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Abstract: Severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) is an 
emerging pathogen, which is similar to previous SARS-CoV and Middle East respiratory 
syndrome coronavirus (MERS-CoV) occurrences. However, we only get few understandings 
about the pathogenesis of SARS-CoV-2, which need to further be studied. The discovery of 
an agent that has a treatment efficacy against SARS-CoV-2 is very urgent. In this review, we 
briefly discuss the virology of this pathogen and focus on the available understanding of the 
pathogenesis and treatments of this pathogen including the uses of nucleoside analogues, 
protease inhibitors, interferons, and other small-molecule drugs, on the basis previous 
comprehensions of SARS and MERS. These reviewed concepts may be beneficial in 
providing new insights and potential treatments for COVID-19. 
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Introduction
Currently, coronavirus disease-19 (COVID-19), which is caused by severe acute 
respiratory syndrome coronavirus clade 2 (SARS-CoV-2), is spreading throughout 
the world.1 During the past two decades, COVID-19 has become the third epidemic 
of coronavirus diseases, with the first two epidemics caused by the coronaviruses 
known as SARS and MERS.2,3 The degrees of homology between SARS-CoV-2 
and these human coronaviruses (HCoVs) are high, and the whole genome of SARS- 
CoV-2 exhibits>85% homology to SARS-CoV.4–6 And the RNA results of them 
could be detected via samples of nasopharyngeal swabs, sputum and stool.6–8 

Although these three HCoVs commonly present with mild influenza-like symptoms 
(pneumonia, fever, cough and occasional diarrhea), the progression to fatally 
abnormal features is characterized by acute respiratory distress syndrome 
(ARDS), acute cardiac injury, and other conditions.9,10 Therefore, the therapeutic 
conditions that are known to occur with SARS-CoV and MERS-CoV may directly 
guide and control the emerging infection of SARS-CoV-2.

The Life Cycles and Potential Antiviral Targets
CoVs share conserved genomic factors that are vital to the design of agent targets, 
in spite of their high species diversity and richness.11,12 Typical CoVs normally 
contain at least ten open reading frames (ORFs), which encode proteins including 
nonstructural proteins (nsps), structural proteins, and accessory proteins (Figure 
1A).13–15 The first 5ʹ-terminal ORFs (ORF1a/b), which encompass approximately 
two-thirds of the viral RNA, can be translated into two large replicase proteins: 
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polyprotein 1a (pp1a) and polyprotein 1ab (pp1ab) (Figure 
1B).16,17 These two polyproteins are generally cleaved by 
the papain-like protease (PLpro) and the 3C-like protease 
(3CLpro) into nsps, including the RNA-dependent RNA 
polymerase(RdRP), helicase, and other components 
required for virus replication.18–20 RdRP is a crucial 
enzyme in the life cycle of coronaviruses, which supports 
the transcription and replication of their RNA genomes.21 

In fact, the RdRp complex represents an Achilles heel for 
SARS-CoV. Another one-third of ORFs mainly encode 
structural proteins: spike (S; which are integral membrane 
proteins), envelope (E), nucleocapsid (N; which binds the 
viral RNA), and membrane (M) proteins, as well as acces
sory proteins whose function in virus replication or packa
ging remains largely uncharacterized (Figure 1C).22,23 

Equally, the structure of SARS-CoV-2 also expresses var
ious polyproteins that is similar to those of the typical 
coronaviruses.24,25

Viral entry mechanism involves the S protein being 
split by host proteases into the S1 and the S2 portions to 

activate virus-host cell interactions and syncytium forma
tion. For instance, cleavage of S generates a C-end rule 
motif on S1, which binds to cell surface neuropilin-1 and 
neuropilin-2 receptors. Blocking this interaction by RNA 
interference can reduce SARS-CoV-2 entry and 
infectivity.26 Moreover, the combination of the S1 recep
tor-binding domain (RBD) with the host receptor can alter 
the conformation of the S2 (the stalk region) for mem
brane fusion.27 The host proteases of endosomal cysteine 
protease cathepsin L, transmembrane protease serine 2 
(TMPRSS2), and human airway trypsin-like protease 
could sequentially act on SARS-CoV-S.28 And MERS- 
CoV-S possesses two cleavage sites for the furin (a type 
of serine endoprotease), and one of the sites (S1/S2) would 
be cleaved during the formation of the S protein, whereas 
another site (S2′) would be cleaved during entry.29 

