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Abstract: The homogeneity assumption of a Simon Phase II clinical trial is commonly violated 

due to excess variation in the response known as response heterogeneity. Using a general 

framework to model heterogeneity, we investigate its effects on the operating characteristics of 

the Simon trial design using the standard practice of averaging responses. We show that, under 

heterogeneity and averaging, the Simon designs have higher than expected errors which may 

result in false negative and false positive Phase II outcomes.
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Introduction
Simon Phase II designs are single arm trial designs used to estimate efficacy for an 

experimental treatment. The primary assumption for this type of trial is the  assumption 

of response homogeneity. Response homogeneity is defined as the variance of the 

response being bounded by the variance of a binomial distribution given a response 

rate, π .1 In practice, this assumption may be violated with the response variation 

greater than expected. An explanation for the increase in response variation or response 

heterogeneity is the existence of unique subgroups in the population.2–4 The standard 

practice in Phase II trials to deal with heterogeneity has been to conduct separate 

subgroup trials or to ignore the heterogeneity by conducting a single trial using an 

averaged subgroup response.2,5–8 Though recent designs have included methodology 

to handle heterogeneity, the application of the methodology is still in its infancy and 

Simon designs account for the majority of Phase II trials.9 This paper examines the 

effects of heterogeneity on the Simon designs using the practice of averaging subgroup 

response rates.

In contrast to a single response rate for a homogeneous population, the response rate 

for a heterogeneous population can be deconstructed as a response profile, a vector of 

subgroup response rates. Using the response profile, three scenarios, simple averages, 

weighted averages, and weighted averages with accrual differences, will be used to 

combine the profile into a single response rate and the effects of heterogeneity will 

be examined using a systematic evaluation platform.

The paper is organized as follows. Section 2 provides an overview of Simon’s 

Phase II designs. We describe general models to accommodate response heterogeneity 

in section 3. Section 4 presents the set of operating characteristics used to measure 

the effects of heterogeneity. In the penultimate section, we study the properties of the 
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design parameters using a limited simulation study with 

discussion and concluding remarks in section 6.

Simon trial designs
Simon Phase II trial designs use two stages to allow for futility 

of the alternative hypothesis between stages; minimizing the 

number of patients subjected to a non-efficacious treatment.1 

Let n
i
 be the sample size for stage i = 1, 2, where the total 

sample size is n = n
1
 + n

2
; and x and y be the sum of positive 

responses to a treatment in stage 1 and stage 2, respectively, 

for the experimental treatment. The Simon design assumes 

that the sum of responses follows a binomial distribution: x ∼ 
b(n

1
,π

1
) and y ∼ b(n

1
,π

1
), with variance Var(x) = nπ

1
(1–π

1
) 

and Var(y) = nπ
1
(1-π

1
) with response rate π

1
. If the sum of 

responses for the experimental treatment in the first stage 

is not larger than a critical value r
1
, the trial is stopped for 

futility; otherwise the trial proceeds to stage two enrolling 

an additional n
2
 patients. Once all of the patients have been 

evaluated, the sum of responses over both stages, x + y, is 

compared to a second critical value, r. If the sum of responses 

is not larger than r, then the treatment is estimated to not 

have the desired effect; otherwise the experimental treat-

ment is estimated to be efficacious with a response rate of 

π
1
 . π

1
.1,10 The values for the critical values are computed 

given target nominal values for the operating characteristics, 

the type I error, eg, false positive error, and type II error, eg, 

false negative error.

Heterogeneity model
Let π

i
 be the response probability for the ith subgroup for 

i = 1,2…,g mutually exclusive subgroups. A subgroup 

response profile can be constructed, πT = (π
T1

, π
T2

, π
Tg

), for 

T = {0,1} corresponding to the null and alternative treatments 

respectively, where π
T
 is a vector composed of g subgroups, 

and there exists π
i
 ≠ π

i′ for some i ≠ i′. Additionally, let 

w = (w
1
, w

2
,…, w

g
) define the population subgroup propor-

tions or weights.

Let the historical baseline response rate be denoted 

by π π0 0* = ( )min
g i  and the baseline treatment effect be 

denoted by δ δ* = ( )mean
g

i1 . Note that separate location 

measures, minimum, and mean are used for the baseline 

response and baseline treatment effect. The use of the mini-

mum response rate ensures that the historical fixed effects 

of heterogeneity in the model are positive. For estimation 

purposes, we define δ * = δ  such that δ is the target treatment 

effect used in a Simon trial design ignoring subgroups. 

