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Introduction: Molecular networks based on the abundance of mRNA at the gene level and 
pathway networks that relate families or groups of paralog genes have supported the under-
standing of interactions between molecules. However, multiple molecular mechanisms under-
lying health and behavior, such as pain signal processing, are modulated by the abundances of the 
transcript isoforms that originate from alternative splicing, in addition to gene abundances. 
Alternative splice variants of growth factors, ion channels, and G-protein-coupled receptors 
can code for proteoforms that can have different effects on pain and nociception. Therefore, 
networks inferred using abundance from more agglomerative molecular units (eg, gene family, or 
gene) have limitations in capturing interactions at a more granular level (eg, gene, or transcript 
isoform, respectively) do not account for changes in the abundance at the transcript isoform level.
Objective: The objective of this study was to evaluate the relative benefits of network 
inference using abundance patterns at various aggregate levels.
Methods: Sparse networks were inferred using Gaussian Markov random fields and a novel 
aggregation criterion was used to aggregate network edges. The relative advantages of network 
aggregation were evaluated on two molecular systems that have different dimensions and con-
nectivity, circadian rhythm and Toll-like receptor pathways, using RNA-sequencing data from 
mice representing two pain level groups, opioid-induced hyperalgesia and control, and two central 
nervous system regions, the nucleus accumbens and the trigeminal ganglia.
Results: The inferred networks were benchmarked against the Kyoto Encyclopedia of Genes 
and Genomes reference pathways using multiple criteria. Networks inferred using more 
granular information performed better than networks inferred using more aggregate informa-
tion. The advantage of granular inference varied with the pathway and data set used.
Discussion: The differences in inferred network structure between data sets highlight the 
differences in OIH effect between central nervous system regions. Our findings suggest that 
inference of networks using alternative splicing variants can offer complementary insights 
into the relationship between genes and gene paralog groups.
Keywords: Gaussian Markov random fields, pain, alternative splicing, pathway, RNA-seq, 
transcript isoform network

Introduction
The study of gene co-expression networks has advanced the detection of interaction 
between molecules such as regulatory associations.1 Gene network reconstruction 
has also been critical in accelerating gene annotation,2 and the understanding of the 

Correspondence: Sandra L Rodriguez-Zas  
University of Illinois at Urbana- 
Champaign, 1207 W Gregory Dr., 
Urbana, Illinois 61801, USA  
Tel +1 217 333 8810  
Fax +1 217 333 8286  
Email rodrgzzs@illinois.edu

submit your manuscript | www.dovepress.com Advances and Applications in Bioinformatics and Chemistry 2021:14 49–69                              49

http://doi.org/10.2147/AABC.S284986 

DovePress © 2021 Zhang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Advances and Applications in Bioinformatics and Chemistry                Dovepress
open access to scientific and medical research

Open Access Full Text Article

A
dv

an
ce

s 
an

d 
A

pp
lic

at
io

ns
 in

 B
io

in
fo

rm
at

ic
s 

an
d 

C
he

m
is

tr
y 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-8959-7709
http://orcid.org/0000-0003-3107-9922
http://orcid.org/0000-0003-1122-4758
mailto:rodrgzzs@illinois.edu
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php
http://www.dovepress.com


function or role of a gene within a pathway.3 In these net-
works, the genes are the nodes and the edges connecting the 
nodes are a function of the covariation (eg, correlation) or 
conversely, inverse of covariation (eg, dispersion) of the 
expression levels between genes.4

RNA-sequencing (RNA-seq) platforms enable the 
measurement of the levels of transcript abundance in 
a sample. The basis of this technology is the sequencing 
of short nucleotide stretches. These reads are aligned to 
a reference sequence and inference of the gene segments 
that are transcribed. Typically, the reads that map to the 
same gene are combined into a single value of global gene 
expression that can be used to infer gene networks. 
However, the reads can be mapped to the distinct tran-
script isoforms, resulting from alternative splicing, thereby 
enabling the quantification of individual transcript 
isoforms.

