Dovepress open access to scientific and medical research

ORIGINAL RESEARCH

The Prevalence and Concurrent Pathogenic Mutations of KRAS^{G12C} in Northeast Chinese Non-small-cell Lung Cancer Patients

This article was published in the following Dove Press journal: Cancer Management and Research

Objective: *KRAS* mutation is one of important driver genes in non-small-cell lung cancer (NSCLC) and the patients with $KRAS^{G12C}$ mutations benefit from the inhibitor AMG510. However, the frequency, concurrent pathogenic mutations, and clinical characteristic of $KRAS^{G12C}$ is unknown in the NSCLC population of Northeast China. **Methods:** The retrospective analysis was derived from 431 NSCLC patients in Jilin Cancer

Hospital between January 2018 and June 2019. The mutation frequency and concurrent mutations of *KRAS*^{G12C} in tumor or peripheral blood was detected by next-generation sequencing (NGS).

Results: The *RAS* mutant rate was observed in 10.7% (46/431) of this cohort. All *RAS*-driver cancers are caused by mutations in the *KRAS* isoform, while the *NRAS* and *HRAS* isoforms were not detected. Among *KRAS*-mutant patients, 42 (91.3%) showed exon 2 mutation in 12 codon and 13 codon. *KRAS*^{G12C} showed a 4.6% (20/431) mutation rate in this cohort and the highest frequency (43.5%, 20/46) in *KRAS*-mutant-positive patients. There was no difference between tumor tissue and plasma in terms of either *KRAS* or *KRAS*^{G12C} mutation. The most frequent co-occurrence mutations with *KRAS*^{G12C} were *TP53*, followed by *PTEN*. Furthermore, *KRAS*^{G12C} was exclusive with *STK11* mutation. *KRAS*^{G12C} mutation was associated with age, disease stage, and smoking status (P=0.024; P=0.02; P=0.006), smoking remained an independent factor for *KRAS*^{G12C} mutation (P=0.037), and higher mutation frequency in patients older than 60, stage I–III, or smoking in NSCLC (P=0.0151, P=0.0343, P=0.0046, respectively).

Conclusion: *KRAS* mutation was the only isoforms of *RAS* family, of these 43.5% harbored the *KRAS*^{G12C} subtype in northeastern Chinese NSCLC patients. *KRAS*^{G12C} is associated with age, pathological stage and smoking status, more commonly harbored *TP53/PTEN* mutations, and providing more genome profile for targeted therapy in local clinical practice. **Keywords:** next-generation sequencing, non-small-cell lung cancer, *KRAS*^{G12C}, tissue, plasma, mutations

Introduction

Non-small-cell lung cancer (NSCLC) is the most common histological type of lung cancer, accounting for 80–85% of lung cancers and has become the most fatal cancer in the world.¹ Recently, targeted therapy based on various driver oncogene variants (*EGFR*, *ALK* and *ROS1*, *KRAS*, *MET*, *PIK3CA*, *RET*, *BRAF*) has shown great antitumor activity; unfortunately, *KRAS* mutations had a more complicated mechanism in comparison with other driver genes such as *EGFR*, with poor prognosis and high risk of tumor recurrence.² Although prevalent, no specific treatment has been successfully developed for these NSCLCs.

Cancer Management and Research 2021:13 2447-2454

© 2021 Liu et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution — Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

2447

Yan Liu¹ Hui Li¹ Jing Zhu² Yang Zhang² Xianhong Liu² Rixin Li¹ Qiang Zhang³ Ying Cheng^{1,2}

¹Medical Oncology Translational Research Lab, Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun, 130012, People's Republic of China; ²Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, People's Republic of China; ³Department of Bioinformatics, Burning Rock Biotech, Guangzhou, People's Republic of China

Correspondence: Ying Cheng Jilin Cancer Hospital, No. 1066 Jinhu Road, Chaoyang District, Changchun, Jilin Province, 130012, People's Republic of China Tel +86 43185879901 Email chengying@csco.org.cn