Furthermore, let η
i
 be the prognostic response 

 heterogeneity between subgroup i and the baseline historical 

response such that η
i
  0 and let τ

i
 be the predictive hetero-

geneity of the treatment effect over the baseline treatment 

effect such that τ
i
 ∈ R. Then,

 

π π η δ τ
π

T i i i

T i

I T= + + +0 1
1

* *( ) ( )=  
               where 0 # #

 (1)

defines a model for heterogeneity with indicator function I(⋅). 
Response heterogeneity can be divided into three classes, 

historical response heterogeneity (HRH), assumed response 

heterogeneity (ARH), and general response heterogeneity 

(GRH), based on the source of the response heterogeneity.11 

For all i ≠ i′,

	

π π π π η η
τ τ

0 0 1 1

0
i i i i i i

i i

≠ ≠ ≠
= =

´ ´ ´

´

  and    where 
and  such thatt δ δi i= ´ ,

 (2)

defines the HRH class and

 

π π π π η η
τ τ

0 0 1 1 0i i i i i i

i i

= ≠ = =
≠

´ ´ ´

´

  and   where   
and  such thaat δ δi i≠ ´

 (3)

defines the ARH class. In both classes, each experimental 

treatment subgroup response rate is unique. The variation in 

the experimental response in (2) is attributed to variation in 

the standard response rate through the known historical dif-

ferences, η
i
, between subgroup i and the baseline subgroup 

with a homogeneous treatment effect. The variation in (3) 

is attributed to variation in the treatment effect, τ
i
, through 

a treatment-subgroup interaction when comparing the treat-

ment effect in subgroup i to the baseline treatment effect with 

a homogeneous historical response rate.

The third class, GRH, relaxes the unique response rate 

constraint. A mixture of prognostic and predictive heteroge-

neity can result in nonunique experimental response rates. 

The etiology of each subgroup’s heterogeneity is the basis for 

the subgroup construction and is assumed to be unique. GRH 

is defined as follows. There exists some i ≠ i´for which

 

π π π π η η
τ τ

0 0 1 1i i i i i i

i i

≠ ≠ ≠
≠

´ ´ ´

´

 and    where , 
and  such that  δ δi i≠ ´ .

 (4)

the variation in (4) is attributed to both heterogeneity in the 

standard response rates and the treatment effects.

To simulate the full range of each class of heterogeneity, 

a second component to heterogeneity, heterogeneity imbal-

ance, is needed. Heterogeneity imbalance is a measure of the 

mean difference between subgroup population proportions 

or between accrual weights,
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where C
g,2

 is the combination of g pairwise elements. The 

simplest case is balanced population proportions where 

Î = 0. To distinguish between population heterogeneity and 

accrual heterogeneity, Îa will be used to denote accrual 

heterogeneity.

To estimate the response profiles, three scenarios, simple 

averages, weighted averages, and weighted averages with 

accrual differences, will be used. The simple and weighted 

averages are respectively defined by

 

π π δ

π π δ

T i i
i

g

T i i i
i

g

I T g

w I T

= + =( )( )

= + =( )( )
=

=

∑

∑

1

1

1

1

/ and

.
 

(5)

To allow for uncertainty in the true population profiles 

or differences in accrual when the weighted average method 

is applied, given a population profile with imbalance Î, the 

accrual profile, a = (a
1
, a

2
,…, a

s
), is generated such that 

Ia ∈ (I ± ∂a) where ∂a is the estimated divergence from 

the true population proportion. For a given divergence, the 

resulting accrual profiles maintain the same mean population 

heterogeneity imbalance.

Operating characteristics
In a Simon Phase II trial, the hypothesis of interest is to test 

H
0
 : π = π

0
 versus H

1
 : π . π

0
 eg, π = π

1
 where π

1
 = π

0
 + δ	* 

under the type I and II errors. In terms of observed positive 

responses, (x, y) and critical value, r, the type I and type II 

errors are defined by

 

α π π
β π π

= + > = 
= + ≤ =[ ]

E x y r
E x y r

|
| .