Furthermore, recent studies demonstrated that furin could 
also active the S protein of SARS-CoV-2 besides 
TMPRSS2.8,30,31 According to epidemiology, the infec
tious ability of SARS-CoV-2 is stronger than that of 

A

B C

Figure 1 The structure of a coronavirus virion and genomic organization. 
Notes: (A) Coronavirus genome includes 5′ untranslated region (5UTR), such as 5′ leader sequence, open reading frame (ORF) 1a/b encoding non-structural proteins (nsp) 
for replication, structural proteins such as envelop, membrane and nucleoprotein, accessory proteins. (B) SARS-COV-2 encodes two large polyproteins, pp1a and pp1ab, 
that are cleaved into 16 non-structural proteins. (C) The coronavirus contains a + sense single stranded RNA (ssRNA) genome encapsidated by the nucleocapsid (N) 
protein, with the spike (S), membrane (M), and envelope (E) proteins located on the outside of the membrane.
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SARS-CoV because of the differences in their 
S proteins.31 The S protein of SARS-CoV-2 had distinct 
polybasic amino acids at the cleavage site one digestion 
region (unlike SARS-CoV), which was easily digested by 
the furin.31,32 During the viral maturation, furin could 
drive the RBD structural rearrangements via cutting the 
S proteins for the adaptation to the receptor, thereby 
enhancing affinity.30

As is already known, the binding of S proteins with host 
cell receptors is the meaningful infection triggers. MERS- 
CoV employs dipeptidyl peptidase 4 (DPP4) as the 
receptor,33,34 whereas SARS-CoV and SARS-CoV-2 recog
nizes angiotensin-converting enzyme 2 (ACE2) as the 
receptor.35,36 To date, strategies were developed to block 
the ACE2-RBD interaction, further to prevent SARS-CoV-2 
entry into the host cell.37 After membrane fusion, the CoVs 
intracellularly disassemble and release nucleocapsid and 
RNA into cytoplasm. Then, the ORF1a/b is translated into 
pp1a and pp1ab with the replication of the genomic RNA. 
Additionally, numerous nsps are produced by the cleavage 
of pp1a and pp1ab to form the replication–transcription 
complex (RTC) in the double-membrane vesicles 
(DMVs).38,39 Subsequently, the positive-strand genomic 
RNA would function as the transcription template to synthe
size new genomic RNAs (gRNAs).15,39 A nested set of 
overlapping subgenomic RNAs (sgRNAs) are produced by 
the RTC via discontinuous transcription, after which the 
sgRNAs are translated into relevant structural and accessory 
proteins.40 Finally, proteins and genomic RNAs form the 
assembled particles in the ER-Golgi intermediate complex 
(ERGIC) and are transported into the extracellular 
compartment.41

The involvement of other structural proteins is also 
implicated in the life cycle. The M protein provides scaf
fold for virion morphogenesis and combine with the 
nucleocapsid.42 The E protein contribute to particle assem
bly and be released by interacting with the M protein.19,43 

By serving as a RNA chaperone, the N protein promote 
template switching and pack the encapsidated genome into 
virions.19,44,45 Hence, inhibitor compounds against recep
tors and proteases may be a promising approach to abro
gate proteolytic cleavage and block viral transmissibility 
(Figure 2).