The same approaches available to infer networks using 
global gene expression profiles can be applied to infer 
networks using alternative splicing variant profiles. The 
use of profiles at the gene level does not allow to uncover 
the connectivity and network topology that is transcript 
isoform dependent.5 The inference of transcript isoform 
networks based on the abundance of alternative splice 
products advanced the understanding of the interplay 
among transcript isoforms.6,7 However, the granularity of 
transcript isoform networks may not be necessary when 
interactions between genes are similar across all isoforms. 
Also, the use of profiles at the transcript isoform level may 
not be adequately informative to establish connectivity 
between network nodes.

The consideration of the level of profile granularity 
when inferring a molecular network is also applicable to 
the pathways presented in reference databases such as the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) or 
Biogrid.8,9 These pathways can include connections 
between families or groups of paralog gene products in 
addition to individual genes. The nodes in the KEGG 
database pathways can be individual genes or groups of 
paralog genes that arose from gene duplication and 
maintained similar functions. The considerations of accu-
racy and precision in network inference, when considering 
transcript isoform relative to gene profiles, are applicable 
to pathways of individual genes relative to gene paralog 
families or clusters.

Research on the inference of transcript isoform net-
work has either focused on transcript isoform profiles 
alone,5 or has simultaneously considered gene and 

transcript isoform levels with the goal of characterizing 
the regulation of splicing and transcription.10 These stu-
dies have tested the performance of the approach on simu-
lated profiles or were applied to real data to discover 
mechanisms.10 A systematic assessment of relative advan-
tages of networks reconstructed based on gene-level, tran-
script isoform-level, or gene-transcript isoform-level 
information is needed. Moreover, a comparison of the 
performance of these network types using real data sets 
against known molecular relationships will provide con-
clusive evidence on the suitability to elucidate gene 
interactions.

The experimental motivation for this bioinformatics 
study is the known role of alternative splicing variants 
on multiple molecular mechanisms underlying health and 
behavior, and in particular, in pain signal processing. 
Alternative splice variants of growth factors, ion channels, 
and G-protein-coupled receptors code for proteoforms can 
have different effects on pain and nociception.11–16 Failure 
to study molecular interactions at multiple levels, from 
transcript isoform to paralog gene cluster, hinders the 
development of effective pharmacological agents.11

The present study evaluates the advantages of network 
reconstructions using alternative inputs across a range of 
outputs. The evaluated network inputs included different 
levels of granularity, including profiles from transcript 
isoforms, genes, and combination of transcript isoforms 
and genes. A novel approach to agglomerate the informa-
tion from lower levels into coarser higher levels of mole-
cular information is presented. The evaluated network 
outputs included different levels of agglomeration, ranging 
from transcript isoforms to genes and groups of gene 
paralogs. Following benchmarking using complementary 
network sensitivity and precision indicators, the approach 
can be applied to improve the discovery of network mod-
ules and hubs across the genome.

The comparison of the relative advantage of various 
levels of network inference was applied to RNA-seq profiles 
from a study of the effects of opioid-induced hyperalgesia 
(OIH) relative to control mice.17 Results from the analysis of 
gene expression profiles identified 187 genes differentially 
expressed between treatments and supported the enrichment 
of the KEGG Circadian Rhythm (CR) and Toll-like receptor 
(TL) pathways.18 The relationship between molecules in the 
circadian rhythm and Toll-like receptor pathways at various 
granularity levels were reconstructed using profiles at the 
transcript isoform and gene levels. Lastly, the accuracy and 
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precision of the inferred networks were benchmarked 
against the KEGG pathways.

Materials and Methods
The relationships between the transcript isoform, gene, 
and paralog gene group nodes in the network were cap-
tured by the Gaussian Markov random field sparse preci-
sion matrix.19 In this framework, non-zero off-diagonal 
entries in the sparse precision matrix corresponded to 
nodes are that are correlated,20 and an edge was used to 
denote the connection between these nodes. On the other 
hand, zero off-diagonal entries in the precision matrix 
resulted in the absence of an edge between these 
nodes.21,22

The sparse precision matrix (θ) was estimated from the 
relationship among the inputs as a function of the empiri-
cal covariance matrix (S) between log-transformed and 
standardized input abundances and of a penalty (λ) weight-
ing the L1 norm:23