0

1

and

 

(6)

Under heterogeneity, the construction of the condition-

ing response rates in (6), though averaging, is not a unique 

process; multiple combinations of response and population 

profiles can result in a common response rate. Thus, an 

additional condition must be placed on the error construc-

tion, a specific combination of weights and response profile 

satisfying an averaging constraint,

 





α π π

β π π

= + > =[ ]  ∀ ≠ =

= + ≤ =[ ]

E E x y r S i i s s

E E x y r

i i| | ’

|

[ ] [ ’]0

1

and

|| ’ [ ] [ ’]S i i s si i  ∀ ≠ =
 (7)

where S = s[i] is a specific combination of response and weight 

profile satisfying an averaging constraint, e.g. a partition of 

the complete space of possible weight*response profiles.

To illustrate the complexity in this problem, we will 

examine how to construct an error rate through simulation. 

Table 1 displays possible weight*response profiles that satisfy 

equation (5.1) given a 40:60 scheme and π
0
 = 0.35. Error rates 

are means eg, expected values. For example, under a binary 

model, given a response rate, sample size, and a critical value, 

{π, n, r} respectively, we can compute the type I error or size 

of the test as follows through simulation

 

α α α α π* / * ; * ( ( , ) )= <( ) = >
=

∑1 0
1

b I P Bin n ri i i
i

b

 (8)

where b is the number of simulations. The type II error is 

similarly constructed using π
1
 in place of π

0
. We can rewrite 

equation (8) in a second form using an indicator variable, I,

 
α α α α π* * | ,= <







= [ ] 
=

∑1
1

s E E si
i

s

T  (9)

where α is the target type I error. If one chooses to partition 

the above simulation into, say, s = 4 subsimulations, the 

errors could still be constructed by taking the mean of the 

subsimulation errors.

 
α α α π π= <( ) = + > =[ ] 

=
∑1

1
0s

E E x y r Si
i

s

* | |[ ]

 
(10)

which is equal to

 
α α α= <( )

=
∑1

1s
I i

i

s

*[ ]

 (11)

Table 1 Multiple weight*response profiles satisfying response 
rate constraint

W1 W2 π01 π02

0.40 0.60 0.09 0.52
0.40 0.60 0.53 0.23
0.40 0.60 0.44 0.29
0.40 0.60 0.20 0.45
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where [i] is the ith partition of a total of s partitions. Under 

heterogeneity, there is not an exact analogy, eg, equation (10) 

=  equation (11) is not guaranteed since there is a conditioning 

present on the original expectation. In (10), the composition 

of the conditioning is exactly the same across all subsimula-

tions, a homogeneous condition. Under an unequal subgroup 

assumption, the conditioning is the response*weight profile 

which results in a heterogeneous conditioning. For example, 

given the first line of Table 1, (0.09, 0.52), a type I and type 

II error exist. Type I and Type II errors also exist for each of 

the remaining lines following (8).

To compute the overall errors given a weight profile, one 

must first find the errors for each weight*response profile or 

partition from (8). Then using (10), the mean of the partitions, 

under heterogeneity, can be interpreted as the errors given a 

specific weighting scheme,

 E[E[α | π
1
, π

2
, w

1
, w

2
] | w

1
, w

2
] (12)

from a clinical standpoint, (12) does not make much sense. 

When a single arm Phase II trial is run under latent hetero-

geneity, only an average null response is known. The trial is 

used to estimate if the treatment will increase the response 

rate a clinically meaningful difference above the null response 

rate. By using the partition mean definition, the trial param-

eters are not guaranteed to control the errors for a specific 

weight*response profile, only on average across all possible 

weight profiles.

A more appropriate estimate for the errors would be 

to use the form in (9). In this case, the errors given latent 

heterogeneity are 

 
 ∼α α α β β= >( ) = >( )

= =
∑ ∑1 1

1 1s
I

s
Ii

i

s

i
i

s

* *[ ] [ ]β
 

(13)

if a trial is designed to control the errors in (13), then the 

trial is guaranteed to control the errors at a specific level 

for every weight*response profile as opposed to control-

ling the errors on average. This difference is clinically 

substantial.

Equation (13.2) provides evidence for the possible failure 

of Phase II trials when ex vivo evidence would suggest 

otherwise and equation (13.1) provides evidence for the 

failure of a Phase III from a subsequent successful Phase II. 

The distribution of type I and II error estimates describe 

the strength of the underpowering or oversizing of the trial. 