KRAS mutations are some of the most prevalent alterations, approximately 10% of Asian NSCLC patients and 7.5% of Chinese NSCLC patients harbor the KRAS mutation, with codon 12 and 13 mutations being the most frequent and the most common subtypes are G12C, G12V and G12D.^{3,4} KRAS^{G12C} is a mutant type of KRAS guanosine triphosphatase (GTPase), and an inhibitor targeting KRAS^{G12C} is a promising novel tumor-specific therapy for tumors driven by mutant proteins.⁵ Current studies on KRAS^{G12C} inhibitors and the mechanism of drug resistance have confirmed that patients with KRAS^{G12C} mutations benefit from the inhibitor AMG510,⁶ which has also been approved by the FDA as an orphan drug for NSCLC and colon cancer with KRAS^{G12C} mutation. KRAS^{G12C} can induce allosteric switch II pocket (s-iip) and take cys-12 as the specific covalent target of alleles, which were considered as potential drug targets.² Now, KRAS^{G12C} mutation was verified by the NGS, various clinical parameters and genetic mutation have been proposed to predict the relevance with $KRAS^{G12C}$ (such as sex, age, smoking, co-mutation gene). In the current study we aim to discover a more precise delineation of candidate target populations and distinctive KRAS^{G12C} co-mutation subtypes in the northeast Chinese population. We retrospectively investigated and evaluated the KRAS^{G12C} mutation in northeast Chinese NSCLC, and the association between clinical factors and KRAS^{G12C} mutation status.

Materials and Methods Patients and Samples

Four hundred and thirty-one samples were collected from Jilin Cancer Hospital between January 2018 and June 2019, 268 cases were tested through eight gene panel, 81 cases by 168 gene panel and 82 matched cases using 520 gene panel, respectively (Figure 1). Clinic pathological data were collected from the electronic medical records in Jilin Cancer Hospital, and the factors included age, sex, and clinical stage, smoking history, brain metastasis, PS score and histology. All participants signed the informed consent agreement before participating in the study, the data were anonymized, the study was approved by the Clinical Research Ethics Committee of Jilin Cancer Hospital and was conducted in accordance with the Declaration of Helsinki.

DNA Extraction

DNA was extracted by DNA FFPE tissue kit (AmoyDx, China) and ctDNA extraction kit (QIAGEN, Germany)

Figure	L	Study	flowchart

Abbreviations: NSCLC, non-small-cell lung cancer; NGS, next-generation sequencing.

according to the manufacturer's instructions. DNA concentration was quantified by Nanodrop 3000C and Qubit 4.0 (Thermo Fisher Scientific, Waltham, MA, USA).

Next-generation Sequencing Analysis

Library preparation was performed following manufacturer's protocol (Burning Rock Biotech, Guangzhou, China). DNA Fragments (range: 200-400 bp) were purified by AMPure beads (Beckman Coulter, CA, USA), and captured with probe baits, hybrid selection with magnetic beads by RT-PCR amplification. Subsequently, DNA quality and size were assessed by high-sensitivity DNA assay. Indexed samples were sequenced on a MiSeq system (Beckman Coulter) with paired-end reads. The input of extracted DNA should be in the range of (30-200 ng). Sequencing platform was used by Illumina NextSeq 500 Sequencing Platform with tissue DNA (1000X) and cfDNA (20000X). All samples were analyzed by NGS targeted panel (Burning Rock Dx, China), which eight-gene panel covers well-known lung adenocarcinoma driver genes, 168 genes covers known lung cancer-related genes and 520 genes covers solid tumorrelated genes. (Supplemental Table 1).

Statistical Analysis

All data was performed by SPSS Statistics 19.0 software (IBM Corporation, Armonk, NY, USA). Fisher's exact test was used to evaluate mutation differences and clinical factor between *KRAS*^{G12C} and *KRAS*^{wt}. Logistic regression analysis was used

to identify as independent factors for $KRAS^{G12C}$ mutations. A *P*-value of <0.05 was considered statistically significant.

Results

Patient Population

Among 431 samples were those from tumor tissue 332 (77.04%), 99 (22.96%) plasma; 198 women (54.07%) and 233 men (45.93%), with a median age of 63 years (range: 34–86 years), respectively. Of the 431 patients, 263 (61.02%) were smokers, and 168 were nonsmokers. The histological characterization of tumors revealed that 370 samples were adenocarcinoma (85.85%), 61 were squamous cell carcinoma (14.15%). Of the 431 patients, characterization of the pathological stage showed 115 samples in stage I–III (26.68%), and 316 samples in stage IV (73.32%) (Table 1).

