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Abstract: Cancer is a large group of diseases and the second leading cause of death worldwide. 
Lung, prostate, colorectal, stomach, and liver cancers are the most common types of cancer in 
men, whereas breast, colorectal, lung, cervical, and thyroid cancers are the most common among 
women. Presently, various treatment strategies, including surgical resection combined with 
chemotherapy, radiotherapy, nanotherapy, and immunotherapy, have been used as conventional 
treatments for patients with cancer. However, the clinical outcomes of advanced-stage disease 
remain relatively unfavorable owing to the emergence of chemoresistance, toxicity, and other 
undesired detrimental side effects. Therefore, new therapies to overcome these limitations are 
indispensable. Recently, there has been considerable evidence from experimental and clinical 
studies suggesting that melatonin can be used to prevent and treat cancer. Studies have confirmed 
that melatonin mitigates the pathogenesis of cancer by directly affecting carcinogenesis and 
indirectly disrupting the circadian cycle. Melatonin (MLT) is nontoxic and exhibits a range of 
beneficial effects against cancer via apoptotic, antiangiogenic, antiproliferative, and metastasis- 
inhibitory pathways. The combination of melatonin with conventional drugs improves the drug 
sensitivity of cancers, including solid and liquid tumors. In this manuscript, we will comprehen-
sively review some of the cellular, animal, and human studies from the literature that provide 
evidence that melatonin has oncostatic and anticancer properties. Further, this comprehensive 
review compiles the available experimental and clinical data analyzing the history, epidemiology, 
risk factors, therapeutic effect, clinical significance, of melatonin alone or in combination with 
chemotherapeutic agents or radiotherapy, as well as the underlying molecular mechanisms of its 
anticancer effect against lung, breast, prostate, colorectal, skin, liver, cervical, and ovarian 
cancers. Nonetheless, in the interest of readership clarity and ease of reading, we have discussed 
the overall mechanism of the anticancer activity of melatonin against different types of cancer. 
We have ended this report with general conclusions and future perspectives. 
Keywords: melatonin receptors, antioxidant, antiangiogenic, anticancer, apoptosis, 
angiogenesis, metastasis, chemotherapy, combination therapy, molecular mechanisms

Introduction
The International Agency for Research on Cancer predicted that there were 
18.1 million new cancer cases and 9.6 million cancer deaths in 2018.1 Lung cancer 
is the most commonly diagnosed cancer and the leading cause of cancer death in both 
sexes, closely followed by female breast cancer. However, the degree of mortality 
depends on the degree of economic development and the associated social and life-
style factors of individual countries.2 Cancer is a major killer disease in both devel-
oping and developed countries. According to the American Cancer Society, in 2019, 
1,762,450 new cancer cases and 606,880 cancer deaths were predicted to occur in the 
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United States.3 Among various types of cancer, lung cancer 
is the most commonly diagnosed in both men and women, 
followed by breast cancer in women, prostate cancer, and 
colorectal cancer. Women are afflicted with breast cancer, 
which is the most commonly diagnosed cancer and the 
leading cause of cancer death, followed by colorectal and 
lung cancer.2 Childhood cancer is the second leading cause 
of death among children aged 1–14 years, and its rates have 
increased by 0.6% per year on average since 1975. There are 
several types of cancer, and several therapies are available, 
such as radiation, stem cell, chemo-, immuno-, hormone-, 
and targeted drug therapies. Currently, patients with cancer 
depend on clinical treatment, such as surgery, radiotherapy, 
and chemotherapy. In addition, some natural products have 
shown potential for the prevention and treatment of cancer.4 

Therefore, studies on cancer and anticancer therapies have 
attracted immense interest and attention in the clinical field.

Cancer cells have the following seven specific proper-
ties: 1) self-sufficiency in growth signals, 2) insensitivity to 
anti-growth signals, 3) evasion of apoptosis, 4) limitless 
replicative potential (the telomerase and telomere path-
way), 5) sustained angiogenesis, 6) tissue invasion and 
metastasis, and 7) genome instability.5,6 Generally, tumors 
are classified according to the differentiated part. However, 
few neuroendocrine tumor cells are found among dediffer-
entiated and anaplastic tumor cells; such cases are classified 
based on the origin of cells. These neuroendocrine cells are 
believed to be redifferentiated exocrine-derived tumor cells.7 

The features distinguishing malignant from benign 

(nonmalignant) tumors are well established, including 
rapid growth, increased cell turnover, invasive growth, 
metastases, and vascular or lymphatic channel invasion. 
Benign tumors show chromosome aberrations.8 In many 
tumors classified as adenocarcinomas based on glandular 
growth pattern and/or tumor cell positivity for PAS or 
Alcian blue, which are believed to contain mucin, there are 
tumor cells with neuroendocrine properties.9 Classification 
of tumors based on the cell of origin of carcinomas seems to 
be the best system to help understand the biological signifi-
cance of carcinogenesis, gain insight on new possibilities for 
prevention and early treatment, and possibly develop new 
drugs for the treatment of tumors.9

Melatonin (MLT), a neuroendocrine active substance 
chemically composed of N-acetyl-5-methoxytryptamine, is 
synthesized and secreted by the pineal gland and is highly 
conserved from prokaryotes to eukaryotes (Figure 1). MLT 
regulates various biological functions, including circadian 
rhythm, and exerts free radical-scavenging, immune- 
modulating, anti-inflammatory, antitumor, antiaging, and 
endocrine-regulatory effects, thus affecting the occurrence, 
development, and treatment of cancer10,11 (Figure 2).

The production of MLT is strongly affected by physiolo-
gical conditions; MLT levels are higher at night and lower at 
noon.12,13 Loss of circadian rhythm eventually leads to MLT 
abnormalities in patients with cancer.14 MLT plays a crucial 
role in human physiology and pathology by acting as a cell 
protector in immunomodulation, antioxidant processes, and 
hematopoiesis.15–17 Furthermore, MLT exhibits oncogenic 

Figure 1 Conserved nature of MLT from prokaryotes to eukaryotes.
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properties through receptor-dependent and -independent 
mechanisms.18 It also regulates antioxidant activity, apopto-
sis, tumor metabolism and cancer immunity, inhibition of 
angiogenesis and migration, and prevention of circadian dis-
ruption through receptor-independent mechanisms.18–20 

Studies have reported that MLT levels are critical for cancer 
development; however, a low level of nocturnal MLT 
increases tumor growth. Interestingly, patients with meta-
static lung and colorectal tumors treated with MLT showed 
stabilization of cancer and exhibited improved quality of 
life.21 Preclinical and in vitro studies revealed that MLT can 
delay tumor development via membrane receptor-dependent 
and -independent mechanisms at the initiation, promotion, 
progression, and malignant metastasis phases.11,22 

Pinealectomy stimulates, whereas MLT inhibits the growth 
and metastasis of various cancers, including lung, liver, 
ovary, pituitary, and prostate cancers as well as melanoma 
and leukemia.23 The association between MLT and cancer 
has been documented, and several epidemiological studies 
substantiate the involvement of MLT in cancer.24,25 MLT is 
considered to be a multifunctional compound that controls 
various functions, such as circadian rhythm, and exerts free 
radical-scavenging, reproduction-regulatory, antiaging, 

anticancer, anti-inflammatory, and immune-modulatory 
effects (Figure 2). The goal of this review is to summarize 
the recent literature on the history, epidemiology, risk factors, 
therapeutic effect, and clinical significance of MLT alone or 
in combination with chemotherapeutic agents or radiother-
apy, as well as its anticancer mechanism in lung, breast, 
prostate, colorectal, skin, liver, cervical, and ovarian cancers.

Role and Therapeutic Potential of 
MLT in Lung Cancer
According to Global Cancer Statistics 2018, 2.1 million 
new lung cancer cases and 1.8 million deaths were pre-
dicted in 2018, representing approximately 1 in 5 (18.4%) 
cancer deaths. Lung cancer remains the leading cause of 
cancer incidence and mortality. In both sexes, lung cancer 
is the most commonly diagnosed cancer (11.6% of the 
total cases) followed by breast cancer in women (11.6%), 
prostate cancer (7.1%), and colorectal cancer (9.2%), sto-
mach cancer (8.2%), and liver cancer (8.2%) in terms of 
mortality. Lung cancer is the leading cause of cancer death 
among men and women in 93 and 28 countries, respec-
tively. Several studies have reported the involvement of 
MLT in lung cancer. To evaluate the relationship between 

Figure 2 Multifunctional aspects of MLT.
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MLT levels and T lymphocyte subsets in patients with 
metastatic solid neoplasm, the study was performed in 28 
patients, comprising 10 and 18 patients with breast cancer 
and non-small cell lung cancer (NSCLC), respectively. 
The patients were not treated with any medications for 
metastasis. The analyses from this study revealed unu-
sually high MLT levels and a low T helper/suppressor 
ratio (CD4/CD8) in 10/28 and in 11/28 patients, 
respectively.26 To investigate the effect of immunomodu-
lation of interleukin (IL)-2 in solid neoplasms, authors 
designed with low-dose IL-2 subcutaneous therapy plus 
MLT for advanced solid neoplasms other than renal cancer 
and melanoma, which are generally resistant to IL-2 alone. 
The results showed that objective tumor regression was 
achieved in 17/82 (21%) patients. Stabilization of disease 
was observed in 30 patients, whereas disease progression 
was observed in 35 patients. The lack of progression was 
associated with a significantly higher increase in mean 
lymphocyte and eosinophil counts as well as 
a significantly lower increase in mean neopterin levels.27 

To elucidate the effect of MLT on chemotherapy toxicity, 
a study involving 80 patients with metastatic solid tumors. 
Patients with lung cancer were treated with cisplatin and 
etoposide, those with breast cancer were treated with 
mitoxantrone, whereas those with gastrointestinal tract 
tumor received 5-fluorouracil (5-FU) plus folates (FA). 
Patients were randomized to receive chemotherapy alone 
or chemotherapy plus MLT showed significantly low pre-
sentations of thrombocytopenia, malaise, and asthenia.28

In a study, the in vivo immunoinflammatory effects of 
IL-12 were investigated by analyzing the secretions of 
neopterin, soluble IL-2 receptor (SIL-2R), tumor necrosis 
factor (TNF)-α, IL-2, and IL-6. IL-12 at 1.25 µg/kg body 
weight was subcutaneously administered to patients with 
renal cell cancer in the morning once a week for three 
consecutive weeks. The results revealed that the mean 
serum levels of neopterin, SIL-2R, and TNF significantly 
increased in response to IL-12, but there was no significant 
change in IL-6 and IL-2 mean concentrations.29 A study 
was conducted to evaluate the daily secretion of dehydroe-
piandrosterone-sulfate (DHEAS) in a group of patients 
with early and advanced cancer. The study group consisted 
of 70 patients with solid tumors. The findings suggested 
that there was no significant difference in the mean serum 
levels of DHEAS between controls and non-metastatic 
patients. Conversely, patients with metastases in visceral 
locations showed significantly lower mean levels of 
DHEAS, irrespective of the tumor histotype, compared to 

either the controls or non-metastatic patients.30 To evalu-
ate the combined effects of MLT and chemotherapeutic 
agents in patients with advanced cancer and poor clinical 
status, 250 patients with metastatic solid tumors received 
MLT plus chemotherapy, or chemotherapy alone. The 
chemotherapy consisted of cisplatin plus etoposide or 
gemcitabine alone for lung cancer; doxorubicin alone, 
mitoxantrone alone, or paclitaxel alone for breast cancer; 
5-FU plus folinic acid for gastrointestinal tumors; and 
5-FU plus cisplatin for head and neck cancers. The results 
showed that the objective tumor regression rate was sig-
nificantly higher in patients treated with MLT and che-
motherapeutic agents, as mentioned above, than in those 
who received chemotherapy alone.