Error estimate distributions which have more mass centered 

on the nominal error are of less concern than location shifted 

distributions where the mass of the distribution is centered 

further from the nominal errors.

Simulation and results
For simplicity, the number of subgroups in the simulations 

was chosen to be g = {2, 4}. Given a combination of popula-

tion and response profile, the type I and type II errors were 

computed using B
1
 = 10000 Monte Carlo iterations. Due 

to the multiplicity of combinations of response*weight 

profiles with a common mean response and to allow π
Ti
 

where π
Ti
 . π

Ti'
 for i ≠ i' to be uniformly distributed across 

the g subgroups, (B
2
 | g = 2) = 40 000 and (B

2
 | g = 4) = 100 

000 Monte Carlo iterations were conducted; for example, 

(B
2
 | g = 2) = 4 and π

S
 = 0.25 using a simple average can 

result in

 
p p S S1 2 1 2

1 9 30 20 1 9 40 10

1 9 20 3
, , ,

. , . , . , . . , . , . , .

. , . , . , .
π π( ) =

( ) ( )
00 1 9 10 40( ) ( )











. , . , . , .
.

A sample of population proportion profiles or weights 

was chosen to cover a cases of heterogeneity imbalance in 

the range Î = (0, 0.98) for the two subgroup simulations and 

Î = (0, 0.48) for the 4 subgroup simulations and was simu-

lated as follows:

1. Under HRH or ARH, given the population profile for an 

imbalance I, the first (g - 1) historical response rates, 

π
0i
, were randomly generated from a uniform distribu-

tion, π π π π δ01 02 0 1 00, , , ~ ,( )
*… g U− +( )  where π δS , *( )  

are specified, for example π δS , . , .∗( ) = ( )0 25 0 15 . The 

parameters for the uniform distribution are problem 

specific and are subject to the constraints 0 # π
0i
 # 1 for 

all i. The gth null response rate was generated to satisfy 

(5) depending on the type of averaging. The alternative 

response rate was constructed in a similar fashion for the 

HRH and ARH classes. Under GRH, the odds ratio of 

each subgroup was constrained to equal the odds ratio 

for the Simon design such that,

 

OR OR

OR

i

i i

i i

g

0
1 1

0 0

1 1

0 0

1

1

1

1

1
=

-( )
-( ) = =

-( )
-( )

= = =

π π
π π

π π

π π

π

/

/

/

/

…
gg g

g g

/

/

1

1

1

0 0

-( )
-( )

π

π π

solving for π
1i
 given π

0i
. Then, δ

i
 = π

1i
 - π

0i
.
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2. If accrual is allowed to diverge from the population 

profile, an accrual profile is constructed for each 

subgroup to replace the population profile, a = (a
1
, 

a
2
, …, a

g–1
) ∼ tN (p

i
, 1) and a ag ii

g
~ 1

1

1
−

=

−∑  where 

truncation occurs for the f irst (g-1) subgroups at 

(p
i
 ± ∂p).

3. Given a population or accrual profile and a response pro-

file, simulate multinomial random variables n
11

, n
21

, …, n
g1

 

with fixed sample size n
1
 and cell probabilities πT = (π

T1
, 

π
T2

, …, π
Tg

).

4. For values of (N
11

, N
21

, …, N
g1

) = (n
11

, n
21

, …, n
g1

), simu-

late binomial random variables x
Ti
 with sample size n

i1
 

and response rate π
Ti
. Then x xT T ii

g
=

=∑ 1
 is compared to 

the critical value r
1
 derived from the Simon trial design 

using the target mean response rates and nominal errors. 

If x
T
 # r

1
, then the trial is stopped for futility.

5. If x
T
 . r

1
, repeat steps (3–4) for the second stage, n

2
 to 

determine y; otherwise y
Ti
 = 0. Compare x

T
 + y

T
 to the 

critical value r from the Simon trial design. If x
T
 + y

T
 . r, 

then the null response rate is rejected.

6. Repeat steps (2–5) for B
1
 = 10 000 simulations and T = (0, 1). 

Then, I x y r B
b

B

0 01 0+ >( )( ) =
=∑ / | π π  is the type I error 

of the test and I x y r B
b

B

1 11 1+ ≤( )( ) =
=∑ / | π π  is the type 

II error of the test.

7. Repeat steps (1–6) for B
2
 combinations of response and 

population profiles. Construct the actual type I and type II 

errors using equation (13).

