K. pneumoniae, E. coli, E. cloacae, and 
S. marcescens
The prevalence of K. pneumoniae resistant determinants is 
shown in (Table 2). In 84/88 (95.4%), a high prevalence of 
serine β-lactamases, producing K. Pneumoniae 

Carbapenemases blaKPC-2 has been observed alone or in 
combination with blaCTX-M-15 (47.7%), fosA3 (14.77%), 
blaOXA-48 (3.4%), and colistin resistant mcr-1 (2.2%). 
Overall among the CRE, the prevalence rate of the 
blaKPC-2 gene was 90.5%.

Concerning the E. coli isolates, the prevalence of 
blaKPC-2 was 89.4%, combined with the ESBL 
blaCTX-M-15 encoding gene 15.7%. In two E. coli iso-
lates, mcr-1 was caught in 56 and 57 years old male 
and female urine samples. fosA3 and blaOXA-48 were 
observed in four isolates, respectively. The combina-
tion of mcr-1 and blaKPC-2 found 10.56% in E. coli.

Regarding E. cloacae, the prevalence of blaKPC-2 was 
detected at 84.6%. blaKPC-2 plus blaNDM-1 saw 15.3%, 
a combination of blaCTX-M-15 and blaKPC-2 noted 30.70%. 
Six isolates confirming the presence of fosA3, and two 
isolates have blaOXA-48. Two mcr-1 detected in a 77 
years old male blood sample and 68 years old female 
sputum sample. Enterobacter cloacae possess the mcr-1 
plus blaKPC-2 remarked 7.6%.

Three isolates of S. marcescens carry blaKPC-2 determi-
nant, respectively, and two of them combined with 
blaCTX-M-15, genes which are spotted in our article are 
listed in (Supplemental Table 2).

Multilocus Sequence Typing (MLST)
A high incidence of ST11 was observed in all isolates of 
CRKP, while in case of E. coli the sequence types noticed 
were ST69 (n=4), ST131 (n=3), ST1193 (n=3), ST12 
(n=1), ST46 (n=1), ST57 (n=1), ST1196 (n=1), ST38 
(n=1), ST95 (n=1) and ST23 (n=1). Among the 
Enterobacter cloacae, ST270 was detected only, and the 
result shown in Table 3.

Table 1 Representing MICs

Antibiotics Mic50 Mic90 Range (µg/mL) %R %S

Amikacin >128 >128 1–128 75.9 24.1

Ampicillin >128 >128 1–128 86.1 13.9

Aztreonam >128 >128 1–128 92.4 7.6

Ceftazidime >32 >32 0.25–32 78.9 21.1

Ciprofloxacin >8 >8 0.06–8 45.3 54.7

Ceftriaxone >32 >32 0.25–32 84 16

Cefotaxime >32 >32 0.25–32 86.3 13.7

Cefuroxime >64 >64 0.5–64 71.4 28.6

Cefazolin >64 >64 0.5–64 73.8 26.2

Ertapenem >32 >32 0.5–32 87.5 12.5

Cefepime >32 >32 0.5–32 91 9

Gentamicin >128 >128 1–128 77 23

Imipenem >16 >16 0.125–16 69 31

Levofloxacin >16 >16 0.125–8 61 39

Meropenem >16 >16 0.125–16 78.8 21.2

Tigecycline 0.5 1 0.125 7 93

Colistin 4 8 1–128 43.2 56.8

Table 2 Distribution of Antibiotic Resistance Genes (ARGs)

Resistant Determinants K. pneumonia 
(n=88)

E. coli  
(n=38)

E. cloacae  
(n=26)

Serratia marcescens 
(n=6)

blaKPC-2 (n=143) 84 34 22 3

blaNDM-1 (n=6) 1 1 4 -

blaOXA-48 (n=9) 3 4 2 -

FosA3 (n=23) 13 4 6 -

mcr-1 (n=6) 2 2 2 -

blaCTXM-15 (n=58) 42 6 8 2
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Plasmid Replicon Typing (PBRT)
Among 158 CRE isolates, seven different types of plasmid 
replicons were detected. K. pneumoniae carrying IncFIIK, 
IncFII, IncA/C, and IncR were found in blaKPC-2 positive 
isolates, while mcr-1 producers among K. pneumoniae 
were detected on IncFIIk and IncFII. Enterobacter cloacae 
were carrying blaNDM-1 on IncHI2, whereas mcr-1 on IncF 
and IncFIIK. E. coli took mcr-1 on IncF type replicon 
however, blaNDM-1 on IncFII. The complete profile is 
listed in Table 3.