θ̂ = arg minθ�0 tr Sθð Þ � log det θ þ jjθjj1;λ
n o

In the previous equation, the penalty λ is 
a regularization or smoothing parameter that enables the 
estimation of a sparse precision matrix from the observed 
covariance matrix. The isoform and gene networks were 
generated from the relationship of the isoform and gene 
inputs to the outputs using the QUIC R package (version 
1.1) to compute θ.23

The optimal penalty parameter was empirically esti-
mated as the value that maximized the alignment between 
the inferred network and the known pathway in the KEGG 
database. Different penalty values ranging from 0 to 1.5 by 
0.01 squared abundance level units were tested within 
profile input type, node output type, data set and pathway. 
The minimum percentage of input edges (eg, transcript 
isoforms) out of all possible edges required to detect an 
edge between output nodes (eg, genes) studied were 40%, 
45%, 50%, 55%, 60%, 65% and 70%. Therefore, a grid of 
150 x 6 = 900 combinations of parameter values was 
evaluated per network.

Network Reconstruction
Table 1 summarizes the six scenarios of input granularity 
and output agglomeration that were studied. Molecular 
networks were constructed for the different output levels 
(ie, transcript isoform, gene, or gene group) using the 
covariance matrix based on the distinct inputs. The input 
profiles studied, in terms of decreasing granularity, were 
the mRNA abundance at the transcript isoform level, gene 

level, and combination of transcript isoform and gene 
levels. The output nodes studied, in terms of decreasing 
granularity, were transcript isoforms, genes, and paralog 
gene groups. Paralog gene group encompasses gene 
families including members that have a similar or partially 
overlapping function.

Three levels of transcript abundance were used as 
input to infer networks: transcript isoform, gene, and 
gene-transcript isoform levels. In the first two input 
scenarios, the covariances were calculated between tran-
script isoforms or between gene abundances. For the 
gene-transcript isoform input, the gene abundances 
were appended to the transcript isoform and the covar-
iance across all abundances. Only the 
components corresponding to the covariances between 
gene abundances and transcript isoform abundances 
were kept.

Output nodes of three types were inferred, including 
transcript isoform, gene, paralog gene group. Only con-
nections between genes and isoforms were considered as 
edges in the different output networks. Serving as baseline 
networks, networks of transcript isoform nodes based on 
transcript isoform abundance and networks of gene nodes 
based on gene abundance profiles were inferred directing 
from the sparse precision matrix. Networks between inputs 
with higher granularity than the output were obtained by 
a simple ensemble method to reduce the sparse precision 
matrix obtained from higher granularity inputs to the less 
granular outputs.21,22 The relationship between nodes of 
the low granularity outputs was determined by the ratio of 
edges between the high granularity inputs and the low 
granularity outputs. The threshold of the magnitude of 
the ratio was determined by comparing the network with 
the expected network output.

Table 1 Scenarios of Input Granularity and Output 
Agglomeration Levels Studied Across Four Data Sets and Two 
Pathways

Output Input

Transcript 
Isoform

Transcript 
Isoform-Gene

Gene

Transcript isoform ✓ NE NE

Gene ✓ ✓ ✓
Paralog gene group ✓ NE ✓

Notes: These cases correspond to scenarios where the output is more granular 
than the input (ie, higher-level input profiles cannot be partitioned into lower-level 
outputs), and where different levels of input require different input aggregation 
protocols within a network. 
Abbreviation: NE, not evaluated.
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Transcript and Gene Identification and 
Data Sets
The approach to infer transcript isoform, gene and gene 
group networks was applied to RNA-seq data from 
a mouse experiment designed to uncover the genes asso-
ciated with pain sensitivity triggered by opioid use. 
Supervised short-term opioid-based therapies can help 
ameliorate chronic pain reported by more than 30% of 
the population in the occident. However, repeated opioids 
utilization can elicit opioid-induced hyperalgesia (OIH) of 
heightening sensitivity to pain. Thus, opioid use can 
engender a more fierce sense of pain instead of alleviating 
the pain and, in turn, may lead to higher opioid 
consumption.24,25

The mRNA profiles used in the present study to infer 
networks were measured in an experiment encompassing 
C57BL/6J (Jackson Laboratories, Bar Harbor, ME) mice 
receiving one of two treatments, and samples were col-
lected from two central nervous systems regions.17 Male 
mice, between 9 and 12 weeks old were studied. Mice 
were group-housed in a 12–12 light-dark cycle, and the 
food was available ad libitum. Animals were weighed 
daily during treatment, and no adverse effects of treatment 
were observed on body weight or visibly healthy perfor-
mance. The University of Illinois at Chicago Office of 
Animal Care and Institutional Biosafety Committee 
approved the animal experiments in accordance with 
AALAC guidelines, the Animal Care Policies of the 
University of Illinois at Chicago and the European Union 
directive on the subject of animal rights.