The first simulation compared the effect of varying 

levels of heterogeneity imbalance using simple averages 

for a 2 subgroup trial. The target type I and type II errors 

are (α, β	) = (0.10, 0.20). Table 2 displays the errors with 

corresponding 95% quantile intervals for each class of het-

erogeneity. Under all three classes of heterogeneity and a 

heterogeneity imbalance of I # 0.20, the errors approximate 

the nominal errors. When the imbalance increases, I . 0.20 

under HRH and GRH, the errors exceed the nominal errors 

with increasing divergence as the imbalance increases. Under 

ARH, the type I error approximates the nominal error with the 

type II following a similar, but less extreme divergence pat-

tern as HRH and GRH. As the imbalance increases, the ranges 

of error estimates increase with the exception of the ARH 

type I estimates which maintain a constant quantile interval 

irrespective of the imbalance. The effect of heterogeneity is 

most pronounced on the type I error range under HRH and 

more pronounced on the pseudo type II error range under 

GRH. Under an unknown response profile for 2 subgroups, 

the mean probability that trial is moderately to extremely 

oversized is 22%, | | .α α∧ − ≥ 0 04 , and the mean probability 

that the trial is underpowered is 42%, | | .β β
∧
− ≥ 0 04 .

To further identify the effect of heterogeneity, Tables 3 

and 4 display the probability distributions for the oversizing 

or underpowering of the trial. Under HRH and GRH, as the 

 heterogeneity imbalance increases, the mass of the error 

 estimate distributions location shifts increasingly further 

to the left resulting in larger divergences from the nominal 

errors. This results in strong negative effects of heterogene-

ity on the trial operating characteristics. For example, for 

I = 0.20 under HRH, the majority of oversized trials are in 

the range of (0.10, 0.12), a small divergence from the nominal 

errors. When I = 0.40 and I = 0.80, the majority of oversized 

trials are in the ranges of (0.2, 0.3) and (0.4, 1) respectively, 

substantial divergences from the nominal error and of high 

concern to the trial conduct; a similar pattern is seen with the 

pseudo type II errors. The exception is the oversized trials 

under ARH. Irrespective of the heterogeneity imbalance, the 

majority of oversized trials are only slightly oversized in the 

range of (0.10, 0.12). This would imply that even though the 

trials are oversized, the effect of the heterogeneity is minimal 

on the type I error.

Table 5 displays the results for 4 subgroups. Similar 

results are seen comparing the 2 and 4 subgroups examples 

assumptions, but the divergence between actual and nominal 

Table 2 size and power for each class of heterogeneity by 
heterogeneity imbalance with corresponding 95% quantile and 
Monte Carlo intervals for a 2 subgroup example using simple 
averaging and 40, 000 iterations

Class I Actual 
Error I

95% 
QI

Actual 
Error II

95% 
QI

hRh 0.02 0.10 (0.08, 0.11) 0.20 (0.18, 0.22)
0.20 0.11 (0.04, 0.20) 0.21 (0.11, 0.32)
0.40 0.13 (0.01, 0.34) 0.22 (0.06, 0.46)
0.60 0.16 (0, 0.50) 0.25 (0.03, 0.61)
0.80 0.20 (0, 0.65) 0.28 (0.02, 0.76)
0.98 0.23 (0, 0.76) 0.31 (0.01, 0.86)

ARh 0.02 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.20 0.10 (0.09, 0.11) 0.20 (0.14, 0.28)
0.40 0.10 (0.09, 0.11) 0.21 (0.09, 0.37)
0.60 0.10 (0.09, 0.11) 0.22 (0.06, 0.47)
0.80 0.10 (0.09, 0.11) 0.23 (0.04, 0.58)
0.98 0.10 (0.09, 0.11) 0.24 (0.03, 0.67)

gRh 0.02 0.10 (0.08, 0.11) 0.23 (0.19, 0.30)
0.20 0.11 (0.04, 0.20) 0.24 (0.14, 0.46)
0.40 0.13 (0.01, 0.34) 0.26 (0.07, 0.66)
0.60 0.16 (0, 0.50) 0.30 (0.03, 0.83)
0.80 0.20 (0, 0.65) 0.33 (0.01, 0.94)
0.98 0.23 (0, 0.76) 0.36 (0, 0.98)
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Table 3 Distribution of actual type i error for each class of heterogeneity and heterogeneity imbalance for a 2 subgroup example. 
αMC is the upper bound of the Monte Carlo error bound for the target type i error