Conjugation
We performed a conjugation experiment for all resistance 
genes to detect resistance genes’ transformability harbor-
ing plasmids (mcr-1, blaNDM-1, blaKPC-2). Harboring plas-
mids are successfully trans-conjugant to EC-600 (NalR, 
RifR). The conjugation was confirmed by PCR-based repli-
con typing (PBRT) of the trans-conjugants, and the result 
was mention in Table 3. For further conformation, the 
resistance genes (mcr-1, blaNDM-1, blaKPC-2) specific 

plasmid PCR were performed, and the gene was detected 
in trans-conjugants.

S1-PFGE and Southern Blot
S1-PFGE further confirmed that all the strains have several 
plasmids, varying in size and ranging from 35kb-150kb 
(Supplemental Figures 3-5). Southern blotting confirmed 
that the mcr-1, blaKPC-2 and blaNDM-1 genes regained from 
these isolates were located on the given six dissimilar 
plasmid types, as shown in Table 3.

Discussions
The present article focuses on the incidence of mcr-1 
combined with other β-lactamases resistance genes, espe-
cially with blaKPC-2, blaNDM-1, and blaCTX-M in E. coli, 
K. pneumoniae, Serratia marcescens, and Enterobacter 
cloacae, and previously stated by many countries.23–25,26 

We specified information on the antibiotics resistance pro-
files, STs, plasmid replicons profiles, PFGE, and southern 
blotting of strains having mcr-1, blaKPC-2, and blaNDM-1. 

Table 3 Distribution of Plasmid Replicons, STs, and Resistant Genes of Eighteen Bacterial Strains

Sample Plasmid/PBRT Trans-Conjugants Size (kb) STs Strain Resistant Genes

S153 IncFIIk(148bp) + 70 ST11 K. pneumonia mcr-1

S39 IncFII (292bp) + 35 ST11 K. pneumonia mcr-1

S08 IncFII(292bp) + 35 ST270 E. cloacae mcr-1

S05 IncFIIk(631bp) + 120 ST270 E. cloacae mcr-1

S319 IncF (683bp) + 70 ST131 E. coli mcr-1

S47 IncF(683bp) + 70 ST23 E. coli mcr-1

S19 IncFII (288bp) + 70 ST23 E. coli blaNDM-1

S30 IncFII (288bp) + 70 ST1196 E. coli blaNDM-1

S168 IncHI2 (308bp) + 120 ST270 E. cloacae blaNDM-1

S69 IncHI2 (308bp) + 120 ST270 E. cloacae blaNDM-1

S194 IncHI2 (308bp) + 120 ST270 E. cloacae blaNDM-1

S74 IncHI2 (308bp) + 120 ST270 E. cloacae blaNDM-1

S29 IncR(248bp) + 100 ST11 K. pneumonia blaKPC-2

S13 IncFII(288bp) + 35 ST11 K. pneumonia blaKPC-2

S25 IncA/C (418bp) + 50 ST11 K. pneumonia blaKPC-2

S103 IncFII(288bp) + 35 ST11 K. pneumonia blaKPC-2

S137 IncFIIk(631bp) + 70 ST11 K. pneumonia blaKPC-2

S149 IncFII(288bp) + 35 ST11 K. pneumonia blaKPC-2
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As far as we know, this report is the initial article associat-
ing the carriage of mcr-1 with blaKPC-2, blaNDM-1, and 
blaCTX-M among the CRE in clinical settings from Anhui 
province, China.