The two treatments evaluated were administration of 
chronic morphine used to elicit OIH and a matching vehi-
cle (Veh) that served as a control. Mice in the OIH group 
received an injection of morphine dissolved in 0.9% saline 
solution while mice in the Veh group were injected with 
saline vehicle at 10 mL/kg volume. Mice were injected 
morphine or vehicle twice daily and the dose was 20 mg/ 
kg on the first 3 days and 40 mg/kg on the fourth day.17 On 
the fifth day, mice were anesthetized with pentobarbital 
(Somnosol), euthanized, and an intracardiac perfusion 
using ice-cold saline was applied.17 Brains were extracted, 
and two central nervous system regions, the trigeminal 
ganglia (TG) and the nucleus accumbens (NA) were dis-
sected, snap-frozen, and stored at −80 °C. Each region 
from individual mice was homogenized using ceramic 
beads (MO BIO, Carlsbad, CA) and TRIzol (Invitrogen, 

Carlsbad, CA), and the Omega Biotek RNA kit (Norcross, 
GA) was used to isolate the RNA.17

The RNA-seq data consisted of 100nt paired-end reads 
obtained using HiSeq 4000 (Illumina, San Diego, CA) are 
available in the National Center for Biotechnology 
Information Gene Expression Omnibus (GEO) database, 
accession identifier GSE126662.

The average Phred quality score of the reads assessed 
using FastQC26 was >30 across all read positions, and 
therefore no read trimmed was applied. The paired-end 
reads from the individual samples were aligned to the 
C57BL/6J mouse genome (version GRCm38 p6) using 
the STAR aligner (V2.5.3a) software.27 The recorded 
expression levels were mapped to protein-coding genes 
and transcript isoforms using the GENCODE VM18 
annotation.28 The levels of transcript isoform and gene 
expression were quantified as raw reads count and 
Transcripts Per Kilobase Million (TPM) using RSEM 
(V1.3.1).29 Transcript isoforms and genes with at least 
five reads and one TPM per treatment–region combination 
were used as inputs for each pathway. The input TPM 
abundance levels were log-transformed and standardized 
across all samples for transcript isoforms and genes, 
respectively. The trimmed mean M-values normalized 
gene expression values were described using 
a generalized linear model and the software edgeR 
v. 3.14.0 in the R v. 3.3.1 environment was used to test 
for differential gene expression between treatments and 
regions was assessed.17 The Gene Set Enrichment 
Analysis (GSEA) available in the software GSEA-P 2.0 
[35] was used to identify enriched pathways among the 
genes over- and under-expressed between sample 
groups.17

From the analysis of abundance at the gene level, we 
identified that the circadian rhythm (CR) pathway was 
enriched among the genes over-expressed, and Toll-like 
receptor signaling (TL) pathway was enriched among the 
genes under-expressed in OIH relative to Veh, irrespec-
tively of central nervous system region.17 The genes and 
their corresponding transcript isoforms were identified and 
extracted for each pathway. The annotation of the genes to 
the paralog gene group of each pathway genes is presented 
in Supplementary Table S1. Examples of paralog genes in 
the circadian rhythm pathway the cryptochromes (Cry) 
genes Cry1 and Cry2 or the period circadian protein 
(Per) genes Per1, Per2, and Per3 and Toll-like receptor 
pathway; the mitogen-activated protein kinase (Mapk) 
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genes Mapk8, Mapk9, and Mapk10, and the thymoma 
viral proto-oncogene (Atk) genes Atk1, Atk2, and Atk3.