Class I Distribution of Actual Type I Error

(αMC–0.12) (0.12–0.14) (0.14–0.18) (0.18–0.2) (0.2–0.3) (0.3–0.4) >0.4

hRh 0.02 0.31 0.01 0 0 0 0 0
0.20 0.09 0.10 0.17 0.08 0.04 0 0
0.40 0.05 0.05 0.09 0.04 0.17 0.09 0
0.60 0.03 0.03 0.06 0.03 0.12 0.12 0.12
0.80 0.02 0.03 0.04 0.02 0.09 0.07 0.22
0.98 0.01 0.03 0.04 0.01 0.08 0.06 0.27

ARh 0.02 0.26 0 0 0 0 0 0
0.20 0.26 0 0 0 0 0 0
0.40 0.26 0 0 0 0 0 0
0.60 0.26 0 0 0 0 0 0
0.80 0.26 0 0 0 0 0 0
0.98 0.26 0 0 0 0 0 0

gRh 0.02 0.31 0.01 0 0 0 0 0
0.20 0.09 0.10 0.17 0.08 0.03 0 0
0.40 0.05 0.05 0.09 0.04 0.17 0.09 0
0.60 0.03 0.03 0.06 0.03 0.12 0.10 0.12
0.80 0.02 0.03 0.04 0.02 0.09 0.08 0.22
0.98 0.01 0.03 0.04 0.01 0.08 0.06 0.27

Table 4 Distribution of actual type ii error for each class of heterogeneity and heterogeneity imbalance for a 2 subgroup example. 
βMC is the upper bound of the Monte Carlo error bound for the target type i error

Class I Distribution of Actual Type II Error

(βMC–0.22) (0.22–0.24) (0.24–0.28) (0.28–0.3) (0.3–0.4) (0.4–0.5) >0.5

hRh 0.02 0.36 0.02 0 0 0 0 0
0.20 0.08 0.09 0.16 0.07 0.08 0 0
0.40 0.04 0.05 0.08 0.04 0.17 0.12 0.12
0.60 0.03 0.03 0.06 0.03 0.11 0.10 0.25
0.80 0.03 0.03 0.04 0.02 0.08 0.08 0.31
0.98 0.01 0.02 0.03 0.01 0.07 0.07 0.35

ARh 0.02 0.37 0.01 0 0 0 0 0
0.20 0.18 0.15 0.12 0.01 0.01 0 0
0.40 0.10 0.09 0.14 0.05 0.10 0.01 0.10
0.60 0.06 0.07 0.12 0.05 0.13 0.05 0.06
0.80 0.04 0.06 0.08 0.05 0.13 0.08 0.13
0.98 0.03 0.05 0.07 0.02 0.13 0.09 0.18

gRh 0.02 0.29 0.21 0.19 0.06 0.03 0 0
0.20 0.06 0.07 0.07 0.05 0.14 0.10 0.10
0.40 0.04 0.02 0.07 0.01 0.11 0.08 0.24
0.60 0.03 0.02 0.03 0.03 0.07 0.07 0.32
0.80 0.02 0.03 0.01 0.02 0.08 0.05 0.35
0.98 0.01 0.02 0.01 0.01 0.07 0.03 0.38

errors occurs earlier, I ≈ 0.1. The distributions of actual errors 

are more highly location shifted to the left in the 4 subgroup 

simulation compared to the 2 subgroup simulation resulting 

in a mean probability that the trial is oversized of 28% and a 

probability that the trial is underpowered of 47%.

The second scenario is the weighted average, Table 6. 

Under HRH and ARH, the actual errors maintain the target 

errors with the quantile confidence intervals only slightly 

larger than the Monte Carlo error bounds. The mass of the 

actual error distributions are in the range of (0.10, 0.12) and 

(0.20, 0.22) respectively, a minimal divergence between 

target and actual errors. Under weighted averages, the effect 

of heterogeneity is minimal, but not absent, on the operating 

characteristics of the Simon trial.