A study was conducted involving patients with meta-
static lung cancer treated with a combination therapeutic 
approaches containing cisplatin and etoposide, the study 
included 20 patients treated with cisplatin plus etoposide. 
The results of this study revealed that the concentrations of 
hemoglobin in the blood significantly decreased in both 
groups of patients. However, the decrease in hemoglobin 
levels observed in patients treated with chemotherapy 
alone was significantly higher than that in patients con-
comitantly treated with 5-MTT. These preliminary results 
indicated that the concomitant administration of 5-MTT 
may reduce cisplatin-induced anemia in patients with 
cancer.31 The study was conducted to assess the effect of 
MLT on the 5-year survival of patients with metastatic 
NSCLC, the patients were subjected to 
a chemotherapeutic regimen consisting of cisplatin and 
etoposide, with or without the concomitant administration 
of MLT. The results showed that both the overall tumor 
regression rate and 5-year survival were significantly 
higher in patients concomitantly treated with MLT.32 In 
another study, the effect of various regimens of MLT 
treatment on the development of mammary tumors in 
HER2/neu transgenic mice was investigated. Female 
HER-2/neu mice were exposed to interrupted treatments 
or constant MLT treatment (20 mg/L). MLT treatment 
slowed down age-related disturbances in estrous function 
and promotion of mammary carcinogenesis, with the 
group exposed to interrupted treatment with the hormone 
showing the highest degree of improvement. Constant 
treatment with MLT decreased the incidence and size of 
mammary adenocarcinomas as well as the incidence of 
lung metastases, compared with controls.33 The study con-
sisted of 370 patients who were randomized to receive 
chemotherapy alone or chemotherapy plus MLT. Patients 
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with colorectal cancer were treated with oxaliplatin plus 
5-FU, or weekly CPT-11 or 5-FU and FA. Patients with 
NSCLC received cisplatin plus etoposide or cisplatin plus 
gemcitabine, whereas those with gastric cancer received 
cisplatin, epirubicin, 5-FU, and FA or weekly 5-FU plus 
FA. The results showed that tumor regression was signifi-
cantly higher in patients concomitantly treated with MLT 
than in those treated with chemotherapy alone.34 Another 
study was conducted to determine the efficacy of MLT or 
5-MTT with chemotherapy; 100 patients receiving rando-
mized chemotherapy with MLT or 5-MTT exhibited better 
response and significant reduction of chemotherapy- 
related toxicities, namely thrombocytopenia and 
neurotoxicity.35 MLT not only potentiates anticancer activ-
ity but also protects cells from adverse conditions caused 
by anticancer drugs. For example, MLT inhibited doxor-
ubicin (DOX)-induced senescence in a dose-dependent 
manner by blocking the DOX-induced G2/M phase cell 
cycle arrest and decreased cyclin B and cdc2 expression in 
A549 and IMR90 cells. Furthermore, MLT decreased 
DOX-induced reactive oxygen species (ROS) levels, mito-
chondrial respiration, and loss of mitochondrial membrane 
potential in an MLT receptor-independent manner.36 Zhou 
et al37 designed a study to investigate the effect of MLT on 
the migration of human lung adenocarcinoma A549 cells 

and its mechanism. The cells treated with MLT showed 
significant inhibition of cell viability and migration. The 
expression levels of OPN and MLCK, as well as the 
phosphorylation of MLC in A549 cells were reduced, 
whereas the expression of occludin was conversely ele-
vated. The combination of MLT and cisplatin increased 
cytotoxicity, apoptosis, and cell cycle arrest induced by the 
chemotherapeutic agent cisplatin in human lung adenocar-
cinoma cisplatin-sensitive cell line (SK-LU-1). Combined 
treatment increased apoptosis by elevating mitochondrial 
membrane depolarization, activating caspases-3/7, and 
inducing cell cycle arrest in the S phase, compared with 
treatment with cisplatin alone.38 MLT suppresses lung 
cancer metastasis by inhibiting epithelial-mesenchymal 
transition by targeting twisting family transcription factors 
(Figure 3). Furthermore, this effect was mediated by the 
MT1 receptor, PLC, p38/extracellular signal-regulated 
protein kinase (ERK), and β-catenin signaling cascades.39 

The effect of MLT receptors MT1 and MT2 was investi-
gated in NSCLC and nonmalignant lung tissue using tissue 
microarrays. The expression of both receptors was higher 
in NSCLC than in nonmalignant lung tissue. Higher levels 
of MT1 and MT2 expression were observed in squamous 
cell carcinomas than in adenocarcinomas.40 A study was 
conducted to elucidate whether histone deacetylase is 

Figure 3 Tumor suppressive properties of MLT on lung cancer by targeting family of transcription factors.
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involved in tumor suppression and enhanced apoptosis in 
NSCLC after MLT treatment. To verify this hypothesis, 
337 patients who underwent NSCLC surgery were 
recruited in this study. The findings revealed that patients 
with NSCLC having high HDAC9 expression showed 
worse overall survival and poor prognosis. HDAC9 knock-
down significantly reduced NSCLC cell growth and 
induced apoptosis both in vivo and in vitro. Interestingly, 
MLT administration markedly inhibited NSCLC cell pro-
liferation, metastasis, and invasion, as well as promoted 
apoptosis and decreased the HDAC9 level of NSCLC 
cells. HDAC9 knockdown increases the anticancer activ-
ities of MLT treatment. Additionally, an in vivo study 
showed that HDAC9 knockdown increased anticancer 
activity in xenograft tumors.41 Recently, we reported the 
combination effect of palladium nanoparticles and MLT in 
A549 lung epithelial adenocarcinoma cells. These findings 
suggest that the combination of palladium nanoparticles 
and MLT increases cytotoxicity by decreasing cell viabi-
lity and cell proliferation. Furthermore, these combinations 
increase the levels of various oxidative stress markers, 
including leakage of lactate dehydrogenase, increased 
intracellular protease, decreased membrane integrity, and 
increased levels of ROS, malondialdehyde (MDA), nitric 
oxide, protein carbonyl content, lipid hydroperoxide, and 
8-isoprostane, as well as increased mitochondrial dysfunc-
tions. In addition, palladium nanoparticles and MLT 
induced apoptosis and oxidative DNA damage due to the 
accumulation of 4-hydroxynonenal (HNE), 8-oxo-2ʹ- 
deoxyguanosine (8-OhdG), and 8-hydroxyguanosine 
(8-OHG). The combination effect increased mitochondria- 
mediated stress and apoptosis, which was confirmed by the 
increased expression levels of apoptotic genes.42 The anti-
proliferative and antitumor effects of MLT were investi-
gated in B16-F10 cell murine melanoma models. MLT 
reduced the growth rate and migration of B16-F10 cells, 
induced G2/M cell cycle arrest, and altered cytoskeletal 
organization. The in vitro data are in accordance with the 
in vivo findings.43 Pourhanifeh et al reviewed the impact 
of MLT on non-small cell lung cancer and reported that 
prevents tumor metastasis via inducing apoptosis and 
restraining the autonomous cell proliferation due to its 
multifunctional aspects such as oncostatic, pro-oxidant 
and anti-inflammatory effects.44 Combination of che-
motherapy and MLT increases survival and improved 
quality of life in patients with NSCLC. The administration 
of 1mM of MLT 1h before irradiation of A549 cells 
suppresses cell viability without activating apoptotic 

pathway.45 MLT directly reduces osteoclast differentiation, 
bone resorption activity and promotes apoptosis of mature 
osteoclasts and also MLT inhibits RANKL production in 
lung and prostate cancer cells by downregulating the p38 
MAPK pathway46 Recently, we have shown that combina-
tion of MLT and retinoic acid induced cytotoxicity and 
apoptosis in human lung epithelial adenocarcinoma cells 
A549 and H1229 by enhancing oxidative stress and 
decreasing mitochondrial dysfunctions.42

Role and Therapeutic Potential of 
MLT in Breast Cancer
Breast cancer is the most commonly diagnosed cancer and 
rate of breast cancer is extremely high compared with 
other cancers in women of both developing and developed 
countries.2 The primary risk factors for breast cancer are 
prolonged endogenous hormonal exposures, and the best 
prevention method is the long-term duration of breastfeed-
ing. MLT enhanced chemotherapy irrespective of the type 
of tumor and chemotherapeutic regimen in various patients 
with cancer, as shown by a study involving 10 patients 
with breast cancer in both sexes.47 MLT combined with the 
synthetic progestin norethisterone suppressed the pituitary- 
ovarian axis. Administration of 300 mg MLT caused sig-
nificantly decreased mean LH levels compared with those 
in eight non-medicated controls. Patients with breast can-
cer in India had a low level of MLT in urine.48 Tamarkin 
et al49 found that the increased nocturnal MLT concentra-
tion in plasma was significantly decreased in women with 
estrogen receptor (ER)-positive breast tumors, indicating 
that an inverse correlation existed between ER levels and 
peak MLT values. Physiological concentrations of MLT 
not only alter the morphology of estrogen-responsive 
MCF-7 human breast cancer but also inhibit the growth 
of cancer cells. The physiological concentration of MLT 
potentially inhibits the growth of MCF-7 cells than supra- 
or subphysiological levels of MLT, which are completely 
ineffective in impeding breast cancer cell proliferation. 
Interestingly, precursors and metabolites of MLT, such as 
serotonin, N-acetylserotonin, and 6-hydroxyMLT, do not 
inhibit MCF-7 cell growth.50,51 MLT exhibited antitumor 
effects in MCF-7 cells through a cell-cycle-specific 
mechanism by delaying the entry of MCF-7 cells into 
mitosis and eventually leading to differentiation.52 MLT 
inhibits tumor-promoter prolactin-induced mitogenic 
activity in MCF-7 and ZR75-1 human breast cancer cells 
by blocking PRLR-mediated growth signal.53 Sequential 
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administration of MLT and retinoic acid on the ER- 
positive MCF-7 human breast tumor cell line resulted in 
the complete cessation of cell growth and a reduction in 
the number of cells through activation of apoptotic path-
ways, which leads to apoptosis by decreasing Bcl-2 
expression, increasing Bax expression, and altering growth 
factor-beta 1 (TGF-β1) expression. Sequential treatment 
had no apoptotic effect in ER-negative MDA-MB-231 
and BT-20 breast tumor cells.54 MLT reduces the invasive-
ness of MCF-7 cells, causing a decrease in cell attachment 
and cell motility. Culture of tumor cells in the presence of 
MLT (1 nM) increased the membrane staining for 
E-cadherin and β1 integrin. To corroborate the in vitro 
study, in vivo experiments were conducted in ovariecto-
mized athymic nude mice implanted with 17 β-estradiol 
pellets and inoculated with 5 × 106 MCF-7 cells in the 
inguinal mammary fat pad, and the results suggested that 
MLT decreased the tumorigenicity of these tumor cells.55 

MLT inhibits the proliferation of MCF-7 cells through 
inhibition of estrogen-elicited cyclin D1 induction.56 The 
nanomolar concentration of MLT inhibits cell prolifera-
tion, increases the expression of p53 and p21WAF1 pro-
teins, modulates the length of the cell cycle, decreases the 
metastatic capacity of these cells, and counteracts the 
stimulatory effect of estradiol on cell invasiveness.55,57,58 

MLT at the lowest concentration of 1 nM and overexpres-
sion of MLT G protein-coupled receptor significantly 
inhibited the growth of MCF-7 and vt-MCF 7 cells.59 

MLT exerted significant growth-inhibitory effects on 
MCF-7 cells in a biphasic manner, such as at the early 
time of incubation in a TGF-β1-dependent manner, in 
which programmed cell death is associated with 
a significant increase in the p53/MDM2 ratio and in AIF 
release, without modifications in caspase activity or 
cleaved-PARP levels. In contrast, in the latter period, the 
long incubation time of MLT activates caspases-9 and −7 
and cleaved-PARP, parallel with the downregulation of the 
Bcl-2/Bax ratio. The study concluded that two different 
types of apoptotic processes are triggered by MLT in 
MCF-7 cells: an early, TGF-β1 and caspase-independent 
response, and a late apoptotic TGF-β1-dependent process 
where activated-caspase-7 is likely to be the terminal 
effector.60 MLT inhibits breast cancer growth by modulat-
ing miRNA and expression of miRNA-related genes.61 

Several studies have reported that the combination of 
MLT and chemotherapeutic agents potentiates anticancer 
activity. The combination of MLT with all-trans retinoic 
acid and somatostatin inhibits cell viability through 

alteration of Ca2+ and voltage-activated K+ (BK) channels, 
and impairments of Notch-1 and epidermal growth factor 
(EGF)-mediated signaling. In addition, the combined treat-
ment caused a decrease in the mitochondrial membrane 
potential and intracellular ATP production as well as the 
induction of necrotic cell death. Taken together, these 
results suggest that the administration of MLT with all- 
trans retinoic acid and somatostatin exhibited significant 
therapeutic potential in breast cancer.62 The antiangiogenic 
effect and regulation of vascular endothelial growth factor 
(VEGF) in breast cancer cells was investigated using MLT. 
MLT inhibits angiogenic processes by decreasing produc-
tion of VEGF in co-culture of human breast cancer cells 
(MCF-7) with human umbilical vein endothelial cells 
(HUVECs). This study suggests that MLT may play 
a role in the paracrine interactions between malignant 
epithelial cells and proximal endothelial cells through 
a down regulatory action on VEGF expression in human 
breast cancer cells.63 MLT inhibits the viability and inva-
siveness of breast cancer mammospheres as well as in 
modulating the expression of proteins related to epithelial- 
mesenchymal transition (EMT) in breast cancer stem cells 
(CSCs).64 MLT reduced the viability of MCF-7 and MDA- 
MB-231 cells under hypoxic conditions by decreasing the 
expression of HIF-1α and VEGF-A. Protein array data 
showed that MLT treatment during hypoxia reduced the 
expression of VEGF receptors, matrix metalloproteinase 9 
(MMP9), and angiogenin in MCF-7 cells. In contrast, 
MDA-MB-231 cells treated with MLT showed 
a significant decrease in VEGFR2, epidermal growth fac-
tor receptor, and angiogenesis. Taken together, these 
results showed MLT has potential antiangiogenic activity 
under hypoxic conditions.65 MLT exhibited anticancer 
activity against breast cancer by targeting various recep-
tors and kinases involved in angiogenesis (Figure 4). MLT 
inhibits the proliferation of breast cancer cells induced by 
bisphenol, which is an estrogen-like chemical that causes 
hormone-related cancers. MLT significantly eliminates 
BPA-elevated cell proliferation by downregulating the 
phosphorylation of ERK and AKT. MLT also inhibits the 
elevation of steroid receptor coactivator expression and 
estrogen response element activity triggered by BPA.66 