KRAS^{G12C} is the Most Common Mutation Type of KRAS in NSCLC

The *RAS* mutation rate was 10.7% (46/431), and *KRAS* was the only mutation subtype of *RAS* (*NRAS*, *KRAS*, *HRAS*). 42 (91.3%) indicated *KRAS* gene exon 2 mutation, 12 and 13 codon of *KRAS* gene mutations were detected, and *KRAS*^{G12C} showed the highest frequency, the total mutation rate of *KRAS*^{G12C} in NSCLC was 4.6% (20/

Table I Patient Characteristic

Characteristics	n (%)
Age (years)	63 (34–86)
Sex	
Male	198 (45.93)
Female	233 (54.07)
Stage	
I–III	115 (26.68)
IV	316 (73.32)
Smoking history	
Yes	168 (38.98)
No	263 (61.02)
Brain metastasis	
Yes	106 (24.59)
No	325 (75.41)
PS score	
0-1	365 (84.68)
2–3	66 (15.32)
Histology	
Adenocarcinoma	370 (85.85)
Squamous cell carcinoma	61 (14.15)

Figure 2 Mutation frequencies of KRAS subtypes.

431) and 43.5% (20/46) of *KRAS* mutant subtypes, followed by 17.4% (8/46) of *KRAS*^{G12D}, 8.7% (4/46) of *KRAS*^{G12V}, and 8.7% (4/46) of *KRAS*^{G12A}. The mutation frequency of other *KRAS* types was lower (Figure 2).

KRAS^{G12C} Mutation Between Tumor Tissue and Plasma

We compared the *KRAS* mutation spectrums between tumor tissue and ctDNA derived from peripheral blood in this study. Collectively, 37 (11.14%) and 16 (4.81%) patients had *KRAS* and *KRAS*^{G12C} mutation spectrum in tumor tissue, nine (9.09%) and four (4.04%) patients in ctDNA, but no significant difference was found in the two sample types (P=0.711, P=1.000, Table 2), respectively.

Co-occurring Genomic Alterations Between KRAS^{G12C} and Lung Cancer Pathogenic Gene

Lung cancer driver genes (include *EGFR*, *RAS*, *ALK*, *ROS1*, *MET*, *RET BRAF*, and *HER-2*) mutation samples were observed in 332 (77.3%) of 431 patients. Eight (40%) of 20 patients harbored only $KRAS^{G12C}$

Table 2 Mutation Frequencies of KRAS Subtypes Between TumorTissue and Plasma

Sample Type	KR	AS	Р	KRA	Р	
	mut	wt		mut	wt	
Tumor tissue	37	295	0.711	16	316	1.000
Plasma	9	90		4	95	
Total	46	385		20	411	

mutations, and 12 (60%) had multiple $KRAS^{G12C}$ mutations, including eight (40%) $KRAS^{G12C}$ patients had cooccurring driver oncogenes, was higher trend than $KRAS^{other}$ with driver oncogenes mutations (6/26,23%), but no statistical significance (P=0.33), the most commonly co-occurring genomic alterations with $KRAS^{G12C}$ were EGFR (10%, 2/20), ROS1 (10%, 2/20), MET (10%), *HER2* (5%, 1/20), *ALK* (5%, 1/20), *BRAF* (5%, 1/20), and *RET* (0%), respectively (Figure 3, <u>Supplemental Table 2</u>). One hundred and sixty-three patients from 168 gene panel or 520 gene panel found that the *KRAS^{G12C}* gene is often accompanied by *TP53* and *PTEN* mutation, the mutation rates were 50% (3/6) and 16.7% (1/6), respectively, but *STK11* (0.0%, 0/6).

Figure 3 Driver genetic mutations spectrums identified by next-generation sequencing of 332 patients with NSCLC tumor tissue and plasma. Side bar represents the percentage of patients with driver gene mutation. Top bar represents the number of mutations per patient. Different types of mutations are denoted in different colors.