Pathogenesis
The pathogenesis of SARS-CoV-2 is possibly resembles 
those of SARS-CoV and MERS-CoV. SARS-CoV-2 gen
erally spread via respiratory droplets, close contact, 

aerosol transmission, and (potentially) in fecal-oral trans
mission (Figure 3A).46 Zou et al discovered that the viral 
loads of COVID-19 patients (detected in nasal swabs) are 
higher than those that are detected in throat swabs.47 And 
viral replication is assumed to likely begin in the upper 
respiratory tract, with proliferation occurring in the lower 
respiratory tract to cause pneumonia.48

Histopathology
One of the major pathogenesis features of SARS-CoV-2 is 
severe pneumonia.49–51 Histological cases from severe 
COVID-19 patients revealed that their bilateral lung tissue 
samples were consistent with the exhibition of early-phase 
ARDS.52 And interstitial lymphocytic inflammatory infil
trates and viral cytopathic-like changes were observed in 
the intra-alveolar spaces. In addition to the viral tropism 
for pulmonary involvement, extrapulmonary histopathol
ogy was also observed. Because these organ cells broadly 
express ACE2 receptors (which are vulnerable to 
S proteins),53 they have a high risk for infection. Liver 
biopsies demonstrated microvesicular steatosis, lobular 
and portal activity, which were associated with either 
SARS-CoV-2 infection or drug-induced liver injury.52 

Notably, whereas COVID-19 patients could develop 
acute cardiac injury and acute heart failure, few interstitial 
mononuclear inflammatory infiltrates were observed in 
histological heart changes.52,54 Therefore, it is not clear 
as to whether heart diseases were influenced by SARS- 
CoV-2 or if they were complications of abnormal cardio
metabolic requirements.54

Possible Mechanism of Inflammatory 
Responses
The aggressive inflammation features of COVID-19 
patients maybe the outcome of direct virus-induced cyto
pathic effects and immunopathology that is induced by the 
cytokine storm.55,56 ARDS has proven to be deadly in 
critical COVID-19 patients, which is a similar feature of 
deterioration that occur in the later stages of SARS and 
MERS patients or during the period of recovery.10,51,57,58 

Some fatal cases would suddenly exhibit grievous dyspnea 
that requires mechanical ventilation, and the histology also 
support the development of ARDS.6,51,57,58

The chief mechanism for ARDS is the cytokine storm, 
which is an uncontrollably violent immune disorder and 
cause the inevitable failure of multiple organs during 
aggravation. At the original onset of viral replication, 
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massive respiratory epithelial cells, dendritic cells (DCs) 
and macrophages induce delayed (but elevated) levels of 
proinflammatory cytokines/chemokines.18 Afterwards, 
mononuclear macrophages and DCs (or plasmacytoid den
dritic cells) continue to secrete low levels of antiviral 
factor interferons (IFNs), and induce the increased produc
tion of proinflammatory cytokines (Figure 3B).59 The 
delayed release of type I IFNs at the early stages of virus 
replication would attract the accumulation of inflammatory 
cells, thus contributing to excessive lung cytokine/chemo
kine levels, lung injury, and defective virus-specific T-cell 
responses.60 The expressions of serum cytokine and che
mokine levels in patients with severe MERS and SARS 
are higher than those levels in mild to moderate infections. 
Additionally, the upregulation of serum cytokine and che
mokine levels are connected with elevated numbers of 
neutrophils and monocytes in lung tissues, thus implying 
that they are involved in lung pathology.

Similarly, SARS-CoV-2 employs ACE2 as critical 
receptors, which indicates the likelihood of the same 
types of cells being hijacked and attacked. Yang et al 
demonstrated that COVID-19 patient exhibited pyroptosis 

in macrophages and lymphocyte, and most of these 
patients developed peripheral blood lymphopenia.55 