MLT decreased ERK phosphorylation induced by nicotine 
in both normal MCF-10A and low-malignant breast cancer 
cells (MCF7), which in turn blocks motility and invasive-
ness. Furthermore, MLT significantly reduces fascin and 
calpain activation, thus restructuring the overall cytoske-
leton architecture and abolishing invasive membrane 
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protrusion.67 MLT differentially modulates NF-кB expres-
sion in breast and liver cancer cells. For instance, breast 
cancer xenograft nude mice treated with MLT showed 
reduced tumor size and decreased expression of NF-kB. 
Conversely, hepatocarcinoma treated with MLT showed an 
increased expression of NF-kB compared with control 
cells.68 MicroRNAs play a critical role in gene regulation, 
progression, and angiogenesis in breast cancer. MLT can 
modify the expression of innumerable genes and miRNAs 
related to cancer. MLT increased the level of gene expres-
sion of miR-148a-3p and decreased the gene and protein 
expression of IGF-1R and VEGF both in vitro and in vivo. 
Upregulation of miR-148a-3p inhibits cell survival, migra-
tion, and invasion of breast tumor cells and decreases 
angiogenic factors.69 The combined effects of zinc and 
MLT were evaluated in female rats by evaluating the 
level of IL-6 and lipid peroxidation. The results showed 
combination effect significantly decreased tumor growth 
due to disruption of metabolism, suppressed IL-6 levels, 
and reduced tissue damage.70 Palmer et al71 reported the 
effect of MLT in patients with breast cancer undergoing 
chemotherapy. Various parameters were evaluated, 

including cognition, depressive symptoms, and sleep qual-
ity. They also examined whether these effects are related 
to serum levels of brain-derived neurotrophic factor and its 
receptor, tropomyosin kinase B (TrkB). The findings from 
clinical studies revealed that MLT improved executive 
function on TMT scores, enhanced episodic memory and 
recognition on the Rey Auditory Verbal Learning test, and 
increased verbal fluency in orthographically controlled 
oral word association test. MLT induced apoptosis and 
autophagy in ELT3 cells by increasing the distribution of 
cells in the sub-G1 phase and increasing DNA condensa-
tion. MLT also exerted a highly selective effect on primary 
normal human uterine smooth muscle cells, such as upre-
gulation of p21, p27, and PTEN protein expression, but 
not activation of apoptosis.72 The emergence of resistance 
to chemotherapeutic agents is a setback for the successful 
management and treatment of resistant tumors. The com-
bination of a ketogenic diet and MLT inhibited cisplatin- 
and vincristine-resistant breast cancer by inducing apopto-
sis, inhibiting angiogenesis, and downregulating resistance 
genes.73 Recently, review summarized the effect of MLT 
and regulation of miRNAs by MLT in different 

Figure 4 Molecular mechanism of anticancer activity of MLT in breast cancer cells.
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pathologies such as malignant and nonmalignant diseases. 
These miRNAs based strategy will be a novel and alter-
native targeted therapy for cancer74,75 discussed the role of 
circadian rhythm disorders in epithelial-mesenchymal 
transition (EMT) and tumor-immune interactions in endo-
crine-related cancers. Particularly, the review discussed the 
disorder of circadian rhythms causes alteration in numer-
ous endocrine functions and homeostasis. As a result, it 
causes development of endocrine-related cancers, like 
breast, ovarian and prostate cancer and also it induces pro- 
inflammatory and immunosuppressive phenotype in the 
tumour microenvironment. MLT downregulates TRPC6, 
which is playing major role in impairing store-operated 
calcium entry (SOCE) in triple negative breast cancer cells 
(TNBC). SOCE is inevitable process for TNBC cells. 
Nanomolar range of MLT, significantly attenuates TNBC 
MDA-MB-231 cell viability, proliferation and migration in 
a time- and concentration-dependent manner. Pretreatment 
with different concentrations of melatonin significantly 
reduced SOCE in MDA-MB-231 cells without altering 
Ca2+ release from the intracellular stores. TRPC6 down-
regulation involved in melatonin’s inhibitory effects on 
Ca2+ influx and the maintenance of cancer hallmarks, 
and point toward a novel antitumoral mechanism of mel-
atonin in TNBC cells.76 Estrogens are significant player 
for the development of breast cancer. Estrogen synthesis is 
regulated by the enzyme aromatase, which is therapeutic 
option for breast cancer. MLT could suppressive aromatase 
activity, leading to reduced estrogen biosynthesis. Hence, 
MLT can act as inhibitor for aromatase action, which is 
playing important role as oncostatic molecule in breast 
cancer.77 The level of MLT influences the concentration 
of estrogen receptor in hormone-dependent estrogen- 
positive breast cancer. The alteration of MLT levels 
by chemotherapy governing clinical and psychological 
symptoms of breast cancer, such as sleep quality and 
depression severity78 Chuffa et al79 reported that the role 
of MLT in regulating the expression of 46 microRNAs 
(miRNAs) and their target genes in breast, oral, gastric, 
colorectal, and prostate cancers, and glioblastoma. The 
deregulated miRNA-associated target genes revealed 
their involvement in the regulation of cellular and devel-
opmental processes in breast, gastric, and oral cancers. 
The findings found that eight upregulated genes and 16 
downregulated genes that were appositively correlated 
with MLT. MLT regulates various genes involved in cir-
cadian rhythm. BMAL1 was reduced in tumor hypoxia- 
induced acidosis, and recovered by selectively targeting 

acidic pH in breast cancer cell lines. MLT significantly 
prevented acidosis-mediated decrease of BMAL1 by inhi-
biting lactate dehydrogenase-A during hypoxia80 Cancer 
stem cells (CSCs) are resistant to chemotherapeutic drugs 
and cause recurrence of cancer and CSCs causes serious 
problems in the treatment of various cancers. MLT mod-
ulate various physiological process of CSCs and it would 
be alternative strategy for the treatment of cancer81 

Menéndez-Menéndez et al found that MLT enhanced the 
anti-proliferative effect of doxorubicin in MCF-7.82 MLT 
downregulate TWIST1 (Twist-related protein 1) in estro-
gen-dependent breast cancer cells. Combined with doxor-
ubicin, melatonin inhibited the activation of p70S6K and 
modulated the expression of breast cancer, angiogenesis 
and clock genes. Inhibition of TWIST1 by MLT could 
overcoming resistance and improving the oncostatic poten-
tial of doxorubicin in estrogen-dependent breast cancer 
cells. Goyal et al83 studied the correlation between MLT 
and expression patterns of MLT1 receptor with estrogen, 
progesterone, and HER2 receptors.83 The authors found 
that a positive correlation of the MT1 expression with ER, 
PR, and HER 2 receptor. Higher MT1 receptor expression 
was observed in the receptor-positive cases compared to 
triple-negative cases. The findings from these studies sug-
gest that MLT receptor status can be used as an indepen-
dent pathologic indicator to evaluate breast carcinoma 
tissue. Breast tumor xenografts of rats exposed to dLAN 
and circadian disruption increases the levels of phosphory-
lated and acetylated STAT3, increased DNMT1, but 
reduced sirtuin 1 (SIRT1) and ARHI. While administration 
of MLT and/or SIRT1 blocked/reversed interleukin 6 (IL- 
6)-induced acetylation of STAT3 and its methylation of 
ARH1 in MCF-7 breast cancer cells84 Menéndez- 
Menéndez and Carlos Martínez-Campa discussed MLT as 
an anti-tumor agent in hormone-dependent cancers by 
interfering with the estrogen signaling-mediated transcrip-
tion, and also regulates the production of estradiol through 
the control of the enzymes involved in its synthesis, acting 
as a selective estrogen enzyme modulator (SEEM).85 MLT 
alone potentially inhibits breast cancer metastasis through 
inhibiting DJ-1/KLF17/ID-1 signaling pathway. The com-
bination of melatonin and taxol potentially inhibits metas-
tasis in breast cancer.86 MLT enhanced the anti- 
proliferative and apoptotic responses to low doses of doc-
etaxel in breast cancer cells. Combination effect of MLT 
and docetaxel induced changes in gene expression profiles. 
Docetaxel downregulated TP53, cyclin-dependent kinase 
inhibitor 1A (CDKN1A) and cadherin 13 (CDH13), and 
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upregulated mucin 1 (MUC1), GATA binding protein 3 
(GATA3) and c-MYC, whereas melatonin counteracted 
these effects. MLT stimulated the expression of the pro- 
apoptotic BAD and BAX genes, and enhanced the inhibi-
tion of the anti-apoptotic gene BCL-2 induced by 
docetaxel.

Role and Therapeutic Potential of 
MLT on Prostate Cancer Cells
Prostate cancer ranks as the second-most frequent cancer 
and the fifth leading cause of cancer death in men.2,87 One 
of the crucial factors for prostate cancer is obesity.88 

However, the rate of death has been decreasing owing to 
early diagnosis and treatment. A case-cohort study 
reported that men with low first-morning urinary levels 
of 6-sulphatoxymelatonin (aMT6s) had a high risk of 
prostate cancer.89 Conversely, patients with high MLT- 
sulfate levels or a high MLT-sulfate/cortisol ratio were 
less likely to have prostate cancer.90 Pharmacological con-
centrations of MLT can inhibit the growth of androgen- 
dependent and -independent prostate cancer.91

An in vivo study revealed that administration of MLT to 
rats through drinking water prevented the testosterone- 
mediated regrowth of the prostate by modulating MLT 
binding sites in rats, whereas an in vitro study showed 
that MLT inhibits cell viability and cell growth.92,93 

Furthermore, MLT inhibits androgen-induced prostate cell 
growth via disarticulation of androgen receptors from the 
nucleus to the cytoplasm in prostate epithelial cells.94 MLT 
inhibited the proliferation of hormone-independent LNCaP 
prostate cancer cells via MT1 receptor activation both 
in vitro and in nude mice xenograft models. A preclinical 
study involving patients with prostate cancer reveals that 
the oncostatic property of MLT can stabilize prostate- 
specific antigen levels.95 MLT is known to exert antitumor 
effect in various types of cancers. However, the mechanism 
and effect of dose have yet to be elucidated. Therefore, 
Paroni et al96 investigated the effect of MLT at nanomolar 
concentrations in a mouse model of human prostate cancer. 
To test this hypothesis, LNCaP human prostate cancer cells 
were xenografted into 7-week-old Foxn1nu/nu male mice 
treated with MLT (18 i.p. injections of 1 mg/kg in 41 days). 
The results revealed that MLT levels in plasma and xeno-
grafted tissue were 4× and 60× higher in MLT-treated mice, 
respectively, than in the control samples (saline-treated 
mice). Xenografted mice treated with MLT showed lower 
microvessel density than the control. MLT reduced 

angiogenesis by decreasing Ki67 expression and increasing 
HIF-1α expression and Akt phosphorylation. Furthermore, 
MLT plays a major role in maintaining redox balance by 
increasing the expression of Nrf2. MLT plays critical role in 
modulating mitochondria mediated apoptosis in prostate 
cancer by activating ROS and subsequently various kinases 
such as p38, SAPK and JNK (Figure 5).

MLT potentially inhibits 5α-dihydrotestosterone or 
17β-estradiol (E2)-induced LNCaP cell proliferation at 
physiological and pharmacological concentrations. In 
contrast, high concentrations of MLT inhibit total pros-
tate-specific antigen production by LNCaP cells. 
A study revealed that MLT inhibits the activation of 
mt1 receptor and attenuates sex steroid-induced calcium 
influx in LNCaP cells.97 MLT-mediated cGMP causes 
nuclear exclusion of the androgen receptor (AR), which 
increases intracellular calcium and protein kinase 
C (PKC) activation, which is a possible signaling path-
way that regulates AR localization and androgen 
responses in target cells.98 MLT exhibits antiprolifera-
tive effects by activating PKC and protein kinase 
A (PKA) via upregulation of the MT(1) receptor and 
the p27(Kip1) gene and protein in hormone-refractory 
22Rv1 human prostate cancer cells, thereby proving that 
MLT prevented prostate cancer by inhibiting NF-κB 
signaling activation via inhibition of DNA binding 
through MT1 receptor-induced PKA and PKC stimula-
tion. These studies proved the involvement of MT1 
receptor-mediated inhibition of NF-κB signaling activa-
tion in the mechanism of MLT.99,100 MLT inhibited RA- 
human fibroblast-like synoviocytes (FLS) proliferation 
in a dose-dependent manner by upregulating P21 and 
P27 and inducing the phosphorylation of ERK, but it 
also affected the phosphorylation of P38 in RA-FLSs.101 

The combination of MLT and docosahexaenoic acid 
decreases the proliferation of PNT1A prostate benign 
cells via the modulation of mitochondrial bioenergetics 
and ROS production. Cells treated with DHA showed 
increased ROS production and impaired mitochondrial 
function, which was probably related to AKT inactiva-
tion. In contrast, MLT improved OXPHOS and 
decreased ROS, which was related to AKT/mTOR 
dephosphorylation. Altogether, this study showed that 
the combination of DHA and MLT inhibits the prolif-
eration of prostate cancer cells.102 In vitro and in vivo 
model suggest that MLT inhibits MMP-13 expression 
and the migratory and invasive capacities of prostate 
cancer cells via the MT1 receptor and the phospholipase 
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C, p38, and c-Jun signaling cascades.103 Combination of 
MLT and radiation increases overall survival of prostate 
cancer patients with poor prognosis.104 Calastretti et al 
evaluated the effect of MLT analogue called UCM 1037 
inhibits cell proliferation, cell cycle distribution, and 
cytotoxicity in LNCaP, PC3, DU145, and 22Rv1 pros-
tate cancer cells dose- and time-dependent manner and 
UCM 1037 down-regulates androgen receptor levels and 
Akt activation in LNCaP and 22Rv1 cells.105 MLT lim-
its glycolysis as well as the tricarboxylic acid cycle and 
pentose phosphate pathway in prostate cancer cells, 
suggesting that the reduction of glucose uptake is 
a major target of the indole in this tumor type.106