Differential splicing analysis was performed using the 
LeafCutter annotation-free algorithm5 for the genes in 
each pathway. The package was implemented with the 
parameter settings of at least three samples per intron 
and at least 50 split reads must support the cluster with 
introns up to 500 kb. Clusters that presented a differential 
splicing with P-value <0.05 were considered for further 
analysis. The variation in intron splicing between treat-
ment groups was considered biologically significant when 
the Percentage Spliced Index (PSI) differed by more than 
5%. Differential splicing events were then mapped to gene 
names using the Gencode VM18 version with the goal of 
annotating the splicing events of interest.

Network Construction
Each network input–output scenario (Table 1) was applied 
to the CR and TL pathways. These two pathways differed 
in network size and connectivity thus enabled the test of 
the effects of the network features on the relative advan-
tages of the network scenario evaluated (Table 2). The 
divergent characteristics of both pathways enabled us to 
disentangle the effect of pathway size and connectivity on 

network reconstruction. The CR pathway has fewer nodes 
(ie, genes, gene clusters and transcript isoforms) and 
higher connectivity (ie, the proportion of connected 
nodes) than the TL pathway. The resulting networks 
were visualized using Cytoscape.30

Network Evaluation
The optimal penalty parameter to aggregate granular 
edges, and the properties of the reconstructed network 
(eg, accuracy) for each network scenario were identified 
in four data sets supported by the experimental design. 
These four data sets encompassed the mRNA abundance 
of 1) all OIH samples across regions (OIH data set), 2) all 
Veh samples across regions (Veh data set), 3) all NA 
samples across both treatments (NA data set), and 4) all 
TG samples across both treatments (TG data set). The two 
tissue data sets encompass distinct samples and the two 
treatment data sets encompass distinct samples. The prior 
analysis at the gene level indicated that the number of 
genes differentially expressed between regions was higher 
than between treatments.17 Therefore, the data sets that 
encompassed transcriptome abundance information across 
both treatments (the region NA and TG data sets) were 
expected to encompass more variability in mRNA abun-
dance than the remaining two data sets across regions. The 
network inferred from one data set cannot be inferred from 
the other data sets. Each data set included the same num-
ber of samples and highlighted the level of gene hetero-
geneity in expression within four data sets.

The performance of each network scenario (six input– 
output scenarios), for each pathway (CR and TL path-
ways), and in each data set (OIH, Veh, TG, and NA data 
sets) was determined based on the inferred edges. Positive 
(P) and negative (N) edges are the connections between 
nodes present (non-zero entry in the sparse precision 
matrix θ) or absent (zero entry in the sparse precision 
matrix θ), respectively, in each pathway. True positives 
(TP) and false positives (FP) correspond to the edges 
detected by the network reconstruction algorithm that 
were present or absent, respectively, in the corresponding 
KEGG pathway. Likewise, true negatives (TN) and false 
negatives (FN) correspond to edges not detected by the 
network reconstruction algorithm that was not present or 
absent, respectively, in the KEGG pathway.

Using TP, FP, FN, and TN edge results, the inferred 
networks for each scenario were assessed using comple-
mentary indicators including 1) sensitivity or true positive 
rate (TPR=TP/(TP+FN)); 2) specificity or true negative 

Table 2 Connectivity of the Circadian Rhythm and Toll-Like 
Receptor Pathways Studied by Output Type

Output 
Node

Connections Circadian 
Rhythm

Toll-Like 
Receptor

Paralog gene 
group

Nodes 13 57
Positive edges 18 111

Negative edges 60 1485

Positive: 
Negative

0.3 0.075

Gene Nodes 30 84

Positive edges 79 205

Negative edges 356 3281
Positive: 

Negative

0.222 0.062

Transcript 

isoform

Nodes 81 220

Positive edges 555 1921

Negative edges 2685 22,169
Positive: 