Furthermore, researchers also detected high concentrations 
of proinflammatory CD4 T-cells and cytotoxic granules of 
CD8 T-cells, thus indicating that T-cells may become over
activated. And viral replication and pulmonary vascular 
leakage may trigger the robust secretion of proinflamma
tory cytokines/chemokines (Figure 3C). Overall, the 
abnormal levels of cytokine/chemokine levels in COVID- 
19 patients are correlated with disease severity,9,56,61 and 
these factors could activate the event of specific immunity, 
such as the T-helper type 1 (Th1) cell response. Study 
reported that COVID-19 patients in intensive care units 
(ICU) displayed higher serum levels of granulocyte col
ony-stimulating factor, interferon-inducible protein-10, 
monocyte chemotactic protein 1, macrophage inflamma
tory protein-1A, and TNF-α than those levels in non-ICU 
patients,62 thus indicating that a cytokine storm is con
nected with disease severity. Additionally, the downregu
lation and shedding of pulmonary ACE2 receptors could 
cause the dysfunction of the renin-angiotensin system 
(RAS) (Figure 3D). Correspondingly, the compensatory 

Figure 2 The life cycle of coronavirus. 
Notes: The coronavirus replication cycle in the host cell encompasses four steps, including attachment and entry, translation of the viral replicase, genome transcription and 
replication, translation of the structural proteins, and virion assembly and release. Potential therapeutic targets are noted in red. 
Abbreviations: ACE2, angiotensin-converting enzyme 2; ER, endoplasmic reticulum; +, positive strand RNA; –, negative strand RNA; RTC, replication–transcription 
complex; DMVs, double-membrane vesicles (DMVs); gRNA, genomic RNAs; sgRNA, sub genomic RNA; nsp, nonstructural protein; pp1a, polyprotein 1a; pp1ab, polyprotein 
1ab.
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overproduction of angiotensin II via ACE leads to the 
excessive binding to the type 1a receptor that aggravate 
lung vascular permeability and acute lung injury.

Potential Anti-Coronavirus Agents
Protease Inhibitor
Most of the enzymes and proteins that are critical to 
coronaviral replication are promising agent targets. 
Therefore, protease inhibitors maybe an attractive option 
in the treatment of COVID-19.63 Shortly after the SARS 
epidemic in 2003, protease inhibitors were screened and 
developed. Lopinavir (LPV) is a type of HIV type 1 
aspartate protease inhibitor, with ritonavir (RV) used as 
an accelerator, and their combination act against the viral 
3CL protease in in vitro, MERS-CoV-infected NHPs and 
SARS patients.64 The reason why LPV/RV are universally 
accepted is because they not only have a reliable safety 
profile but are also easily available for immediate usage. 
For the recent emergence of SARS-CoV-2, LPV/RV 
(administered in combination with IFN-α) are recom
mended for clinical treatments.65–67 Nevertheless, it is 
unknown if LPV/RV could be powerfully against SARE- 
CoV-2 because the HIV protease and the 3CLpro are 

classified into different protease families. And LPV/RV is 
specifically designed to match catalytic site of the HIV 
protease dimer, whereas the viral proteases do not possess 
the C2-symmetry pocket. Clinical experiments have been 
launched to test the effects of LPV/RV in COVID-19 
patients. In a randomized open-label trial of LPV/RV 
involving severe COVID-19 patients, no benefits were 
observed in terms of clinical improvement, mortality, or 
viral RNA levels, compared to standard care.67 Another 
randomized trial of combing LPV/RV with ITF-β-1b plus 
ribavirin in mild to moderate COVID-19 patients, the 
combination therapy showed significantly accelerate clin
ical improvement and reduce viral RNA loads than the use 
of LPV/RV alone.66

Antiviral Targeting the RdRp
Nucleoside analogues that target viral nucleic acids could 
universally resist ranges of CoVs via specific or nonspe
cific chain stops, lethal mutations, and retarded nucleotide 
biosynthesis.9 Ribavirin is one of the common options to 
treat COVID-19 patients.68 Mechanistically, ribavirin (in 
the form of a guanine derivative) competitively inhibits 
mRNA translation by RdRp to block the 5ʹ end of mRNA 
capping. Although SARS-CoV and MERS-CoV are 