Age, Smoking History and Pathological Stage Associated with $KRAS^{G12C}$ Mutation The mutation rate of $KRAS^{G12C}$ gene in smokers was higher than that in nonsmokers, 8.33% (14/168) vs 2.28% (6/263), P=0.0046). $KRAS^{G12C}$ has a higher mutation rate in age

P=0.0046). *KRAS*^{G12C} has a higher mutation rate in age (\geq 60 years) 15.2% (18/274) vs 1.27% (2/157); *P*=0.0151). *KRAS*^{G12C} mutation was associated with the pathological staging of the patients, 8.69% (10/115) vs 3.16% (10/316), *P*=0.0343), but was not associated with gender, brain metastasis, PS score, and histology (*P*=0.2515, *P*=0.4282, *P*=0.5266 and *P*=0.7526) (Table 3), to further identify the values of clinical factor on *KRAS*^{G12C} mutations, logistic regression analysis was included. In the univariate logistic analysis, age, smoker, clinical stage were identified as independent factors for *KRAS*^{G12C} mutations (OR=0.551, *P*=0.024; OR=5.449, *P*=0.02; OR=0.343, *P*=0.006). In the multivariate logistic model, smoker (OR=0.306, *P*=0.037) remained independent factors for *KRAS*^{G12C} (Table 4).

Table 3 431 Correlation Analysis Between KRAS^{G12C} and Clinic

 Pathological Factors in Patients

	KRAS ^{G12C} - mut n=20	KRAS ^{GI2C} -wt n=411	<i>P</i> -value
Sex			
Male	12	186	0.2515
Female	8	225	
Age			
<60 year	2	155	0.0151*
≥60 year	18	256	
Stage			
I–III	10	105	0.0343*
IV	10	306	
Smoking history			
Yes	14	154	0.0046**
No	6	257	
Brain metastasis			
Yes	3	103	0.4282
No	17	308	
PS score			
0-1	16	349	0.5266
2–3	4	62	
Histology			
Adenocarcinoma	18	352	0.7526
Squamous cell	2	59	
carcinoma			

Notes: **P*-value <0.05; ***P*-value <0.01.

Abbreviations: mut, mutation; wt, wild type.

Furthermore, we found that $KRAS^{G12C}$ was dominant in male smokers (100%, 4/4)

Discussion

Previously reported RAS was detected in about 25-30% of tumors, several studies consistently reported that Westerners have a higher mutation rate than Asians (26% vs 11%).⁷ Another report similarly indicated 30% of RAS mutations in Western patients and 5–15% in the Asian population,⁸ which accounts for about 86% KRAS, 11% NRAS and 3% HRAS mutation of RAS-induced NSCLC, KRAS accounts for 90% of RAS gene mutations in lung adenocarcinoma and is the most common oncogene in NSCLC.9 Our data are consistent with recent studies, our results might indicate the current view that KRAS was the only RAS-mutant isoform, the mutation rate was 10.7% in 431 NSCLC patients, similar to the rates reported by Jia's group and Liu's group.^{10,11} Further studies showed that the $KRAS^{G12C}$ mutation rate is 4.6% in lung cancer, and 43.5% in KRAS mutation for our study. It was similar to several studies in that the KRAS^{G12C} mutation frequency range is from 35% to 45% followed by KRAS^{G12V} and KRAS^{G12D} in KRAS mutant lung cancer, but a lower frequency reported by Liu's group.^{9,11-15} One key finding of our study was that KRAS, including KRAS^{G12C} mutation of NSCLC reflected no difference in tissue and blood. Furthermore, this study also reveals the widespread existence of concomitant mutations in patients with KRAS^{G12C} mutant advanced NSCLC, especially driver gene mutations. The three predominant KRAS co-mutations were detected including EGFR-KRAS^{G12C} (10%), equal to ROS1-KRAS^{G12C} (10%) and MET-KRAS^{G12C} (10%). We found the four cases with EGFR-KRAS concomitant mutations in our cohort were all tested before EGFR-TKI treatment, thus partly ruling out the possibility that EGFR-KRAS co-mutation was related to EGFR-TKI resistance.¹⁶ Unfortunately, neither were the four cases derived from two separate tumor tissue. The incidence rate of EGFR-KRAS in the Chinese cohort might be likely ethnic-unique, based on the knowledge that the prevalence of EGFR mutation is higher in the Asian population.¹⁷ The cooccurrence of EGFR and KRAS was 0.92% (4/431) in our study, which was supported by Scheffler et al¹³ (1.2%). The four concomitant mutations were KRAS^{G12C} (n=2) co-occurr ing with either EGFR V1097I (n=1) or EGFR amplification (n=1) and KRAS^{other} (n=2) co-occurring with EGFR 19del (n=2). Although previous studies had reported that KRAS are mutually exclusive with mutations in EGFR and ALK in NSCLC,^{18,19} but coexisting EGFR and KRAS mutations have also been reported..^{20,21} (Zhu et al reported that three