Negative

0.207 0.087

Notes: Connections: Nodes are the number of transcript isoforms, genes and 
paralog gene groups; positive edges denote connections between pairs of molecules 
(nodes) in the pathway; negative edges denote lack of connection between pairs of 
molecules (nodes) in the pathways; Positive:Negative is ratio of positive edges to 
negative edges.
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rate (TNR=TN/(TN+FP)); 3) precision or positive predic-
tive value (PPV=TP/(TP+FP)); 4) negative predictive 
value (NPV=TN/(TN+FN)); 5) accuracy (ACC = (TP 
+TN)/(P+N)); 6) markedness (MK = PPV+NPV – 1); 7) 
balanced accuracy (BA=(TPR+TNR)/2); 8) harmonic 
mean of sensitivity and specificity (F1=2xTP/(2xTP+FP 
+FN)); 9) Matthews correlation coefficient (MCC= 
(TPxTN-FPxFN/sqrt((TP+FP)x(TP+FN)x(TN+FP)x(TN 
+FN))); 10) bookmaker informedness (BM=TPR+TNR-1); 
and 11) negative predictive value (NPV=TN/(TN+FN)).

The network performance of the input–output scenarios 
was compared across pathways and data sets. The perfor-
mance of the input–output scenarios encompassing different 
granularity levels was compared relative to the standard 
scenarios that use the same granularity level for the input 
and output such as gene input and gene output. The perfor-
mance of these standard baseline networks was compared 
relative to that of networks of agglomerative output inferred 
using granular input profiles such as the network of paralog 
gene groups using transcript isoform- or gene-level abun-
dance as input, or the network of genes using transcript 
isoform or transcript isoform-gene level abundance as 
input. The comprehensive evaluation of the network perfor-
mance across data sets representing different profile varia-
bility and pathways representing different dimensions and 
connectivity enabled us to understand the approach strengths 
and optimal parameter designations. This information can 
guide the reconstruction of a broader network exhibiting 
higher abundance variability across samples.

Results and Discussion
Profiles and Alternative Splicing Variants
The present study evaluated the performance of network 
reconstructions for alternative inputs and output scenarios. 
A systematic study of the optimal network parameters (pen-
alty and minimum percentage of input edges supporting out-
put connections) was undertaken to evaluate the impact of 
input–output scenarios, data sets, and pathway characteristics 
on the performance of the reconstructed network relative to 
the node connections in the KEGG repository. One of the 
objectives of this study was to compare the performance of 
networks across different levels of input granularity akin to 
levels of detailed abundance profiling. This objective also 
encompassed the comparison of the network performance 
across different levels of output agglomeration akin to the 
level of abundance grouping. Three levels of input granularity 
(transcript isoform, gene, and transcript isoform-gene), and 

the three levels of output agglomeration (paralog gene group, 
gene, and transcript isoform) were studied (in Table 1).

Unsupervised clustering of the expression level of the 
genes in the CR and TL pathways aided in the character-
ization of the data sets and pathway genes. Figures 1 and 2 
depict the heatmap of expression levels among the four 
data sets characterized by the treatment–region combina-
tion (ie, OIH-NA, OIH-TG, Veh-NA and Veh-TG) for the 
CR and TL pathways, respectively. The CR and TL path-
ways were enriched among the genes differentially 
expressed between treatment groups.17 However, the 
expression pattern of some genes does not present 
a substantial variation between the OIH and Veh data 
sets. The reduced variability in the profiles across treat-
ments could limit the capacity of the Gaussian Markov 
Random field algorithm to identify node connections from 
NA and TG data sets. Figures 1 and 2 show that the 
difference in expression level between regions is more 
significant than treatment.

Differential splicing events between the OIH and Veh 
treatment groups were identified using LeafCutter. For 
NA, 44 intron clusters were identified in the CR pathway, 
and 83 intron clusters were identified in the TL pathway. 
For TG, 43 clusters were identified in the CR pathway, and 
86 intron clusters were identified in the TL pathway. 
Figures 3 and 4 depict the intron clusters in CR and TL 
pathway genes, respectively, that exhibited the highest 
differential splicing between the OIH and Veh treatments 
(P-value <0.05). Circadian rhythm genes in Figures 3 and 
4 include Per3, Aryl hydrocarbon receptor nuclear 