Figure 3 The possible pathogenesis of SARS-CoV-2. 
Notes: (A) The transmission routes. (B) Active innate immunity. (C) Cytokine storm. (D) Dysfunction of the renin-angiotensin system (RAS).
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susceptible to ribavirin in in vitro, its adverse reactions are 
severe at high doses in patients. Paradoxically, doses of 
ribavirin that inhibit viral proliferation in vitro exceed the 
concentrations that are accessible by classical human 
regimens.11 Present treatment experiences implied that 
ribavirin should be used at early stages of COVID-19, in 
case strains have developed drug resistance.66 Meta- 
analyses of cases demonstrated that the impact of ribavirin 
in the treatment of highly pathogenic coronavirus respira
tory syndromes was inadequate (if there were any impacts 
at all), despite it being used as a part of treatment regimens 
for HCoVs.

Remdesivir is an adenosine analogue that also specifi
cally target the viral RdRp and affect RNA chain synth
esis. Previous studies demonstrated that remdesivir has 
strong broad-spectrum activities against SARS-CoV and 
MERS-COV in in vitro and in vivo.69 Wang et al detected 
that remdesivir could effectively inhibit SARS-CoV-2 in 
Vero E6 cells (EC50=0.77 μM, EC90=1.76 μM).68 

Williamson et al observed that remdesivir could potently 
alleviate disease symptoms and lung injury in rhesus 
macaque model of SARS-CoV-2 infection that simulate 
mild to moderate disease progression. And their investiga
tion data supported that remdesivir treatment in COVID- 
19 patients should be initiated as fast as possible, in order 
to reduce virus replication and to achieve clinical improve
ments at early stages of the drug course regimens. To 
rapidly estimate as to whether remdesivir has in-vivo 
antiviral activity against SARS-CoV-2, researchers also 
engineered chimeric mice-adapted SARS-CoV variants 
encoding the viral target of remdesivir (the RdRp, of 
SARS-CoV-2). Based on these mice infections with the 
chimeric virus, they concluded that the administration of 
remdesivir could decrease viral loads and improve pul
monary tissue damage. All of these data supported the 
further performance of clinical trials in COVID-19 
patients. A clinical report demonstrated encouraging out
comes in a small cohort of COVID-19 patients with severe 
symptoms who were treated with remdesivir. The result 
showed that the oxygen-support statuses of 68% (53 cases) 
of patients were improved after receiving remdesivir.70 In 
contrast, a recent randomized, double-blind controlled trial 
in severe COVID-19 patients revealed that remdesivir 
could not ameliorate the time to clinical improvements, 
the clearance of the virus and the mortality rate. And there 
were higher proportions of toxicity and adverse events in 
recipients than in the placebo group.71 Overall, the effi
cacy, safety, and optimal dosing of remdesivir in different 

severity statuses of COVID-19 patients still need to be 
confirmed globally.

Similar to remdesivir, clinical trials are in progress for 
the treatment of COVID-19 by using favipiravir, the RdRP 
inhibitor.21 Favipiravir could insert into viral RNA, pro
voking C-to-U and G-to-A transitions, and subsequent 
disrupt viral replication and fidelity, leading to lethal 
mutagenesis.72,73 In SARS-CoV-2-infected hamsters, 
a high dose of favipiravir reduced infectious virus titers 
in the lungs and improved lung histopathology. Moreover, 
it markedly decreased virus transmission by direct 
contact.74 In May 2020, the Russian Ministry of Health 
granted favipiravir for the treatment of COVID-19 
patients, based on the results of Phase II/III clinical trial.75

Sofosbuvir and daclatasvir are well tolerated and effec
tive antivirals against HCV. Evidence from in silico and 
in vitro studies suggests the potential for sofosbuvir/dacla
tasvir as a therapeutic option for COVID-19.76–78 Clinical 
trials were conducted to evaluate the effectiveness and 
safety of the combination of sofosbuvir/daclatasvir 
(Sovodak). A randomized active-controlled trial observed 
that after 7 days of treatment, compared with control, 
Sovodak did not significantly alleviate symptoms of 
COVID-19. One month use of Sovodak reduced the num
ber of patients with fatigue and dyspnoea.79 Another study 
found the addition of sofosbuvir and daclatasvir to stan
dard care markedly reduced the duration of hospital stay.80 

In open-label study, treatment with Sovodak in patients 
with severe COVID-19 improved clinical symptoms 
decreased length of hospital stays.81 Given the small sam
ple size, larger randomized controlled trials were needed to 
establish the evidence to support approval of Sovodak.