Role and Therapeutic Potential of 
MLT in Colorectal Cancer
Colorectal cancer incidence rates are approximately three- 
fold higher in developed versus developing countries; 
however, as the average case fatality is higher in lower 
HDI settings, there is less variation in the mortality rates.2 

The major causes of colorectal cancers are dietary 

patterns, obesity, lack of physical activity, and lifestyle 
factors, whereas the lower mortality observed in developed 
countries is due to good practices in cancer treatment and 
management.107 Prominent factors that increase the risk of 
colon cancer are obesity and consumption of processed or 
red meat and alcoholic drinks.108 Colorectal cancer begins 
as a polyp in the intestinal mucosa, and primary adenoma-
tous lesions, which transform into a malignancy; in fact, 
24% of untreated polyps progress to cancer.109 Moreover, 
normal epithelial cells can transform into hyper- 
proliferative mucosa, which then leads to a benign ade-
noma, which subsequently develops into carcinoma.110 

The common treatment modalities for colorectal cancer 
are surgery, chemotherapy, radiotherapy, immunotherapy, 
and targeted therapy. Recently, MLT has been proven to 
reduce the severity of colorectal cancer owing to its potent 
anticancer, anti-inflammatory, and antioxidant properties. 
The changes in MLT levels could be a major cause of the 
elevation of colorectal cancer incidence, indicating that 
MLT plays a crucial role in suppressing colorectal cancer 
development and progression. MLT level is disrupted in 
those who work day and night shifts.111–113

Figure 5 MLT targets mitochondria mediated apoptosis in prostate cancer cells.
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A study was conducted to investigate MLT as 
a predictor for cancer patients. MLT levels in blood were 
monitored before and at 28 days after each cycle of che-
motherapy. The study included 42 men and women with 
breast cancer (10), lung cancer (13), colon cancer (11), soft 
tissue sarcoma (4), testicular cancer (1), Hodgkin’s disease 
(1), and peritoneal mesothelioma. The results showed that, 
irrespective of the type of tumor and chemotherapeutic 
regimen, 12/16 patients (75%) whose MLT was markedly 
enhanced after chemotherapy had an objective regression. 
In contrast, 2/26 patients (8%) whose MLT did not 
enhance after chemotherapy had a clinical response. The 
percentage of objective responses was significantly higher 
in patients with a chemotherapy-induced MLT increase 
than in those with no MLT increase.47 A study was con-
ducted to potentiate the effect of IL-2 with MLT for the 
purpose of reducing the dose of IL-2 required to achieve 
effective host antitumor response. The study was per-
formed with a combination of low-dose IL-2 administered 
subcutaneously once a day (3 million IU/day for 6 days/ 
week for 4 weeks) with MLT (50 mg/day orally) 
as second-line therapy in metastatic colorectal cancer 
patients pretreated with 5-FU. Among the 14 patients, 13 
showed disseminated liver metastases. No objective tumor 
regression was observed. However, disease stabilization 
was achieved in 4/13 patients, whereas it progressed in 
the other nine patients. The mean number of lymphocytes 
and eosinophils significantly increased in patients with 
stable disease compared to those with progressive disease, 
whereas the eosinophil numbers remain unchanged. 
Moreover, serum levels of neopterin and TNF significantly 
increased during therapy, and TNF increase was correlated 
with side effects and not control of cancer development. 
Finally, this study concluded that the treatment with IL-2 
and MLT facilitates host antitumor response rather than 
tumor regression.114 The inhibitory effect of MLT on the 
cell growth of CT-26 cells, a murine colon carcinoma- 
derived cell line, was reported. This study showed that 
MLT inhibits cell growth in a dose-dependent manner; 
however, at doses below 1 mM, the effect was not sig-
nificant. When the dose of MLT was 1, 2, and 3 mM, the 
rate of cell growth inhibition was 22% 25%, and 47%, 
respectively.115

MLT-induced antitumor therapies was performed in 20 
metastatic patients. MLT was administered orally at 20 mg/ 
day in the evening for at least 2 months. The results showed 
that VEGF mean levels decreased with the therapy, showing 
significant differences from the pre-treatment values.116 

Lissoni34 conducted a study to evaluate the effect of con-
comitant MLT administration on the efficacy and toxicity of 
several chemotherapeutic combinations in patients with 
metastatic NSCLC or gastrointestinal tumors. The study 
consisted of 370 patients who were randomized to receive 
chemotherapy alone or chemotherapy plus MLT. Patients 
with colorectal cancer were treated with oxaliplatin plus 
5-FU, or weekly CPT-11 or 5-FU and FA. Patients with 
NSCLC received cisplatin plus etoposide or cisplatin plus 
gemcitabine, whereas those with gastric cancer received 
cisplatin, epirubicin, 5-FU, and FA or weekly 5-FU plus 
FA. The results showed that tumor regression was signifi-
cantly higher in patients concomitantly treated with MLT 
than in those treated with chemotherapy alone. The effect of 
MLT on cell viability was investigated in Colon 38 murine 
cancer cell line in the presence of 4P-PDOT or luzindole. 
The results showed that MLT significantly decreased the 
viability of cancer cells in the presence of a selective antago-
nist of MT2 membrane receptor. The antagonist alone did 
not have any effect on the growth of Colon 38 cells. The 
obtained data indicate that MLT receptors are not indispen-
sable to the oncostatic action of MLT.117

The combination of MLT with the genotoxicity inducer 
irinotecan was studied in human lymphocytes, A549 lung 
cancer cells, and HT29 colorectal adenocarcinoma cells. 
Irinotecan was shown to induce DNA damage in all tested 
cells. The combination of MLT at concentrations of 50 μM 
with increasing doses of irinotecan (7.5, 15, 30, and 60 μM) 
resulted in an increase in DNA damage in A549 and HT29 
cancer cells, but was not effective in inducing DNA damage in 
healthy human lymphocytes.118 The combined effects of urso-
lic acid (UA) and MLT were evaluated in SW480 and LoVo 
cells. The results showed that combined treatment with UA 
and MLT significantly enhanced inhibition of cell viability and 
migration as well as promoted changes in cell morphology and 
spreading via modulation of cytochrome c release, activation 
of caspase, enhanced inhibition of MMP9/COX-, and translo-
cation of p300/NF-κB from the cell nuclei to the cytoplasm. 
These results, therefore, showed that MLT potentiated the 
antiproliferative and pro-apoptotic effects of UA in colon 
cancer cells.119 MLT inhibits edn-1 mRNA expression, ECE- 
1 protein expression, and ET-1 release from colorectal cancer 
cells (Figure 6). Studies from both in and in vitro demonstrate 
that MLT inhibited proliferation and viability, and increases 
apoptosis in CRC cells via upregulating the expression of the 
miR-34a/449a cluster.120

MLT induces apoptosis by inhibiting the expression of 
endothelin-1 (ET-1), inhibits edn-1 mRNA expression, 
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ECE-1 protein expression, and ET-1 release from color-
ectal cancer cells. The inhibition of edn-1 expression is 
due to the inactivation of FoxO1 and NF-κβ transcription 
factors and the blocking of Akt and ERK phosphorylation. 
The inhibition of edn-1 expression is due to the inactiva-
tion of FoxO1 and NF-κβ transcription factors and asso-
ciated with increased Src phosphorylation, whereas NF-κβ 
inactivation is associated with the blockade of Akt and 
ERK phosphorylation due to the inhibition of PKC activity 
after MLT treatment.121 HCT116 human colorectal adeno-
carcinoma cells treated with 10 μm MLT showed increased 
levels of cell death- and cell cycle-related proteins. MLT 
significantly decreased MT1 in a dose-dependent manner. 
MLT upregulated Bax and downregulated Bcl-xL. MLT 
decreased the population of S-phase cells, increased the 
expression of p16 and p-p21, and further attenuated E- and 
A-type cyclins.122 Pharmacological concentrations of MLT 
significantly suppressed cell proliferation and enhanced 
apoptosis in a dose-dependent manner. The observed apop-
tosis was accompanied by MLT-induced dephosphoryla-
tion and nuclear import of histone deacetylase 4 
(HDAC4). This was further confirmed by the use of 
HDAC4-specific siRNA, which potentially decreases 
MLT-induced apoptosis, indicating that nuclear 

localization of HDAC4 is required for MLT-induced apop-
tosis. Moreover, constitutively active Ca2+/calmodulin- 
dependent protein kinase II alpha (CaMKIIα) abrogated 
MLT-induced HDAC4 nuclear import and apoptosis of 
LoVo cells.123 MLT potentially induces apoptosis in two 
different cancer cells, A2780 ovarian cancer cell line and 
the stable cell line DLD1 derived from colorectal carci-
noma, compared with normal endothelial cells through the 
type 1 sodium/calcium exchanger and type 1 IP3 receptor. 
The data from this study suggested that the different tar-
geting of calcium transport systems in tumor and normal 
(non-tumor) cells is suggested as a key mechanism under-
lying the anticancer effect of MLT.124 The effect of MLT 
on autophagy and Nrf2 signaling pathways in a mouse 
model of colitis-associated colon carcinogenesis (CACC) 
was reported. In this study, first, the authors induced 
CACC in male Swiss Albino mice via administration of 
a single i.p. injection of 1,2-dimethylhydrazine dihy-
drochloride (DMH) at 20 mg/kg body weight, followed 
by three cycles of 3% w/v dextran sulfate sodium (DSS) in 
drinking water treatment initiated 1 week after DMH 
injection. MEL was supplied (1 mg/kg body weight, p.o., 
for 8 and 18 weeks) after 1 week of DSS treatment. The 
results indicated that MEL treatment decreased the 

Figure 6 Inhibitory effects of MLT on endothelin.
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progression of CACC by downregulating various autop-
hagy markers, such as Beclin-1, LC3B-II/LC3B-I ratio, 
and p62, which are associated with the increased expres-
sion of Nrf2 and the associated antioxidant enzymes.125 

Another study investigated the effect of multi-targeted 
combinations (SN38/EF24; SN38/EF24/MLT) on the 
growth of colon cancer in experimental animals. The ani-
mals were treated with SN38/EF24 and SN38/EF24/MLT 
for 22 days. ROS, which are key molecules in the devel-
opment of cancer, were measured using nitroxide- 
enhanced magnetic resonance imaging and in isolated 
tissue specimens. Interestingly, the results showed that 
both combinations significantly suppressed tumor growth. 
Remarkable and more pronounced effects were observed 
in SN38/EF24/MLT-treated mice, which showed almost 
complete destruction of the tumor. The findings concluded 
that the anticancer effect of the triple combination EF24/ 
SN38/MLT was mediated by a decrease in “oncogenic” 
ROS and an increase in “onco-suppressive” ROS.126 The 
effects of MLT and H-1152, a selective inhibitor of Rho- 
associated protein kinase (ROCK), on cell migration were 
reported in RKO cells. The RKO cells treated with MLT 
showed decreased expression of ROCK2, p-MYPT1, and 
p-MLC, and increased expression of ZO-1 and occludin. 
The phosphorylation levels of p38 were reduced in cells 
treated with either MLT or H-1152 alone. The possible 
action mechanism of MLT in inhibiting the migration of 
RKO colon cancer cells is the downregulation of ROCK 
expression via the p38/mitogen-activated protein kinase 
(MAPK) signaling pathway.127 The combination of MLT 
and 5-FU significantly inhibited cell proliferation, colony 
formation, cell migration, and cell invasion in colon cancer 
cells through the caspase/PARP-dependent apoptosis path-
way as well as induced cell cycle arrest. MLT and 5-FU 
markedly suppressed the phosphorylation of PI3K, AKT, 
IKKα, IκBα, and p65 proteins; promoted the translocation 
of NF-κB p50/p65 from the nuclei to the cytoplasm; abro-
gated their binding to the iNOS promoter; and thereby 
enhanced the inhibition of iNOS signaling. A study in 
a xenograft mouse model also implied that MLT and 
5-FU exerted synergistic antitumor effects by inhibiting 
the AKT and iNOS signaling pathways.128 Moloudizargari 
et al reported that MLT can potentially modulate antic-
ancer drugs to reduce tumor progression via various intra-
cellular signaling pathways such as mitogen-activated 
protein kinase (MAPK), extracellular signal-regulated 
kinase (ERK) and protein kinase B (AKT/PKB) 
signaling.129