		Univariate Analysis			Multivariate Analysis			
		OR	95%CI	P-value	OR	95%CI	P-value	
Sex				0.202			0.936	
	Male	1			1			
	Female	0.551	0.221–1.377		1.044	0.363–3.001		
Age				0.024			0.076	
	<60	1			1			
	≥60	5.449	1.247-23.805		3.932	0.868–17.823		
Stage				0.02			0.082	
	I–III	I			1			
	IV	0.343	0.139–0.847		0.415	0.154–1.118		
Smoking history				0.006			0.037	
	Yes	1			1			
	No	0.257	0.097–0.682		0.306	0.101-0.929		
Brain metastasis				0.315			0.871	
	Yes	1			1			
	No	1.895	0.544–6.598		0.892	0.226-3.516		
PS score				0.553			0.704	
	0-1	1			1			
	2–3	1.407	0.455-4.350		1.256	0.388-4.066		
Histology				0.588			0.617	
	Adenocarcinoma	1			1 I			
	Squamous cell carcinoma	0.663	0.15-2.932		0.677	0.147–3.116		

Table	4	Univariate	and	Multivariate	Analysis	of	KRAS ^{G12C}	and	Clinical	Facto

patients with coexisting EGFR and KRAS mutations were found in 206 patients (1.4%).²² We infer that genetic mutation status could be related with different races, sample numbers, as well as test methodology. Nevertheless, current data about KRAS co-occurring mutations in lung cancer is insufficient. Co-occurrence with TP53 or STK11 mutations is common in KRAS mutations.^{23,24} KRAS and TP53 comutations indicated that tumors harboring those mutations couldbe more responsive to immune checkpoint inhibition in lung cancer.²⁵ Conversely, tumors harboring concurrent KRAS and STK11 mutations could be associated with an immunosuppressive microenvironment.^{26,27} Furthermore, the absence of PTEN promotes resistance to T cellmediated immunotherapy.²⁸ So we evaluated the mutation status of TP53, STK11 or PTEN in KRAS^{G12C} mutant patients, and it indicated that in the landscape of concurrent genetic alterations in patients with $KRAS^{G12C}$, the comutation rates were 50% and 16.7%, but KRAS^{G12C} was exclusive with STK11 mutation.

 $KRAS^{G12C}$ (c.34G>T) alteration is a transversion and KRAS transversion mutations (G \rightarrow T or G \rightarrow C) were more

common in smokers, in contrast, transition mutations $(G \rightarrow A)$ were more common in never-smokers in lung adenocarcinomas (n=500).²⁹ Our data showed that smokers more commonly harbored *KRAS^{G12C}* mutations than *KRAS^{wt}* (70% vs 37.5%), which is consistent with reports by Liu et al and Dogan et al.^{11,30} Data showed that *KRAS*-mutant NSCLC is genetically complex, with a higher frequency of co-occurring mutations with *TP53*, *STK11*, *MET* and *ERBB2* amplifications,²⁹ however, no conclusions implied that the co-occurrence mutations were related to the transversion. In comparison to *KRAS^{other}*, *KRAS^{G12C}* showed higher mutation frequency in patients older than 60 years, and stage I–III. Our findings were supported by other studies.^{11,13,31}

In summary, our study indicated that $KRAS^{G12C}$ mutations were the most frequent mutant subtype of KRAS in northeast Chinese NSCLC patients and might be involved in the smoking, age, and clinical stage, especially we demonstrated a high frequency of $KRAS^{G12C}$ concomitant TP53/PTEN/EGFR. In addition, no difference was observed between tissue and plasma in the $KRAS^{G12C}$ subgroup of the northeast Chinese NSCLC patients. Our findings might contribute to distinct therapeutic guidance in NSCLC. More data should be collected and explored to address predictive and prognostic value of *KRAS^{G12C}* in future studies.