Interferon
IFNs are a kind of immunomodulator that are secreted by 
the host innate immune response.55 IFNs could strengthen 
the phagocytic activity, recruitment of innate immune cells 
and facilitate the antiviral states of host cells.82 More 
precisely, IFNs promote the expressions of antiviral pro
teins (2,5-oligoadenylate synthetase, protein kinase, and 
phosphodiesterase) by JAK/STAK (mainly), IRF-1 signal 
transduction pathways.

Researchers have already studied IFNs with other antiviral 
drugs, such as ribavirin and/or LPV/RV, in the treatment of 
HCoV infections, but the efficacy outcomes were not consis
tent, which were due to the various intervention regimens. 
Although previous studies reported that IFN had a modest 
protective function in SARS and MERS mice and NPHs, the 
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combination regimens (comprised of IFN and ribavirin or 
LPV/RV) only displayed limited beneficial effects in clinical 
trials. Currently, the common antiviral therapies in COVID-19 
patients include ribavirin, LPV/RV, IFN, or their combina
tions. Hung et al observed that the early administration of 
the combination of INFβ-1b, LPV/RV, and ribavirin was 
superior to the use of LPV/RV alone in reducing initial viral 
loads and relieving symptoms in mild to moderate SARS-CoV 
-2 infection patients.82 Another report demonstrated that 
COVID-19 patients exhibited insufficient production of endo
genous IFNs based on blood results, and most of these patients 
later possess worse prognosis. And it may explain the fact that 
the host innate IFN response had a positive impact on the 
immune system for the control of COVID-19, which could be 
enhanced by the use of IFNs or INF inducers. Most impor
tantly, a high virus titer and the excessive immune response are 
associated with high risks of morbidity and mortality in 
HCoVs-infected patients. IFN is reliably beneficial in dimin
ishing viral loads and in suppressing imbalanced inflammatory 
responses at the early phases of disease based on the experi
ences of curing SARS and MERS. In contrast, IFN could not 
exhibit additional beneficial immunomodulatory properties 
during other stages. Hence, the timing of medication is sig
nificant for a curative effect.

Monoclonal Antibody
Elevated interleukin-6 was reported to be associated with 
cases of severe COVID-19 and the need for mechanical 
ventilation.83–85 Tocilizumab, an anti-interleukin-6 recep
tor monoclonal antibody, appeared to improve outcomes of 
COVID-19 pneumonia in observational studies,86–88 while 
randomized trials have shown mixed results.89–91 A global, 
Phase 3 clinical trial investigated the safety and efficacy of 
tocilizumab in hospitalized patients with COVID-19 pneu
monia. The likelihood of progression to mechanical venti
lation or death was significantly reduced by the use of 
tocilizumab, while no benefit with respect to mortality 
was observed.89 To date, available data on the use of 
tocilizumab showed variable effects.

Other Small-Molecule Drugs
Small-molecule immune modulator (chloroquine [CQ] 
and/or its derivative hydroxychloroquine [HCQ]) has 
been considered as a potential therapeutic agent against 
SARS-CoV-2,68,92 which affect different steps in viral 
replication (the glycosylation of host receptors, the termi
nation of membrane fusion, and the inhibition of pH- 
dependent lysosomal events).93