The extensive use of colistin in livestock is mainly 
attributed to the spread of colistin resistance determined 
mcr-1, threatening the worldwide distribution of colistin 
efficiency. The rise of mcr-1, mostly in E. coli and 
K. pneumoniae, is of specific concern. To control the 
spread of colistin resistance from May 1, 2017, the china 
government banned colistin in livestock.27,28 Many reports 
in china have previously reported the dissemination of 
mcr-1 mainly associated with animal origin. Cong Shen 
reported a study29 on the prevalence of mcr-1 from animal 
origin pigs 308/684 (45%), and the plasmids carrying was 
reported in IncX4, IncI2, and IncHI2. Another study by 
X-Zhang reported30 a very high prevalence of colistin 
resistance in Jiangsu province, associated with animal 
origin pigs 303/440 (68.86%), chickens 388/443 (87.5%), 
and cattle’s 30/42 (71.43%). A study conducted by Liu 
et al31 on clinical samples in five different china provinces 
reported 16/1322 (1%) mcr-1 in human hospitalized 
patients. In our study, the dissemination of mcr-1 is 6/ 
158 (3.79%), a little higher than previously reported. The 
possible reason for the difference between positive isolates 
in clinical and animal settings is that mcr-1 mediated 
colistin resistance started in the animal’s origin and suc-
cessively extend to humans. The use of colistin in hospital 
settings is infrequent but still the best option of treatment 
for CRE infections.

In the production of livestock and poultry animals, 
china is the world’s leading country. In 2014 china only 
produces 56.7 million tons of poultry and 17.5 million tons 
of pigs, 90% of the production was use internally, and 
about 10% for export. The prices of veterinary medicines 
rise from $20.1 billion in 2011 to $43 billion in 2019. In 
the agriculture sector, China is also the world’s largest 
country using colistin.31 The total requirement for colistin 
use in agriculture globally in 2015 was 11,942 tons per 
annum, with total revenue of $229.5 million and expected 
to rise 16,500 tons by the end of 2021 with a 4.75% annual 
growth rate. The top ten companies producing colistin, 
including eight from China, 73.1%, were produced in 
Asia, and 28.7% were transferred to Europe. To promote 
growth and health in fish farms, colistin sulphate com-
bined with other antibiotics in China’s use as a food 
diet31. Production of such a high level of colistin is 
directly proportional to the stress in the veterinary 

environment and provides a favorable condition for the 
strains having mcr-1.

The world’s topmost antimicrobials are utilized in 
china32 The high practice of antimicrobials may activate 
the rise of antimicrobial resistance AMR. Mainly resistance 
of β-lactam and colistin resistance reported worldwide.33–35 

Recently, plasmid mediated colistin resistant genes have 
been extensively exposed.36–43 We screened 158 MDR 
Enterobacteriaceae strains isolated from the First Affiliated 
Hospital of USTC in Anhui province for mcr-1 to mcr-5 in 
human clinical samples. The only mcr-1 gene was isolated 
in combination with blaKPC−2 and blaNDM-1. Our research 
project identifies the carriage rate of mcr-1 (6/158) in 
humans is not so high but primarily occurred in combina-
tion with other resistive genes. The frequency of β- 
lactamases is very high in our report supporting the data 
published previously.44 The frequency rate of mcr-1 in 
Enterobacteriaceae among the clinical strains is relatively 
low in many countries25 We are reporting the ratio of mcr-1 
(n=6) 3.7%, which is relatively high compared to other 
provinces. In Changsha, Hunan province, mcr-1 was 
noticed in three (2.1%) of the 144 E. coli clinical 
isolates.45 As compared with an animal origin, especially 
in pigs, the rate of mcr-1 is 75%, much higher than clinical 
findings.46