Acknowledgments

This research was supported by Scientific Research Project of Jilin Provincial Health and Family Planning Commission (grant numbers 2018Q007, 2019J077); Science and Technology Agency of Jilin Provincial Project (grant numbers 20200201518JC, 202002063JC); Special Project for Significant New Drug Research and Development in the Major National Science and Technology Projects of China (grant numbers 2020ZX09201-024).

Disclosure

Qiang Zhang is an employee of Burning Rock Biotech. The authors report no other potential conflicts of interests in this work.

References

- Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132. doi:10.3322/caac.21338
- Janes MR, Zhang J, Li LS, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. *Cell*. 2018;172:578–589. e17. doi:10.1016/j.cell.2018.01.006
- Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. *Nature*. 2014;511(7511):543–550. doi:10.1038/nature13385
- Zhuang X, Zhao C, Li J, et al. Clinical features and therapeutic options in non-small cell lung cancer patients with concomitant mutations of EGFR, ALK, ROS1, KRAS or BRAF. *Cancer Med.* 2019;8(6):2858–2866. doi:10.1002/cam4.2183
- Lou K, Steri V, Ge AY, et al. KRAS G12C inhibition produces a driver-limited state revealing collateral dependencies. *Sci Signal*. 2019;12(583):eaaw9450. doi:10.1126/scisignal.aaw9450
- Lanman BA, Allen JR, Allen JG, et al. Discovery of a Covalent Inhibitor of KRASG12C (AMG 510) for the Treatment of Solid Tumors. *J Med Chem.* 2020;63:52–65. doi:10.1021/acs.jmedchem.9b01180
- Ricciuti B, Leonardi GC, Metro G, et al. Targeting the KRAS variant for treatment of non-small cell lung cancer: potential therapeutic applications. *Expert Rev Respir Med.* 2016;10(1):53–68. doi:10. 1586/17476348.2016.1115349
- Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. *Nat Rev Cancer*. 2011;11:761–774.
- Ni D, Li X, He X, Zhang H, Zhang J, Lu S. Drugging K-RasG12C through covalent inhibitors: mission possible? *Pharmacol Ther*. 2019;202:1–17. doi:10.1016/j.pharmthera.2019.06.007
- Jia Y, Jiang T, Li X, et al. Characterization of distinct types of KRAS mutation and its impact on first-line platinum-based chemotherapy in Chinese patients with advanced non-small cell lung cancer. *Oncol Lett.* 2017;14:6525–6532. doi:10.3892/ol.2017.7016
- Liu SY, Sun H, Zhou JY, et al. Clinical characteristics and prognostic value of the KRAS G12C mutation in Chinese non-small cell lung cancer patients. *Biomark Res.* 2020;8:22. doi:10.1186/s40364-020-00199-z