Generally, the level of cellular prion protein (PrPC) in 
oxaliplatin-resistant colorectal cancer (SNU-C5/Oxal-R) was 
higher than that in normal cancer cells. The effect of MLT 
was assessed in both SNU-C5 cells and SNU-C5/Oxal-R 
cells; later, the cells showed high PrPC expression as well 
as superoxide dismutase and catalase activities. Treatment of 
SNU-C5/Oxal-R cells with oxaliplatin and MLT decreased 
PrPC expression and increased superoxide anion generation. 
In SNU-C5/Oxal-R cells, MLT and oxaliplatin induced endo-
plasmic reticulum stress.130 An investigation was performed 
to decipher the molecular mechanism of prion protein-Oct4 
axis in colon CSCs. The study examined the expression of 
PrPC and Oct4 in specimens from patients with colorectal 
cancer, and found that the expression of PrPC and Oct4 was 
significantly correlated with metastasis and tumor stages. 
Surprisingly, co-treatment with 5-FU and MLT inhibited 
the stem cell markers Oct4, Nanog, Sox2, and ALDH1A1 
by downregulating PrPC.131 The combined effect of MLT 
and radiotherapy was investigated in HCT 116human color-
ectal carcinoma cell line. The cells were treated with MLT in 
combination with ionizing radiation (IR). The results 
revealed that MLT effectively inhibited the proliferation, 
colony formation rate, and migration of HCT116 cells fol-
lowing IR. An in vivo study also supported that compared 
with MLT or IR alone, the combined treatment suppressed 
tumor cell growth, resulting in a much higher tumor inhibi-
tion rate. This study concluded that the combination of MLT 
and IR results in enhanced therapeutic effects in the 
patients.132 The apoptotic mechanism of co-treatment with 
MLT and pterostilbene (Ptero) was evaluated in colorectal 
cancer. MLT and Ptero co-treatment (MLT+Ptero) showed 
synergistic cytotoxicity compared with MLT or Ptero alone, 
decreasing the number of colonies and Ki67 expression as 
well as increasing apoptotic cells and ROS production in 
colorectal cancer, according to the caspase-3 activity and 
PARP level. Interestingly, MLT+Ptero upregulated the 
expression of miRNAs, such as miR-25-5p, miR-542-5p, 
miR-711, miR-4725-3p, and miR-4484, and downregulated 
the expression of miR-4504, miR-668-3p, miR-3121-5p, 
miR-195-3p, and miR-5194 in HT29 cells. Collectively, 
these findings provide evidence that MLT+Ptero enhances 
apoptosis via miR-25-5p-mediated NEDD9 inhibition in 
colon cancer cells.133 Doxorubicin or MLT or combination 
of DOX and MLT significantly decreased the proliferation 
and viability, tumor spheroid formation, invasion, and migra-
tion of Caco-2 colorectal cancer cells in a concentration and 
time dependent manner. Combination treatment increase rate 
of apoptosis and significantly influences genes involved in 
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apoptosis and cell motility. Combination treatment shows 
stronger effect compared either Dox or MLT.134 Hence, 
MLT will be an alternative and therapeutic agent for color-
ectal cancer.135

Role and Therapeutic Potential of 
MLT in Skin Cancer
Skin cancer, particularly melanoma, is one of the most 
complex, aggressive, and heterogeneous cancers and is 
the leading cause of death worldwide.136,137 Melanoma 
cancer not only arises from cutaneous melanocytes but 
also originates from mucosal surfaces, such as the genital 
and gastrointestinal mucosa, oral cavity, and eye uveal 
tract.138 Skin cancer is divided into melanoma and non- 
melanoma. Non-melanoma skin cancer is the fifth most 
common cancer in men and women.139 This cancer is 
caused by several etiological factors, such as skin photo-
type, hair color, multiple nevi, family history, and ultra-
violet radiation (UVR).140 The conventional treatments for 
skin cancer are chemotherapy and radiotherapy; however, 
these treatments do not potentially increase the survival 
rate of patients.141 Moreover, during chemotherapy, 
patients become resistant to cytotoxic drugs, and undesired 
side effects may occur. Therefore, it is necessary to 
explore biocompatible, effective, novel therapies, or com-
plementary therapies. MLT, the main product of the pineal 
gland, has been shown to play a critical role in skin cancer 
as an oncostatic and anticancer agent.

The anti-mutagenic and oncostatic actions of MLT on 
benzo(a)pyrene-induced two-stage skin carcinogenesis in 
mice have been reported. MLT-treated mice decreased not 
only the number of animals bearing papilloma but also the 
number of papilloma per animal both in the initiation and 
promotion stages of skin carcinogenesis. Furthermore, 
MLT reduces lipid peroxides and can prevent the binding 
of BP or its metabolites to DNA.142 The radioprotective 
effect of MLT against organ damage induced by whole- 
body IR in rats was investigated. A total of 32 male 
Sprague-Dawley rats were exposed to irradiation at 
a single whole-body dose of 800 cGy at different time 
points, such as 12 h and 72 h. The rats were then adminis-
tered either saline or MLT (20 mg/kg or 10 mg/kg, i.p.) 
before and after IR. Several oxidative and antioxidative 
parameters were then analyzed. The results showed that at 
both 12 and 72 h following IR, the tissue levels of MDA 
were elevated significantly and GSH levels were reduced. 
On the contrary, MLT-treated mice showed significantly 

decreased levels of MDA and increased GSH levels. MLT 
inhibits the high levels of myeloperoxidase activity in the 
colonic tissue at both 12 and 72 h, and in the hepatic tissue 
at 72 h following IR. MLT decreased the oxidative stress 
induced by IR through free radical-scavenging and antiox-
idant properties.143 Furthermore, the authors investigated 
the radioprotective properties of MLT on the corpus caver-
nosum and bladder tissues of rats exposed to whole-body 
IR. The same parameters were analyzed in IR- and MLT- 
treated rats. Similarly, IR elevated MDA levels and reduced 
GSH levels. MLT administration reversed the oxidative 
organ injury.144 To determine the inhibitory effect of MLT 
on malignancies of mesenchymal origin in 3-month-old 
Swiss mice, carcinogenesis was induced by subcutaneous 
injection of 2 mg of benzo[a]pyrene (BP) dissolved in 
0.1 mL of olive oil. One group of mice was treated with 
MLT at doses of 2 mg/L or 20 mg/L at night via drinking 
water, whereas one group of mice was not treated with 
MLT and served as a PB-control. The results showed that 
MLT treatment inhibited BP-induced carcinogenesis, 
decreased the incidence of subcutaneous sarcomas, and 
increased the latency and survival of mice. BP increased 
the levels of MDA and catalase. In contrast, the MLT- 
treated mice showed a significant decrease in MDA and 
catalase levels both in the serum and tumor tissue compared 
with animals treated with BP. In particular, a lower dose of 
MLT is more effective than a higher dose.145 Mice treated 
with MLT, metformin, and a combination of both showed 
significantly reduced number and size of skin tumors, along 
with reduced LPO levels.146 In another study, the endogen-
ous production levels of MLT metabolites, including 
6-hydroxyMLT (6(OH)M), N(1)-acetyl-N(2)-formyl 
-5-methoxykynuramine (AFMK), and 5-methoxytrypta-
mine (5MT), were estimated in various ethnic groups, 
such as African-Americans (30–50 years old), Caucasians 
(60–90 years old), and Caucasian women. The highest 
levels of MLT and AFMK were observed in African- 
Americans, particularly in the younger population, whereas 
6(OH)M and 5MT levels were similar in all groups. The 
effects of 6(OH)M, AFMK, and 5MT were also investi-
gated in normal human melanocytes. The results showed 
that MLT and its metabolites (10−5 M) inhibited tyrosinase 
activity, cell growth, and DNA synthesis in a dose- 
dependent manner.147 Another study showed that MLT 
effectively acts against UVR-induced epidermal damage, 
skin cancer, inflammation, and DNA photodamage by 
silencing Hsp70 in human keratinocytes, providing cellular 
resistance to such stressors. Furthermore, MLT inhibits the 
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pro-inflammatory and pro-apoptotic effects of UVR in nor-
mal human epidermal keratinocytes.148 MLT and its deri-
vatives protect against the UV-induced production ROS, 
6-4-photoproducts, and cyclobutane pyrimidine dimers in 
the skin, which further causes skin cell damage by stimu-
lating the expression of nuclear factor erythroid 2-related 
factor 2 and its target enzymes and proteins, which play an 
important role in cell protection from different damaging 
factors, including ultraviolet B (UVB). MLT and its meta-
bolites enhance DNA repair and p53 expression in mela-
nocytes exposed to UVB.149 However, MLT exhibited 
cytotoxic, genotoxic, apoptotic, and ROS generation- 
promoting effects in human epidermoid carcinoma cells 
(A-431) and human normal skin fibroblastic cells (CCD- 
1079Sk). The anticancer activity of MLT was significantly 
higher in cancer cells than in normal cells.150 The possible 
beneficial effects of MLT and its active derivatives against 
UVB was investigated via topical application of MLT, 
AFMK, or NAS in human and porcine skin ex vivo and 
in cultured HaCaT cells. Topical application of MLT and 
AFMK protected epidermal cells against UVB-induced 
oxidative DNA damage and apoptosis, and increased the 
expression of p53ser15; however, no effect was observed 
with NAS. MLT and its derivatives upregulated the expres-
sion of antioxidative enzymes after UVB radiation in 
HaCaT cells.151 In another study, to determine the combi-
natorial effect of MLT and vemurafenib on antitumor activ-
ities in patients with V600 BRAF mutant melanomas was 
investigated. The results showed that in mice with mela-
noma xenografts, MLT significantly and synergistically 
enhanced the vemurafenib-mediated inhibition of angio-
genic parameters and stemness weakening in melanoma 
cells. Mechanistic studies revealed that MLT enhanced the 
antitumor effect of vemurafenib by abrogating the nuclear 
translocation of NF-κB p50/p65 and their binding to iNOS 
and hTERT promoters, thereby suppressing the expression 
of iNOS and hTERT.152

Role and Therapeutic Potential of 
MLT in Liver Cancer
Liver cancer is the fourth leading cause of cancer death 
and the incidence and mortality rates of liver cancer are 
two to three times higher among men than among women 
in most world regions.2 The incidence rate is two-fold 
greater among men in developed countries. The main 
risk factors for HCC are chronic infection with hepatitis 
B virus or hepatitis C virus, aflatoxin-contaminated 

foodstuffs, heavy alcohol intake, obesity, smoking, and 
type 2 diabetes.153 Vaccine therapy against hepatitis 
B virus is one of the primary prevention therapies for 
liver cancer. To confirm the enhancement of the antitumor 
effect of IL-2 in the presence of MLT, concomitant admin-
istration of MLT and low-dose IL-2 was carried out in 
patients with cancer who had progressed during previous 
immunotherapy with IL-2 alone, including 14 patients 
with advanced solid tumors, 6 with lung cancer, 4 with 
kidney cancer, 2 with stomach cancer, 1 with liver cancer, 
and 1 with melanoma. IL-2 was administered at a daily 
dose of 3 million IU s.c. for 6 days/week for 4 weeks. 
MLT was administered orally at a daily dose of 40 mg 
every day, starting at 7 days prior to IL-2 administration. 
Tumor regression, as represented by partial remission, was 
achieved in 3/14 (21%) patients.154 Lissoni et al155 

designed a study to evaluate the efficacy of immunother-
apy with low-dose IL-2 plus MLT versus chemotherapy in 
patients with advanced NSCLC. The study included 60 
patients with locally advanced or metastatic NSCLC, 
who were randomized to receive immunotherapy IL-2 
(3 million IU/day subcutaneously for 6 days/week for 4 
weeks) or chemotherapy (cisplatin 20 mg/m2 and etopo-
side 100 mg/m2 intravenously each day for 3 days; the 
cycles of chemotherapy were repeated every 21 days until 
progression) and MLT (40 mg/day orally every day, start-
ing at 7 days before IL-2 administration). The results 
showed that there was no response achieved with che-
motherapy, whereas immunotherapy with low-dose IL-2 
plus MLT showed a better response and was better toler-
ated. Co-incubation of MLT at doses of 640 µM to 3 mM 
with ethanol and tamoxifen showed dose-dependent inhi-
bition of HEPA 1–6 mouse hepatoma cells, showing 
a significantly higher degree of inhibition than ethanol 
alone.156 In another study, HepG2 human hepatocarcinoma 
cells were treated with various concentrations of MLT 
(1000–10,000 µM) for 2, 4, 6, 8, and 10 days. MLT 
treatment induced apoptosis with increased caspase-3 
activity and poly(ADP-ribose) polymerase proteolysis, 
cytochrome c release, Bax upregulation, increased cas-
pase-9 activity, and concomitant activation of JNK, 1,-2 
and −3; moreover, the expression of p38, a member of the 
MAPK family, was upregulated by MLT treatment. The 
reduced cell proliferation and alterations in cell cycle were 
coincident with a significant increase in the expression of 
p53 and p21 proteins.157 MLT protects against organ 
damage induced by whole-body IR in Sprague-Dawley 
rats. The tissue levels of MDA in irradiated rats were 
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elevated, whereas GSH levels were reduced in all organs. 
On the contrary, MLT-treated rats showed decreased levels 
of MDA and myeloperoxidase activity, as well as 
increased levels of GSH. In conclusion, the antioxidative 
and free radical-scavenging properties of MLT reduced the 
oxidative stress induced by IR. Thus, supplementation of 
adjuvant therapy with MLT may have some benefit for 
successful radiotherapy in patients with liver cancer.143 In 
vivo studies reported that N-nitrosodiethylamine (NDEA)- 
injected Wistar male rats showed decreased bodyweight, 
macroscopic and microscopically detectable liver tumors, 
as well as increased levels of plasma aspartate transami-
nase, alanine transaminase, and alpha-fetoprotein. NDEA 
treatment decreased the levels of liver thiobarbituric acid 
reactive substances and the activity of catalase and super-
oxide dismutase, as well as increased the reduced levels of 
glutathione, glutathione peroxidase, and glutathione 
S-transferase in the liver. MLT-treated rats showed signifi-
cantly reduced tumor development and improvements in 
all the biochemical changes induced by NDEA.158 MLT 
inhibited the mTOR/Akt pathway in liver cancer and 
induced autophagy, protecting mouse hepatoma H22 cells 
against apoptosis.159 In another study, HepG2 cells and 
primary human hepatocytes were treated with MLT, and 
MLT showed pro-apoptotic effects via increased expres-
sion of the BH3-only protein Bim, increased transcrip-
tional activity of the forkhead-responsive element, 
decreased phosphorylation of FOXO3a at Thr(32) and 
Ser(253), and increased nuclear localization of 
FOXO3a.160 In HepG2 and SMMC-7721 cells, MLT pro-
moted apoptosis and downregulated survivin and XIAP 
expression, but had no effect on the expression of cIAP- 
1 and cIAP-2. These data suggest that the inhibition of 
survivin and XIAP is involved in reversing apoptosis 
resistance. Furthermore, MLT reduced the expression of 
COX-2 and inhibited AKT activation in HepG2 and 
SMMC-7721 cells.161 Cancer cell growth is dependent 
on the release of VEGF, and the level of VEGF is parti-
cularly higher in hypoxic conditions than in normoxic 
conditions. To investigate the antiangiogenic effect of 
MLT on HepG2 cells, the cells were treated with MLT 
under normoxic or CoCl2-induced hypoxic conditions. 
MLT at a pharmacological concentration (1 mM) decreases 
cellular and secreted VEGF levels and prevents HUVEC 
tube formation under hypoxia, which is associated with 
a reduction in Hif1α protein expression, nuclear localiza-
tion, and transcriptional activity. MLT exerts an antiangio-
genic effect in HepG2 cells by interfering with the 