To allow for the uncertainty in either the true proportions 

or the accrual, two levels of error were introduced during 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Open Access Journal of Clinical Trials 2010:2 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

113

heterogeneity in simon Trials

patient accrual, ∂a = {0.05, 0.1}. The accrual heterogeneity 

imbalance was allowed to vary between 0 and 5% and between 

0 and 10% of the population heterogeneity imbalance. The 

accrual difference can be attributable to accrual divergence or 

error in proportion estimation. Table 7 shows the results for 

g = 2 subgroups with an accrual divergence parameter of 5%. 

The actual errors approximated the nominal errors in almost 

every case with the exception being under GRH pseudo type II 

errors. The reason for this divergence is unknown at this time. 

The distributions of the pseudo errors are more dispersed than 

the weighted average method due to the variation in accrual. 

The strength of the errors is increased when comparing the 

error estimate distributions between weighted averages and 

weighted averages with accrual divergence.

Discussion
There has been a substantial increase in the identification 

of disease subtypes over the past 5 years. For example 

with the increase in usage of genomic markers, diseases, 

once thought of as having a homogeneous response across 

a population, are showing response stratification as the 

specificity of the disease process increases through modern 

diagnostic techniques. The existence of these subgroups can 

lead to an increase in the variance of the response adding 

a new confounder to the conduct of Simon phase II trials. 

While the Simon designs are very powerful designs under 

the homogeneity assumption, the increase in variation or 

heterogeneity has a strong effect on the operating charac-

teristics of the design.

The simulations have shown that under heterogeneity 

and an averaging practice to satisfy the input for a Simon 

design, the probabilities that the design is underpowered or 

oversized are larger than expected. Under simple averaging, 

as the level of heterogeneity imbalance increases, the actual 

errors diverge from the target errors with the mass of the error 

estimate distributions location shifted to the left, indicating 

Table 5 Actual errors for each class of heterogeneity by 
heterogeneity imbalance with corresponding 95% quantile and Monte 
Carlo intervals for a 4 subgroup example using simple averaging and 
100, 000 iterations

Class I Actual 
Error I

95% 
QI

Actual 
Error II

95% 
QI

hRh 0.02 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.10 0.13 (0.02, 0.35) 0.20 (0.06, 0.39)
0.20 0.12 (0.01, 0.37) 0.24 (0.06, 0.53)
0.30 0.24 (0, 0.88) 0.27 (0, 0.84)
0.40 0.28 (0, 0.97) 0.30 (0, 0.96)
0.48 0.31 (0, 0.99) 0.32 (0, 0.99)

ARh 0.02 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.10 0.10 (0.09, 0.11) 0.20 (0.10, 0.30)
0.20 0.10 (0.09, 0.11) 0.21 (0.10, 0.38)
0.30 0.10 (0.09, 0.11) 0.22 (0.02, 0.57)
0.40 0.10 (0.09, 0.11) 0.24 (0.01, 0.71)
0.48 0.10 (0.09, 0.11) 0.26 (0, 0.81)

gRh 0.02 0.10 (0.09, 0.11) 0.24 (0.20, 0.31)
0.10 0.13 (0.02, 0.35) 0.25 (0.09, 0.61)
0.20 0.13 (0.01, 0.37) 0.28 (0.05, 0.74)
0.30 0.23 (0, 0.88) 0.32 (0, 0.99)
0.40 0.28 (0, 0.97) 0.35 (0, 1)
0.48 0.31 (0, 0.99) 0.36 (0, 1)

Table 6 Actual errors for each class of heterogeneity by heterogeneity 
imbalance with corresponding 95% quantile for a 2 subgroup example 
using weighted averaging and 40, 000 iterations

Class I Actual 
Error I

95% 
QI

Actual 
Error II

95% 
QI

hRh 0.02 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.20 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.40 0.10 (0.08, 0.12) 0.20 (0.18, 0.22)
0.60 0.10 (0.08, 0.12) 0.20 (0.18, 0.22)
0.80 0.10 (0.08, 0.12) 0.20 (0.18, 0.22)
0.98 0.10 (0.09, 0.12) 0.20 (0.18, 0.22)

ARh 0.02 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.20 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.40 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.60 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.80 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)
0.98 0.10 (0.09, 0.11) 0.20 (0.18, 0.22)

gRh 0.02 0.10 (0.09, 0.12) 0.23 (0.18, 0.24)
0.20 0.10 (0.09, 0.12) 0.22 (0.18, 0.25)
0.40 0.10 (0.08, 0.12) 0.21 (0.18, 0.25)
0.60 0.10 (0.08, 0.12) 0.21 (0.18, 0.24)
0.80 0.10 (0.08, 0.12) 0.20 (0.18, 0.24)
0.98 0.10 (0.09, 0.12) 0.20 (0.18, 0.24)