CQ and HCQ affect the biosynthesis of sialic acid by 
inhibiting quinone reductases, thereby interfering with 
the binding of the virus to host receptors.94 Because 
they are weakly alkaline and easily accumulate in the 
acidic lysosome, the Golgi network (TGN) vesicles, and 
the endosome, to disturb the acid-base in the organelles 
and the function of several enzymes (acid hydrolase, 
glycosylase, and other enzymes).93,95 To date, no studies 
on the binding of SARS-CoV-2 (like other CoVs) with 
sialic acids have been reported, but this possibility cannot 
be entirely dismissed. CQ and HCQ also have the ability 
to suppress mitogen-activated protein kinase activation 
and to block the viral molecular crosstalk with target 
cells.94 Moreover, they could impair the infectivity of 
the pH-dependent endosome-mediated CoVs, hamper 
the lysosome-triggered membrane fusion, as well as inter
fere with the posttranslational modifications and glycosy
lation of synthesized glycoproteins within the 
endoplasmic reticulum or the TGN vesicles.93,95 CQ and 
HCQ could also alter M protein maturation, thus suggest
ing a possible intervention of SARS-CoV-2 assembly and 
budding.94,95

Moreover, CQ and HCQ could synergistically modu
late cell signaling and pro-inflammatory cytokines,96 and 
impede the expression of the major histocompatibility 
complex (MHC) class II, as well as antigen presentation 
and immune activation, via Toll-like receptor (TLR) sig
naling and cGAS stimulation of INF genes.97 Thereby, 
they could downregulate the secretion of pro- 
inflammatory cytokines in the cytokine storm; particularly, 
the secretions of tumor necrosis factor (TNF)-α, IL-2, and 
IL-6,95,96 Hence, immunomodulatory options for control
ling the cytokine storm maybe a potential selection.

Although both CQ and HCQ have promising results in 
in vitro, the anti-CoV activity remains to be fully explored. 
A preliminary trial reported that the repurposing combina
tion of HCQ and azithromycin (AZT) reduced SARS-CoV 
-2 shedding and the time to clinical recovery,98 whereas 
most of other studies did not indicate any beneficial effects 
in infected patients.99,100 Given the present controversies, 
clinicians should rationally use CQ and HCQ in COVID- 
19 patients until high-quality randomized clinical trials 
verify their functions in patients.

Conclusion
Taken together, SARS-CoV-2, the pathogen that is respon
sible for the coronavirus infectious disease-19 (COVID-19), 
is currently spreading throughout the world. Unfortunately, 
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the major treatment regimen against SARS-CoV-2 consist 
of supportive treatments, and the clinical development of 
specific antiviral agents is still a primary concern. There are 
still numerous limitations in the current pandemic. First, the 
lack of evaluation approaches and ideal animal models that 
are used for testing drug activity among the different labs 
around the world is one of the obstacles to overcome, in 
order to discover effective drug treatments. Particularly, the 
absence of reproducible HCoV diseases has never been 
resolved in NHP models, which reduces the operability 
and reliability of results in vivo. Established suitable models 
require strict laboratory conditions and superior technology, 
which is also a problem. Therefore, few therapeutic options 
that have been applied in COVID-19 patients have been 
based on clear in vivo evidence of efficacy thus far, and 
meta-analyses of treatments have not indicated valid thera
pies. Specifically, current experimental systems for the 
study of the CoVs are not adequate to support the further 
development of antiviral agents. Second, the replication of 
CoVs can periodically produce progeny viruses with an 
abundance of genetic diversity. Recombination also fre
quently appears between viral genomes, and these gene 
level changes can lead to medication resistance if the muta
tions can alter the agents’ target domains. Third, one of the 
urgent strategies for treatment regimens mainly depends on 
combinations with licensed drugs that are known to possess 
receivable safety profiles and broad-spectrum antiviral 
activities. Although many of these drugs have exhibited 
anti-coronavirus effects in vitro, their pharmacokinetic, 
pharmacodynamic, and side effect aspects may not meet 
in vivo standards. Finally, virologic and patient-related ele
ments may pose challenges in the clinical study of COVID- 
19. For example, the sample size and quality of the subjects 
may not reach the standard value, which results in the low 
reliability and operability of the test data.
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