transcriptional activation of VEGF via Hif1α and 
STAT3.162 In another study, the susceptibility of HCC 
cell lines, such as HepG2, HuH7, and Hep3B cells, to 
sorafenib was investigated. Sorafenib at 1 μmol/L inhib-
ited the cell viability of HepG2 or HuH7 cells, and sor-
afenib 2.5 μmol/L inhibited the cell viability of Hep3B 
cells. However, co-administration of MLT and sorafenib 
led to a synergistic cytotoxic effect on HepG2 and HuH7 
cells, and Hep3B cells showed susceptibility to doses of 
sorafenib that had no effect when administered alone. The 
combinatorial effect of MLT and sorafenib increased ROS 
production and mitochondrial membrane depolarization, 
which is the major factor responsible for mitophagy 
induction.163 Subsequently, another study suggested that 
co-treatment with MLT and sorafenib significantly 
decreased the clonogenicity of HuH-7 cells compared 
with treatment with a single agent. Furthermore, MLT 
synergistically augmented sorafenib-induced apoptosis, 
which is associated with the activation of caspase-3 and 
the JNK/c-Jun pathway.164 MLT strongly inhibited the 
proliferation, migration, and invasion capacities of Huh7 
and HepG2 cells, and noticeably induced the expression of 
let7i-3p miRNA in the cells. Transfection of cells with 
let7i-3p significantly reduced RAF1 expression and acti-
vated the MAPK signaling downstream from RAF1. These 
findings revealed that MLT inhibits HCC progression by 
modulating let7i-3p-mediated RAF1 suppression.165 

A recent study suggested that MLT supplementation 
reduced the disrupted structure and function of the liver 
and mitochondria in nonalcoholic fatty liver disease by 
ceasing the fission and activation of mitophagy via inhibi-
tion of the NR4A1/DNA-PKcs/p53 pathway, resulting in 
improved mitochondrial and liver function in nonalcoholic 
fatty liver disease.166 Lung cancer metastasis was poten-
tially inhibited by MLT via blocking of EMT. This effect 
of EMT is mediated by the MT1 receptor, PLC, p38/ERK, 
and β-catenin signaling cascades.39 MLT is able to prevent 
carcinogenesis and as a promising treatment option for the 
primary liver tumors hepatocellular carcinoma (HCC) and 
cholangiocarcinoma (CCA), either alone or in combination 
with other compounds.167 Several studies reported that 
MLT plays significant role in various functions such as 
endocrine, neural, immune and antioxidant functions both 
receptor dependent and independent manner.168 MLT inhi-
bits HepG2 and Hep3B proliferation and cell cycle pro-
gression via affecting the cell cycle-associated proteins. 
MLT potentiates cisplatin-induced apoptosis associated 
with upregulated caspase-3 and poly ADP-ribose 
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polymerase (PARP) cleavage, as well as Bcl-2 expression. 
Furthermore, MLT inhibits glucose uptake and ATP pro-
duction via downregulation of Glucose transporter 3 
(GLUT3).169 Impairment of circadian rhythms associated 
with various liver diseases, and disruption of rhythms or 
clock gene expression may promote liver steatosis, inflam-
mation, or cancer development. Due to antioxidative prop-
erties of MLT protects oxidative stress-induced liver 
damage and improves liver conditions and also it restored 
circadian rhythms. Hence, MLT could be promising ther-
apeutic strategies for liver diseases.170

Role and Therapeutic Potential of 
MLT in Cervical Cancer
Among women, breast cancer is the most commonly diag-
nosed cancer and the leading cause of cancer death, and 
cervical cancer ranks fourth in terms of incidence and 
mortality. Cervical cancer leading in most 28 of 31 coun-
tries and is the leading cause of cancer death in 42 
countries.2 There were estimated to be 570,000 cases of 
cervical cancer and 311,000 deaths due to cervical cancer 
worldwide in 2018. This disease ranks as the fourth-most 
frequently diagnosed cancer and the fourth leading cause 
of cancer death in women. Cervical cancer ranks second 
after breast cancer in terms of incidence and mortality in 
lower HDI settings.2 However, the mortality rate is sig-
nificantly decreased in developed countries owing to early 
diagnosis and prevention. The main cause of cervical 
cancer is infection by the human papillomavirus (HPV), 
with other external factors, various biochemical altera-
tions, as well as genetic and epigenetic changes also con-
tributing to the initiation and development of cervical 
cancer.171,172 Current treatment options for cervical cancer 
include chemotherapy, surgical ablation, and radiotherapy. 
In a multicenter study of endometrial cancer in Austria, 
138 women were evaluated for anamnestic, serologic, and 
cytologic risk factors. Among the 138 patients, 68 were 
diagnosed with endometrial cancer, and 70 patients had 
abnormal bleeding, irrespective of age and menopausal 
status. Further studies showed a correlation between the 
concentration of MLT and endometrial cancer. The mean 
plasma MLT value was 6.1 pg/mL in the cancer-positive 
group and 33.2 pg/mL in the cancer-negative control 
group, showing a six-fold difference between the two 
groups. The study concluded that decreasing MLT plasma 
levels may be an indicator of endometrial cancer.173 

Another study was conducted to determine the correlation 

between serum MLT level and women suffering from 
genital tract cancers, in which 46 women were divided 
into three groups. The first group consisted of 23 patients 
with malignant tumors of the genital tract. The second 
group consisted of 16 healthy volunteers who served as 
the first control group, whereas the third group consisted 
of 7 subjects who had a myomatous uterus and served as 
the second control group without malignancy. The results 
from this study showed that there were no significant 
differences in circadian MLT profiles among the three 
groups studied. However, the level of MLT was signifi-
cantly lower in patients with endometrial cancer of the 
genital tract compared with tumor-free control groups, 
and there were no significant differences in MLT secretion 
between tumor-free control groups and patients with inva-
sive ovarian cancer and squamous cervical cancer. 
However, significant differences were observed between 
endometrial cancer and invasive ovarian cancer.174 After 5 
years, the same research group reported serum MLT circa-
dian profiles in women suffering from cervical cancer. The 
first group consisted of 31 patients with cervical cancer in 
various stages of the disease. The second group consisted 
of 14 healthy volunteers who served as the control group. 
MLT levels were significantly lower in patients with can-
cer than in healthy individuals. Moreover, nocturnal MLT 
concentrations and the area under the curve were signifi-
cantly lower in patients with advanced-stage cancer than in 
those with preinvasive cancer. The findings from this study 
indicate that the presence of cervical cancer affects MLT 
levels in women. Furthermore, MLT level depends on the 
stage of cancer.175

A study was conducted to determine the inhibitory 
effect of MLT on 7.12-dimethylbenz[a]anthracene 
(DMBA)-induced carcinogenesis in the uterine cervix 
and vagina of mice and in vitro. Forty female CBA mice 
were exposed to intravaginal polyurethane sponges incor-
porating 0.1% solution of DMBA for 2 months at an 
interval of twice per week. Starting from the day of the 
first DMBA application, a part of the mice was exposed to 
MLT in tap water (20 mg/L) at night five times a week for 
4 months. The results revealed that DMBA-treated mice 
developed malignancies in the vagina and cervix uteri, and 
two mice developed benign cervical tumors. There were 
no malignancies in the vagina and uterine cervix of mice 
exposed to both DMBA and MLT. Thus, this study con-
cluded that MLT inhibits cervical and vaginal carcinogen-
esis induced by DMBA in mice.176 In addition, an in vitro 
study was performed to examine the effects of MLT on 
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ME-180 human cervical cancer cells. The cells were trea-
ted with various concentrations of MLT, and cell viability 
and proliferation were examined. MLT at 2 mM inhibited 
cell growth after 48 h of treatment, decreasing the levels of 
glutathione up to 95%, but exhibited no effect at concen-
trations of 2 µM and 0.1 mM.177 Another study reported 
the combined effect of MLT with various chemotherapeu-
tic agents, including cisplatin, 5-FU, and DOX. MLT sig-
nificantly induced cytotoxic effects in cervical cancer cells 
with all the chemotherapeutic agents tested. Furthermore, 
MLT increased caspase-3 activation, particularly in cispla-
tin- and 5-FU-challenged cells. Likewise, co-treatment 
with MLT and cisplatin significantly induced ROS genera-
tion and mitochondrial apoptosis, and markedly increased 
DNA fragmentation compared with treatment with cispla-
tin alone.178 MLT or combination of MLT and zinc ame-
liorated DMBA induced brain cortex tissue damage in 
DMBA-induced breast cancer.70

The potential anticancer activity of a combination of 
MLT with either cisplatin or 5-FU, as well as the invol-
vement of MT1, −2, and −3 receptors were investigated 
in HT-29 human colorectal cancer cells and HeLa cer-
vical cancer cells. The results showed that co-treatment 
with MLT and either cisplatin or 5-FU significantly 
reduced cell viability in both HT-29 and HeLa cells. 
Furthermore, MLT significantly increased the cytotoxic 
effect of 5-FU through the activation of caspase-3. 
Blockade of MT1 and/or MT2 receptors with luzindole 
was unable to reverse the enhanced apoptotic effects of 
chemotherapeutic agent in combination with MTL. In 
contrast, when MT3 receptors were blocked with prazo-
sin, the synergistic effect of MLT with chemotherapeutic 
effect was reversed. The findings from this study 
revealed that MLT potentiates the cytotoxic and pro- 
apoptotic effect of chemotherapeutic agents in both 
cell lines, and this effect is mediated by MT3 receptor 
stimulation.179 To determine the effect of TNF-α- 
mediated cell death in the presence of MLT, HeLa 
cells were incubated with TNFα, and cell death was 
then determined. MLT induced cancer cell death in the 
presence of TNF-α via the activation of caspase-9, 
reduction of mitochondrial potential, elevated ROS pro-
duction, reduction of ATP production, and elevation of 
cyt-c expression in the nucleus. In addition, MLT 
increased the response of HeLa cells to TNF-α- 
mediated cancer death by repressing mitophagy.180 

Wang et al reported that SGK1 is an anti-oxidative 
factor that promotes survival of cervical cancer 

cells.181 Further a strong inverse association between 
SGK1 and oxidative phosphorylation. Inhibition of 
SGK1 confers susceptibility to MLT as a pro-oxidant, 
resulting increased level of ROS and eventually 
increased cell cytotoxicity. Chen et al182 studied the 
effect and mechanism of MLT on HeLa cells apoptosis 
under cisplatin (CIS) treatment.182 Co-treatment of MLT 
and CIS increases apoptosis through caspase-9-related 
apoptosis and decreasing level of lower mitochondria 
membrane potential, higher mitochondria ROS, and 
expression of higher level of pro-apoptotic proteins 
compared to the treatment with CIS alone.