The extreme incidence of blaKPC-2, blaESBLs, and 
blaNDM-1, was reliable with the earlier reports,47 represent-
ing the common co-carrying of antimicrobials resistance 
genetic factor, which might prime to the development of 
deadly K. pneumoniae toxicities. Amongst them, the rela-
tively extreme occurrence of blaESBL with blaKPC-2 in 
our finding suggests critical intimidations to public health 
since several duplicates of blaCTX-M and blaKPC-2 within 
plasmids might be joined and circulated into the chromo-
some, the percentage of blaCTX-M-15 in our project is 
36.7% (58/158) which is relatively low as compared to 
previous reports published from many countries around 
the globe.48,49 In that situation, the rise of such isolates 
would be horizontally and vertically quicker inside clinics. 
Until now, the co-prevalence of blaCTX-M-15 and blaKPC-2 

was previously noted in K. pneumoniae.50 Primarily, we 
instigate a high occurrence of fosA3 (14.7%) plus blaKPC-2, 
producing K. pneumoniae. FosA3 has been testified to be 
chromosomally programmed by medically relevant Gram 
negative bacteria and enhances inherent fosfomycin resis-
tance, and the high prevalence reported previously.51 

Additionally, the reports showing that the extensive 
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dissemination of fosA3 directed that fosfomycin must be 
vigilantly consumed for handling CRKP diseases.52

Plasmids are extrachromosomal DNA, basically demon-
strating the main reservoirs for the horizontal spread of anti-
biotic resistance between microorganisms.53 So far, various 
plasmids have recognized the carrier for the incidence of 
carbapenemases in blaESBLs and blaMBLs.54 The excessive 
dominance of IncFII, IncFIIk, and IncR plasmid replicons in 
our report is aware of the importance of realizing antibiotics 
resistance observation since IncF type plasmids are intensely 
disseminated carriers for resistant causes in 
Enterobacteriaceae. In contrast, some studies stated the preva-
lence of blandm-1 on IncFII while the mcr-1 on IncX4 type 
plasmid was originating from animal reservoirs.55,56 

Furthermore, the IncR plasmid is a significant reservoir of 
many antibiotics resistance in Enterobacteriaceae isolates 
since the preserved IncR backbones contain the multidrug 
resistant (MDR) sequences.57 Furthermore, IncFIIk plasmids 
were described to be related to the mainstream of the antimi-
crobial resistance genes detected more frequently in our 
study.58

The extension of ST11 for the blaKPC-2 carrying 
K. pneumoniae was in the union as according to the earlier 
articles representing that, ST11 is the main epidemic clone 
among K. pneumonia.59 In our finding, to the best of our 
knowledge, we investigate for the first time the occurrence of 
multidrug resistant E. coli ST23, isolated from the 61 years old 
female carrying mcr-1, blaKPC-2, blaNDM-1 plus blaCTX-M-15. 
Generally, in our study, we experienced blaKPC-2 in different 
sequence types of Escherichia coli manly with blaCTXM or 
blaNDM-1, specifically blaKPC-2 plus blaNDM-1 in E. coli ST12 
and ST57 have not been reported previously from Anhui 
province. We also report the triple carrying of K. pneumoniae 
mcr-1, blaKPC-2 plus blaCTXM in ST11 on IncFIIk 70kb plas-
mid replicon and other mcr-1 on IncFII 35kb. Both of them are 
isolated from 61 years old female sputum samples and 80 years 
old female blood samples. A study done in Brazil on clinical 
isolates shows mcr-1 plus blakpc-2 in sequence type 392.60

As we report a high incidence of Multidrug resistance 
Enterobacteriaceae, we have a valuable suggestion. 
Awareness is needed while handling the resistance cases 
of blaESBLs, blaMBLs, and colistin. Alertness is needed 
in hospital settings and food producing animal farms 
because mcr-1, combined with other resistive genes, is 
a risk to human health. The animals transmit these resis-
tive determinants more frequently and thus might enter to 
human diet chain very quickly.

Conclusion
Our study indicates the high incidence of multidrug resistance 
Enterobacteriaceae, mcr-1 carrying with ESBL blaCTX-M-15 

and blaMBLs blaNDM-1, and blaKPC-2 clinical samples in 
Anhui China. Holding such a resistance profile is an excellent 
threat for humans and animals, which may be transferred 
between the same strains and other strains through plasmid 
transfusion. Need high vigilance for handling such resistive 
profiles to control the prevalence of such resistant genes and 
the future world’s life. The spread of blaKPC-2 in different 
sequence types of E. coli and the occurrence of blaNDM-1 in 
E. cloacae is alarming and painful, well organized, and persis-
tent control actions required that are immediately necessary.
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