Table 7 simon Optimal design with s = 2 subgroups population using 
weighted average with accrual differences, ∂a = 0.05, for 500, 000 
simulations

∂a I Actual 
Error I

95% 
CI

Actual 
Error II

95% 
CI

hRh 0.10 0.02 0.10 (0.07, 0.14) 0.20 (0.16, 0.24)
0.20 0.10 (0.07, 0.13) 0.20 (0.16, 0.24)
0.40 0.10 (0.08, 0.14) 0.20 (0.16, 0.24)
0.60 0.10 (0.07, 0.12) 0.20 (0.16, 0.24)
0.80 0.10 (0.08, 0.13) 0.20 (0.16, 0.24)

ARh 0.10 0.02 0.10 (0.09, 0.11) 0.20 (0.17, 0.23)
0.20 0.10 (0.09, 0.11) 0.20 (0.17, 0.23)
0.40 0.10 (0.09, 0.11) 0.20 (0.17, 0.23)
0.60 0.10 (0.09, 0.11) 0.20 (0.17, 0.23)
0.80 0.10 (0.09, 0.11) 0.20 (0.17, 0.23)

gRh 0.10 0.02 0.10 (0.08, 0.13) 0.20 (0.16, 0.26)
0.2 0.10 (0.07, 0.12) 0.21 (0.17, 0.26)
0.4 0.10 (0.07, 0.12) 0.21 (0.17, 0.38)
0.6 0.10 (0.07, 0.13) 0.22 (0.17, 0.39)
0.8 0.10 (0.07, 0.14) 0.23 (0.18, 0.34)
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a larger divergence between the target and actual errors and 

substantial impact on the trial outcomes.

Using a weighted average minimizes the divergence 

between error types, but caution should still be advised. The 

quantile 95% confidence intervals for the actual errors are 

greater than the Monte Carlo error bounds and do not always 

maintain the nominal error. So even under a weighted scheme, 

a trial might fail due to heterogeneity. This divergence is 

attributed to the fact that the true response rate under the 

null hypothesis is not equivalent to the target response rate 

used in the design A clinician will not know immediately 

after trial conduct that what the true power or true size 

are to know how close they were to a successful outcome. 

Additionally, as the number of subgroups increase, the diver-

gence between errors types increases. The application of the 

weighted average method is not always feasible. In practice, 

clinicians may not have a very accurate estimate of the true 

population proportions or may not have an accurate estimate 

for the accrual at the time of the study. The addition of an 

accrual confounder further increases the divergence between 

nominal and pseudo error rates under weighted averaging. 

Even small divergences are of concern given the relatively 

small sample sizes in Phase II trials.

The importance of these results may be correlated with 

the overall failure percentages of Phase II and Phase III  trials. 

The percentage of Phase II trials that fail today exceeds 30% 

in fields such as oncology.8,12 The etiology of the failure of the 

trials is partially unknown. The treatment in question may not 

have the response hypothesized or the trial may, in fact, be 

underpowered; though the clinician is unaware of this fact due 

to ignoring the heterogeneity though averaging. For example, 

in the simulations, approximately 32% of the 2 subgroup tri-

als with only a slight heterogeneity imbalance, I = 0.2, would 

be underpowered, with a minimum type II error of 0.24. The 

Phase II trial could fail due to this underpowering or the trial 

could still have been a success, but unknowingly oversized 

with probability ∼28% with a type I error of a minimum of 

0.14. The subsequent Phase III might fail due to this oversiz-

ing. A clinician needs to address the issue of whether or not 

a 28%–32% probability of reaching the wrong outcome is 

acceptable if an averaging method is used.

The authors present this work to provide evidence that 

under the assumption of heterogeneity, the use of a Simon 

design presents risks that are beyond acceptable for most 

clinicians and may provide some information as to the rea-

son behind the high number of Phase II trials that fail when 

ex vivo evidence suggests otherwise or the subsequent failure 

of Phase III trials after successful Phase IIs. Methods need 

to be constructed that can handle heterogeneity and still 

retain the simplicity and ease of use of the popular Simon 

designs.
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