Role and Therapeutic Potential of 
MLT in Ovarian Cancer
Ovarian cancer begins as abnormal, out-of-control multi-
plication of cells in the ovary, leading to tumor formation. 
Ovarian cancer is one of the most common causes of 
morbidity related to gynecologic malignancies. Possible 
risk factors include hereditary ovarian cancer, obesity, 
diabetes mellitus, alcohol consumption, aging, and smok-
ing. Current treatments for ovarian cancer include surgery, 
chemotherapy, and combination therapy.183 Ovarian can-
cer is the seventh most common cancer, and the eighth 
most common cause of death due to cancer in women 
worldwide. Among gynecological cancers, cervical cancer 
and endometrial cancer represent the greatest burden in 
developing and developed countries, respectively. 
However, the rate of death due to ovarian cancer is almost 
twice higher in developed countries than in developing 
countries. The population with the highest rate of diagno-
sis per year is China (34,575), followed by India (26,834) 
and the USA (20,874) (World Ovarian Cancer Coalition 
2018; http://www.cancer.org.au). To measure the steady- 
state level of MLT, epidemiological studies of prostate, 
lung, colorectal, and ovarian cancer were carried out by 
measuring the serum level of MLT in 97 individuals. The 
Pearson correlation coefficients between the two measures 
separated by 1 year and 5 years were 0.87 and 0.70, 
respectively. Further, the environmental effect of MLT 
levels was measured in 130 individuals during winter 
and summer. The results showed that the level of MLT 
was slightly higher in winter (6.36±0.59 pg/mL) than in 
summer (4.83±0.62 pg/mL).184 Clinical trials suggested 
that the use of MLT as an adjuvant with chemotherapy 
decreased 1-year mortality and reduced chemotherapy- 
induced symptoms, such as asthenia, leucopenia, nausea, 
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vomiting, and hypotension, whereas a nested case-control 
study showed no obvious association between urinary 
MLT level and ovarian cancer risk.185,186

IL-2 immunotherapy is a beneficial therapy for the 
treatment of recurrent advanced ovarian cancer. 
Interestingly, MLT can amplify IL-2 efficacy by counter-
acting macrophage-mediated immunosuppression. A pilot 
Phase II study investigated the efficacy of treatment with 
low-dose IL-2 plus MLT in patients with advanced ovarian 
cancer. Patients were injected with IL-2 subcutaneously at 
3 million IU/day at 6 days/week for 4 weeks, and MLT 
was administered orally at 40 mg/day. Using this protocol, 
a partial response was achieved. This study suggests that 
immunotherapy with low-dose IL-2 plus MLT may be 
a well-tolerated and promising therapy for advanced ovar-
ian cancer progressing on standard medical treatments.187 

In another phase II study, the same author investigated the 
efficacy of combination therapy with tamoxifen (TMX) 
plus MLT in patients with metastatic solid tumors. The 
results showed that oral supplementation with these two 
drugs increased the performance and survival of patients. 
This study suggested that the combination of TMX plus 
MLT has a beneficial effect on untreatable metastatic solid 
tumors.188 In another study, primary cells from seven 
ovarian and six mammary tumors were incubated with 
YC05R pineal extract and chemotherapeutic drugs. 
YC05R pineal extract inhibited the growth of all tumors 
in a dose-dependent manner. Both MLT and pineal extract 
inhibited cell growth depending on the cell types derived 
from individual cases. None of the primary cells 
responded in a similar manner. The study concluded that 
MLT is an inhibitor of human mammary and ovarian 
carcinoma in individual cases, and that the pineal gland 
contains active antitumor substances that inhibit both 
mammary and ovarian tumors.22 A clinical study showed 
that MLT secretion was lower in patients with endometrial 
cancer compared with that in tumor-free control groups; 
however, significant differences in MLT secretion were 
observed between endometrial cancer and invasive ovarian 
cancer.174 Kim et al189 investigated the combined effect of 
MLT and cisplatin in human ovarian cancer cells. The 
results showed that MLT alone had no significant inhibi-
tory effect on cell viability, proliferation, and death. 
However, its combination with cisplatin synergistically 
inhibited the viability of SK-OV-3 cells by increasing the 
sub-G1 DNA content, TUNEL-positive cells, and caspase 
3 levels, as well as inhibited the phosphorylation of ERK 
and the dephosphorylation of 90-kDa ribosomal S6 kinase 

(p90RSK) and heat shock protein 27 (HSP27) induced by 
cisplatin. Furthermore, MLT in a combination with cispla-
tin remarkably blocked the expression and colocalization 
of p90RSK and HSP27. MLT protects against cisplatin- 
induced cytotoxicity in OSEN normal ovarian epithelial 
cells. Collectively, these findings suggest that MLT 
enhances cisplatin-induced apoptosis via the inactivation 
of the ERK/p90RSK/HSP27 cascade in SK-OV-3 cells as 
a potent synergist to cisplatin treatment. MLT suppresses 
the TLR4-mediated inflammatory response through 
MyD88- and TRIF-dependent signaling pathways in an 
in vivo model of ovarian cancer. Furthermore, it sup-
presses the expression level of various proteins, including 
nuclear factor kappa B (NF-kB p65), inhibitor of NF-κB 
alpha (IkBα), IkB kinase alpha (IKK-α), TNF receptor- 
associated factor 6 (TRAF6), TRIF, interferon regulatory 
factor 3 (IRF3), interferon β (IFN-β), TNF-α, and IL-6.190 

The effect of MLT on follicle development and oocyte 
maturation was investigated by exposing in vitro cultured 
mouse vitrified–warmed ovarian follicles to 10 pmol MLT. 
The results showed significant increases in follicle survival 
and diameter compared with those in the control group.191 

MLT regulates anticancer activity through receptor 
mediated and activation of various signaling cascades in 
ovarian cancer cells (Figure 7). The levels of IL-6 in 
saliva, serum, and bronchoalveolar lavage fluid (BALF) 
and its family members playing significant role in diag-
nosis, prognosis of relapse-free survival and recurrence 
and IL-6 serving as biomarker of cancer.192 The apoptotic 
effect of MLT in ovarian cancer was studied by analyzing 
the expression of several pro-apoptotic and anti-apoptotic 
proteins in an ethanol-preferring rat model. To induce 
ovarian cancer, the left ovary was injected directly with 
a single dose of 100 μg DMBA dissolved in 10  μL of 
sesame oil under the bursa, and the right ovaries were used 
as sham-surgery controls. The rats that developed ovarian 
cancer showed no significant change in body weight gain, 
ethanol consumption, and energy intake. Interestingly, the 
absolute and relative masses of ovarian cancer were 
reduced after exposure to MLT, regardless of ethanol con-
sumption. In addition, MLT therapy and ethanol intake 
promoted apoptosis, upregulation of p53, Bax, and cleaved 
caspase-3, and DNA fragmentation.193 MLT inhibits the 
growth of human ovarian cancer cells, such as OVCAR- 
429 and PA-1 cells, via accumulation of cells in the G1 
phase, which is associated with the downregulation of 
CDK 2 and 4.194 After chemotherapy, the ovaries became 
pre-matured, and follicle loss occurred. To elucidate the 
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mechanism, Jang et al195 revealed that MLT prevented 
cisplatin-induced disruption of the follicle reserve by 
decreasing the cisplatin-mediated inhibitory phosphoryla-
tion of PTEN and cisplatin-induced phosphorylation of 
AKT, GSK3β, and FOXO3a, all of which trigger follicle 
activation. In addition, MLT inhibited the inhibitory effect 
of cisplatin on the phosphorylation and nuclear export of 
FOXO3a, which is required in the nucleus to maintain the 
dormancy of primordial follicles. These studies provide 
evidence that MLT exerted a protective effect against 
cisplatin-induced follicle loss by preventing the phosphor-
ylation of PTEN/AKT/FOXO3a pathway members. 
Therefore, the authors concluded that MLT is a potential 
therapeutic agent that could protect the ovary and help 
preserve fertility during chemotherapy in women with 
cancer.

Circadian rhythms play an important role in ovarian 
cancer, and night shift workers are more prone to 

developing gynecological cancers. Therefore, a study was 
conducted to elucidate the effect of MLT on the seasonal 
distribution of birth. MLT was measured in 96 women 
with ovarian cancer and 40 healthy women. In addition, 
277 women with ovarian cancer and 1076 controls were 
retrospectively enrolled for the analysis of seasonal dis-
tribution of birth over a 7-year period. The analysis 
revealed that MLT levels in the serum of women with 
ovarian cancer were significantly lower than those in 
healthy women, but there was no significant difference in 
seasonal distribution of birth between patients with ovar-
ian cancer and the control group. The findings of the study 
reveal that MLT levels are not associated with the seasonal 
distribution of birth. Interestingly, a lower level of MLT is 
a major factor in the pathogenesis of ovarian cancer.14 To 
provide evidence of the antiangiogenic effect of MLT on 
ovarian cancer, rats were induced with serous papillary 
ovarian cancer, and half of the animals received 

Figure 7 Molecular mechanism of anticancer activity of MLT on ovarian cancer.
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intraperitoneal injections of MLT (200 µg/100 g body 
weight/day) for 60 days. MLT-treated animals showed 
a significant reduction in ovarian cancer size and micro-
vessel density. Serum MLT level was significantly higher, 
and the expression of its receptor MT1 was significantly 
increased in ovarian cancer-bearing rats, regardless of 
ethanol intake. After exposure to MLT, the expression of 
TGFβ1, VEGFR1, and VEGFR2.196 Co-administration of 
MLT and ghrelin inhibits cisplatin-induced follicle disrup-
tion by restoring the number of primordial follicles and 
corpus luteum in cisplatin-treated ovaries, compared with 
single administration. MLT and ghrelin co-administration 
inhibited cisplatin-induced phosphorylation of PTEN and 
FOXO3a, which induces cytoplasmic translocation of 
FOXO3a.197 CSCs play a critical role in resistance to 
chemotherapy. Therefore, the effect of MLT was investi-
gated in CSCs isolated from SKOV3 ovarian cancer cells. 
MLT inhibited the invasiveness and migration of CSCs 
compared with those of SKOV3 cells and inhibited the 
proliferation of CSCs by 23%, which was confirmed by 
a marked decrease in the protein expression of Ki67 and 
decreased expression of EMT-related genes, including 
ZEB1, ZEB2, Snail, and vimentin.198 A study from 
mouse model demonstrated that chronic restraint stress 
(CRS) stimulated the abdominal implantation metastasis 
of epithelial ovarian cancer (EOC) cells and the expression 
of epithelial-mesenchymal transition-related markers. 
MLT effectively reduced the abdominal tumor burden of 
ovarian cancer induced by CRS.199

Mechanisms of the Anticancer 
Activity of MLT
MLT is a naturally produced hormone that can be used as 
an adjuvant in cancer treatments. In particular, MLT is 
associated with sexual hormones steroidogenesis in 
breast, ovarian, and prostate cancers. MLT, an anti- 
estrogenic agent, regulates the levels and modulates the 
transcriptional activity of the ER and AR, depending on 
exposure to light at night. MLT potentially synergizes 
with chemotherapeutic agents, thus facilitating the use of 
lower doses of chemotherapeutic agents and leading to 
the prevention of the undesirable detrimental side effects 
of chemo- and radiotherapy. Clinical trials have proved 
the ability of MLT to enhance the therapeutic effect of 
various anticancer drugs and to improve the sleep and 
life quality of patients with cancer. MLT potentially acts 
as a metastasis inhibitor by inhibiting the proliferation 

and autonomous growth of tumor cells; moreover, MLT 
selectively blocks the signal transduction pathways of 
tumor cells.99,200

The anticancer and anti-angiogenic activity of MLT in 
cancer is mediated by various mechanisms, including 
membrane receptor-dependent and -independent mechan-
isms (Figure 8). Angiogenesis is an important event in 
cancer progression and development. Generally, tumor 
cells stimulate angiogenesis by activating angiogenic fac-
tors and inhibiting antiangiogenic factors.201,202 VEGF is 
one of the critical factors for angiogenesis. In fact, mice 
treated with MLT showed disrupted tumor blood vessel 
formation and decreased serum levels of VEGF.203–205 

Administration of MLT reduced serum VEGF levels in 
patients with cancer metastasis, and the protein and 
mRNA levels of VEGF were decreased in pancreatic car-
cinoma cells.116,206 Via its direct anticancer mechanism, 
MLT can inhibit the proliferation and growth of tumor 
cells, prevent healthy cells from becoming neoplastic, 
and induce cellular turnover and replacement of tumor 
cells with healthy cells through activation of caspase- 
dependent apoptosis.207,208 MLT exhibited an oncostatic 
mechanism through the activation and upregulation of 
p21/WAF1 and p53 suppressor genes, which halt the 
reproduction cycle of tumor cells, and physiological con-
centrations of MLT reduced the number and vitality of the 
tumor cells via pro-apoptotic pathways.58,209 MLT exhib-
ited not only receptor-mediated antitumor activity but also 
complex antitumor mechanisms, including activation of 
apoptosis as well as inhibition of proliferation and cell 
differentiation, all of which depend on the physiological 
concentrations of MLT and the intracellular redox state.210 

Tumor death depends on the ability to induce either an 
antioxidant environment, which facilitates an antiprolifera-
tive effect, or a pro-oxidant environment related to the 
cytotoxic effect.210 The antiproliferative action of MLT is 
associated with decreased levels of intracellular ROS and 
increased sub-cellular antioxidant enzymes, and the occur-
rence of programmed cell death is induced by increased 
levels of ROS and decreased levels of antioxidant 
defenses.211

The oncostatic action of MLT plays a critical role in 
metastasis, which is a major cause of death in various 
cancers and is correlated with the regulation of cell-cell 
and cell-matrix interactions, extracellular matrix remodel-
ing by matrix metalloproteinases, cytoskeleton reorganiza-
tion, EMT, and angiogenesis.10 The combination of MLT 
and arsenic trioxide synergistically killed cancer cells 
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through activation of the apoptotic pathway, increased 
production of intracellular ROS, upregulation of Redd1 
expression, and activation of the p38/JNK (c-JUN- 
N-terminal kinase) pathway in human breast cancer 
cells.212 Similarly, the combination of MLT and puromycin 
synergistically increased cell death in MDA-MB 231 
breast cancer cells via the reduction of 45S pre-rRNA 
and downregulation of the upstream binding factors 
XPO1 and IPO7, procaspase 3, and Bcl-xL.213 The antic-
ancer activity of MLT depends on activation of signal 
transduction processes of the MT1 and MT2 membrane 
receptors and antioxidant activities, inhibition of enzymes 
involved in carcinogenesis, reversal of the Warburg effect, 
telomerase-inhibitory action, induction of epigenetic pro-
cesses, and anti-inflammatory effect.11 The in vitro and 
in vivo effects of melatonin on various type of cancers 
were shown in Table 1.