- lungcan.2019.05.015
 13. Scheffler M, Ihle MA, Hein R, et al. K-ras mutation subtypes in NSCLC and associated co-occuring mutations in other oncogenic pathways. *J Thorac Oncol.* 2019;14(4):606–616. doi:10.1016/j.jtho. 2018.12.013
- 14. Izar B, Zhou H, Heist RS, et al. The prognostic impact of KRAS, its codon and amino acid specific mutations, on survival in resected stage I lung adenocarcinoma. *J Thorac Oncol.* 2014;9(9):136 3–1369. doi:10.1097/JTO.00000000000266
- Nadal E, Chen G, Prensner JR, et al. KRAS-G12C mutation is associated with poor outcome in surgically resected lung adenocarcinoma. *J Thorac Oncol.* 2014;9(10):1513–1522. doi:10.1097/JTO.000000000 0000305
- Ortiz-Cuaran S, Scheffler M, Plenker D, et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors. *Clin Cancer Res.* 2016;22(19):4837–4847. doi:10. 1158/1078-0432.CCR-15-1915
- Han SW, Kim TY, Hwang PG, et al. Predictive and prognostic impact of epidermal growth factor receptor mutation in non-small-cell lung cancer patients treated with gefitinib. J Clin Oncol. 2005;23 (11):2493–2501. doi:10.1200/JCO.2005.01.388
- Gainor JF, Varghese AM, Ou SH, et al. ALK rearrangements are mutually exclusive with mutations in EGFR and KRAS in non-small cell lung cancer. *Clin Cancer Res.* 2013;19(15):4273–4281. doi:10.11 58/1078-0432.CCR-13-0318
- Unni AM, Lockwood WW, Zejnullahu K, et al. that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. *Elife*. 2015;4(4):e06907. doi:10. 7554/eLife.06907
- Gumerlock PH, Holland WS, Chen H, et al. Mutational analysis of K-RAS and EGFR implicates K-RAS as a resistance marker in the Southwest Oncology Group (SWOG) trial S0126 of bronchioalveolar carcinoma (BAC) patients (pts) treated with gefitinib. *J Clin Oncol.* 2005;23:623s. doi:10.1200/jco.2005.23.16_suppl.7008
- 21. Han SW, Kim TY, Jeon YK, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. *Clin Cancer Res.* 2006;12:2538–2544. doi:10.1158/ 1078-0432.CCR-05-2845
- 22. Zhu CQ, Sants GC, Ding K, et al. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer institute of Canada Clinical Trial Group study BR.21. *J Clin Oncol.* 2008;26 (26):4268–4275. doi:10.1200/JCO.2007.14.8924
- Pao W, Girard N. New driver mutations in non-small-cell lung cancer. *Lancet Oncol.* 2011;12:175e180.
- 24. Ding L, Getz G, Wheeler DA, et al. Somatic mutations affect key pathways in lung adenocarcinoma. *Nature*. 2008;455(7216):1069e 1075. doi:10.1038/nature07423
- 25. Dong ZY, Zhong WZ, Zhang XC, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 Blockade Immunotherapy in Lung Adenocarcinoma. *Clin Cancer Res.* 2017;23(12):3012–3024. doi:10.1158/1078-0432.CCR-16-2554
- 26. Skoulidis F, Goldberg ME, Greenawalt DM, et al. STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma. *Cancer Discov.* 2018;8:822–835. doi:10.1158/21 59-8290.CD-18-0099
- 27. Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. *Oncogene*. 2016;35(24):3209–3216. doi:10.1038/onc.2015.375
- Peng W, Chen JQ, Liu C, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. *Cancer Discov.* 2016;6:202–216. doi:10.1158/2159-8290.CD-15-0283

- 29. El Osta B, Behera M, Kim S, et al. Characteristics and outcomes of patients with metastatic KRAS-mutant lung adenocarcinomas: the lung cancer mutation consortium experience. J Thorac Oncol. 2019;14(5):876–889. doi:10.1016/j.jtho.2019.01.020
- 30. Dogan S, Shen R, Ang DC, et al. Molecular epidemiology of EGFR and KRAS mutations in 3026 lung adenocarcinomas: higher susceptibility of women to smoking-related KRAS-mutant cancers. *Clin Cancer Res.* 2012;18:6169–6177. doi:10.1158/1078-0432.CCR-11-3265
- Arbour KC, Jordan E, Kim HR, et al. Effects of co-occurring genomic alterations on outcomes in patients with KRAS-mutant non-small cell lung cancer. *Clin Cancer Res.* 2018;24:334–340. doi:10.1158/ 1078-0432.CCR-17-1841

Cancer Management and Research

Publish your work in this journal

Cancer Management and Research is an international, peer-reviewed open access journal focusing on cancer research and the optimal use of preventative and integrated treatment interventions to achieve improved outcomes, enhanced survival and quality of life for the cancer patient.

The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: https://www.dovepress.com/cancer-management-and-research-journal

Dovepress