Conclusion and Future Perspectives
Cancer is a group of diseases characterized by uncontrolled 
growth and spread of abnormal cells. The incidence and 

mortality rates of cancer have increased immensely. MLT is 
a multifunctional pineal hormone produced by the pineal gland 
that not only regulates the circadian rhythm but also has multi-
ple functions, including antioxidant, anti-inflammatory, antia-
ging, immunomodulatory, anti-estrogenic, anti-proliferative, 
anti-metastatic, pro-apoptotic, antiangiogenic, pro- 
differentiation, and anti-carcinogenic, anti-tumor, and antic-
ancer effects. There is a large body of evidence from experi-
mental and clinical studies suggesting that MLT has the 
potential to exhibit anticancer activities, such as apoptotic, 
oncostatic, anti-proliferative, and antiangiogenic effects, 
against all solid and liquid tumors. MLT mitigates cancer at 
the initiation, progression, and metastasis phases. The involve-
ment of MLT in activating various anticancer mechanisms in 
various types of cancers makes it an important physiological 
anticancer agent. In this review, we comprehensively presented 
the most important and significant data on the history, epide-
miology, risk factors, therapeutic efficacy, clinical significance, 
and anticancer mechanism of MLT. Further, we discussed the 
anticancer mechanism of MLT in cancers. However, to date, 
the molecular mechanism of the anticancer activity of MLT 

Figure 8 Ubiquitous anticancer and antiangiogenic effect of MLT.
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Table 1 The in vitro and in vivo Effects of Melatonin on Various Type of Cancers

Type of 
Cancer

Type of Experiments 
Performed

Objective of the Study Significance of the Study Reference

Lung Tumor inoculation and melatonin 

treatment (1.25 mg/kg/night) were 

performed 2 months after 

pinealectomy

Female BD2F1 mice with subcutaneous 

propagation of Lewis lung carcinoma

Melatonin treatment decreased metastasis with 

consequent restoration of thymic efficiency

[214]

Lung 30 NSCLC patients before and after 

treatment with standard 

chemotherapy (cisplatin plus 

vinorelbine) and 63 healthy 

volunteers

Melatonin levels were measured in blood and 

urine samples

Melatonin, its precursor tryptophan, and its 

major metabolite, 6-sulfatoxymelatonin 

concentrations were significantly lower in 

cancer patients, in comparison with healthy 

subjects

[215]

Lung 17 patients with stages I and II of 

untreated NSCLC, 17 patients with 

stages III and IV of untreated 

NSCLC, and 17 controls

Melatonin level was measured in blood 

samples

Melatonin levels were lower in the patients 

with NSCLC than in normal subjects

[216]

Lung SK-LU-1 NSCLC cell line Cells were treated with Melatonin (1, 2 mM) + 

cisplatin (10–200 μM) (48 h in culture)

Melatonin potentiate the effect of cisplatin and 

reduce the IC50 concentration of cisplatin

[38]

Lung A549 cells and healthy human 

lymphocytes

Combination of melatonin (50 μM) and 

various concentrations of irinotecan (7.5, 15, 

30, and 60 μM)

The combination treatment specific to cancer 

cells not healthy lymphocytes

[118]

Lung A549 cells Melatonin (0.1, 1 mM) + doxorubicin (0.1, 1 

microg/mL)

Melatonin increases cytotoxicity and apoptosis 

with doxorubicin

[217]

Lung Female C57B/6 mice with 

subcutaneous propagation of Lewis 

lung carcinoma H1299 and A549 

cells

Melatonin (1 mg/kg) + cyclophosphamide (40, 

160 mg/kg) + etoposide (20, 40 mg/kg)

Melatonin can rescue myeloid progenitor cells 

from chemotherapy-induced apoptosis

[218]

Lung H1299 and A549 cells Melatonin (1 mM) + berberine (20μM to 200 

μM)

Melatonin sensitized NSCLC cells to berberine 

and enhanced apoptosis

[219]

Lung Untreatable metastatic NSCLC or 

GI cancers (No of patients 846)

Melatonin (20 mg/day) + IL-2 (3 million IU/day, 

5 days/week, 4 weeks) + supportive care

The combination treatment reduces tumor 

regressions

[220]

Lung Advanced lung adenocarcinoma 

No of patients 23

Melatonin (20 mg/day) + somatostatin 

(1–3 mg/day) + Retinoids (5 mL) + Vitamin 

D (0.3 mg/day) + bromocriptine (2.5 mg/day) + 

cyclophosphamide (150 mg/day)

Combination treatments increases 95 days of 

survival of patients

[221]

Lung Untreated metastatic NSCLC (No 

of patients 147)

Melatonin (20 mg/day) + cisplatin plus 

etoposide or gemcitabine

Combination treatment increases over all 

survival of patients for 2 years and also tumor 

regression was observed

[34]

Lung Untreated metastatic NSCLC (No 

of patients 100)

Melatonin (20 mg/day) + cisplatin (20 mg/m2/ 

day) + etoposide (100 mg/m2/day)

Overall survival of patients was increased and 

also tumor regression rate was observed 

The percent of 1-year survival was significantly 

higher in patients treated with melatonin plus 

chemotherapy

[32]

Lung Advanced NSCLC Melatonin (20 mg/day) + cisplatin (20 mg/m2/ 

day) + etoposide (100 mg/m2/day)

The inhibitory action of melatonin on 

mammary cancer estrogen-positive cell lines is 

depends on its ability to regulate either the 

synthesis of estrogens or estrogen signaling 

pathways

[222]

(Continued)
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Table 1 (Continued). 

Type of 
Cancer

Type of Experiments 
Performed

Objective of the Study Significance of the Study Reference

Breast In vitro Cancer estrogen-positive cell lines treated 

with 1nM melatonin 

1nM melatonin

Decreases the levels of ERα in in vitro 

experiments in MCF-7 cells

[223]

Breast In vitro MCF-7 cells treated with (1 nM) Combination of melatonin and troglitazone 

induces apoptosis in MDA-MB-231

[224]

Breast In vitro Melatonin (1mM) and troglitazone Combination of melatonin and DMBA reduced 

tumor incidence and decreased the quantity of 

invasive and in situ carcinomas in a rat model

[225]

Breast In vivo Melatonin (500 mg/day, 2 weeks prior to 

DMBA during 20 weeks, injected at late 

afternoon) and resveratrol

Combined with doxorubicin, and melatonin 

enhanced cancer cells apoptosis in vivo in rats 

bearing breast tumors and also increases 

survival rate.

[226]

Breast In vivo The animals treated with both doxorubicin 

plus melatonin (10 mg/kg of body weight, daily 

injected during 15 days)

Increases survival rate and reduce tumor level [227]

Breast In vitro MCF-7 cells treated with doxorubicin and 

melatonin

Combination of doxorubicin and melatonin had 

a synergic effect on apoptosis and 

mitochondrial oxidative stress.

[228]

Prostate In vivo Rats were treated with melatonin (dose of 

150 mg/100 g of body weight, administered for 

4 weeks)

Melatonin treated rats showed significant 

decrease in the ventral prostate weight in 

castrated and castrated-testosterone-treated 

rats

[229]

Prostate In vitro Prostate cancer cells treated with, 

a physiological dose of melatonin (1 nM)

Melatonin treatment attenuated the growth of 

the human androgen-sensitive prostatic tumor 

cell line LNCaP in vitro

[230]

Breast In vitro Breast cancer cell lines CMT-U229 and MCF-7 

treated with 1mM melatonin

Inhibits metastasis [64]

Breast In vitro MCF-7/6, MCF-7/Her2.1, and MCF-7/CXCR4 

cells treated with 10–9 M of melatonin

Inhibiting cancer cell invasion by down- 

regulation of the p38 pathway and suppression 

of MMP-2 and −9 expression and activity

[227]

Breast In vivo Athymic nude mice treated with melatonin at 

concentration of 40 mg/kg

Melatonin inhibits angiogenesis by reducing cell 

proliferation and tumor size

[231]

Breast In vivo BALB/C mice were treated with melatonin 

33mg/L

Melatonin decreases tumor size by the 

mechanism regulation global DNA methylation

[232]

Prostate In vivo Mice were treated with 4 nM of melatonin Melatonin inhibits angiogenesis and inhibits 

growth

[96]

Prostate In vivo Mice were treated with 10 and 20 mg/L Melatonin inhibits tumorigenesis by 

suppressing SIRT1 activity

[233]

Ovarian 

cancer

In vitro Ovarian cancer cell lines such as OVCAR-429 

and PA-1 cells treated with various 

concentrations of 400, 600, and 800 μM 

melatonin

Inhibiting angiogenesis by delay of G1/S via 

down-regulation of CDK2 and 4

[194]

(Continued)
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against different types of cancer is unclear, and the fundamen-
tal action mechanism of MLT remains to be elucidated. MLT 
regulates cancer in a receptor-dependent and -independent 
manner. The unique feature of MLT is that it inhibits the 
entry of cancer cells into the vascular system and prevents 
them from metastasizing to distant sites. Considering the 
wide range of the pleiotropic beneficial effects of MLT both 
in vitro and in vivo, MLT is a good candidate for further 
research to determine its role in various types of cancer.

Although several studies have reported that MLT has 
several beneficial anticancer activities, still it has some 
minor side effects such as drowsiness, dizziness, head-
aches, as well as nausea and apathy combined with 
weight gain. Long term administration of MLT decreases 
semen quality and motility. Increased level of MLT 
causes damage to retinal photoreceptors. Hence, future 
research is still needed to fully elucidate its anticancer 
mechanisms and safety measurement of usage. Several 
studies have reported that MLT has several beneficial 
anticancer activities, future research is still needed to 
fully elucidate its anticancer mechanisms. It is well 
known that MLT has dual actions, namely pre-apoptotic 
and anti-apoptotic actions. For example, the anti- 
apoptotic effect is observed in not only cancer cells but 
also normal cells; therefore, the differential mechanism 
needs to be addressed between normal and cancer cells, 
and the elusive function of MLT in cancer treatment 
needs to be further studied. Moreover, studies are 
required to achieve consistent and uniform responses 
and to eliminate ambiguity. At this juncture, researchers 
from different institutes at similar times can use various 
parameters including different types of cell lines, doses 

(physiological, pharmacological, and toxicological dose 
of MLT), incubation conditions, treatment duration, and 
passage number of treated cells for specific functions 
with specific targets. Further clinical studies are required 
to focus on enhancing the capacity of MLT in reducing 
the undesired detrimental effects of anticancer drugs. 
Another important and vital aspect, future studies are 
required to solve the inconsistency of the results derived 
from epidemiological studies. This might be caused by 
the use of different kinds of samples, sample collection 
times, and assessment methods of MLT. Therefore, dif-
ferent assessment methods for MLT need to be compared, 
and the most reliable one should be adopted in future 
studies. Furthermore, the most appropriate sample collec-
tion time must be determined based on the quantity of 
MLT in human samples. Experimental studies can be 
designed to explore the link between anticancer activity 
of MLT with autophagy and mitochondrial dysfunctions. 
Further investigations are essential to evaluate methods 
of MLT assessment to avoid discrepancies in various 
clinical studies or ethnic groups, with a focus on long- 
term analysis. This study is necessary to address the link 
between circadian dynamics of MLT secretion and cancer 
prevalence. Clinical trials are warranted to determine the 
ability of MLT in enhancing the efficacy of anticancer 
drugs. Most importantly, studies need to address the 
oncostatic effect of MLT via direct administration of 
MLT to patients with cancer to determine the dosage 
and long-term safety of MLT and the precise role of 
MLT in human physiology, especially in relation to can-
cer. Furthermore, more studies are required to completely 
elucidate the oncogenic and anticancer effects of MLT 

Table 1 (Continued). 

Type of 
Cancer

Type of Experiments 
Performed

Objective of the Study Significance of the Study Reference

Ovarian 

cancer

In vivo Rats were treated with 200 μg/100 

g melatonin

Reducing tumor size and apoptosis by various 

mechanisms such as upregulation of p53, BAX, 

and cleaved caspase-3, and enhancement of 

DNA fragmentation; attenuating the TLR4- 

induced MyD88- and TRIF-dependent signaling 

pathways; attenuating Her-2, p38 MAPK, 

p-AKT, and mTOR Levels

[190,193,234]

Cervical 

cancer

In vivo Nude rats were treated with 500 pM 

melatonin

Melatonin inhibiting tumor growth suppressing 

tumor metabolism and proliferation through 

inhibiting aerobic glycolysis and fatty acid 

metabolic signaling

[235,236]
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against various types of cancers and to enhance its clin-
ical applications.
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