Figure 1 Unsupervised clustering of expression level from genes in the circadian 
rhythm pathway.
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translocator-like protein 1 (Arntl), 5ʹ AMP-activated pro-
tein kinase catalytic subunit alpha 1 (Prkaa1), and F box/ 
LRR repeat protein 3 (Fbxl3). Toll-like receptor signaling 
genes in Figures 3 and 4 include conserved helix-loop- 
helix ubiquitous kinase (Chuk), TNF receptor-associated 
factor 6 (Traf6), RAC alpha serine/threonine-protein 
kinase (Akt1), RAC gamma serine/threonine-protein 
kinase (Akt3), interferon regulatory factor 3 (Irf3), inter-
feron alpha/beta receptor 2 (Ifnar2), nuclear factor kappa 
B p105 subunit (Nfkb1), and dual-specificity mitogen- 
activated protein kinase kinase 4 (Map2k4).

Among the CR genes in the NA that exhibited significant 
alternative splicing between OIH and Veh treatment, Fbxl3 
codes for a core component of SCF E3 ubiquitin ligase 
complex and promotes CRY ubiquitination and 
degradation.31,32 Among the TL genes in the NA that exhib-
ited significant alternative splicing Traf6 is another E3 ubi-
quitin ligase that promotes AKT ubiquitination and 
phosphorylation and contributes to the activation of 
Nfkb1.33,34 Interestingly, Akt1, Akt3 and Nfkb1 were differ-
entially spliced in OIH relative to Veh as well, suggesting that 

these independent differential splicing episodes may lead to 
a common loss of function, potentially due to the loss of 
binding domain that impacts ubiquitination.

In the TG, six genes across the CR and TL pathways 
presented significant differential splicing between OIH and 
Veh including Per3, phosphatidylinositol 4.5-bisphosphate 
3-kinase catalytic subunit delta isoform (Pik3cd), TGF 
beta activated kinase 1 and MAP3K7-binding protein 2 
(Tab2), dual specificity mitogen-activated protein kinase 
kinase 7 (Map2k7), NF kappa B essential modulator 
(Ikbkg), mitogen-activated protein kinase 9 (Mapk9) 
(Figure 3). Two distinct intron clusters that combined can 
produce multiple transcript isoforms were detected in 
Pik3cd. The previous findings support the need to explore 
the interaction between molecules at the transcript isoform 
level, in addition to the gene or paralog gene group levels 
to understand the molecular mechanisms underlying OIH.

Network Inference
Overall, 56 networks encompassing 7 input–output scenar-
ios across two pathways and four data sets were inferred. 

Figure 2 Unsupervised clustering of expression level from genes in the Toll-like receptor pathway.
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Figure 3 Genes exhibiting differential alternative splicing (P-value < 0.05 and delta PSI > 5%) between opioid-induced hyperalgesia and control mice in the nucleus accumbens. 
Clu followed by a sign denotes the strand of the intron cluster; red and pink semicircles denote alternative splicing variants that have annotated or novel, respectively.
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Figure 4 Genes exhibiting differential alternative splicing (P-value < 0.05 and delta PSI > 5%) between opioid-induced hyperalgesia and control mice in the trigeminal ganglia. 
Clu followed by a sign denotes the strand of the intron cluster; red and pink semicircles denote alternative splicing variants that have annotated or novel, respectively.

Advances and Applications in Bioinformatics and Chemistry 2021:14                                                submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                          
57

Dovepress                                                                                                                                                           Zhang et al

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


The systematic evaluation of network performance across 
conditions enabled us to understand the impact of the type 
of input and output, and algorithmic criteria that support 
high performance among the inferred networks. The infer-
ence of networks including nodes that represent aggrega-
tions of the granular input required the identification of 
a novel criteria to identify output node connections (edges) 
under partial consistency of inferred edges among granular 
inputs. This criterion was necessary when, for example, 
the relationship between two gene nodes was inferred 
based on the relationship between multiple transcript iso-
forms within the node (gene), and at least one inferred 
transcript isoform edge or relationship differed from the 
rest. A similar scenario occurs detecting edges based on 
gene profiles, but the output is a network of edges con-
necting paralog gene groups.

The criterion used to identify edges among agglomera-
tive output nodes was based on the minimum percentage 
of input granular relationships that supported a connection 

between two agglomerative nodes. The optimal criterion 
was the threshold that offered the highest network perfor-
mance assessed by TPR, TNR, ACC, and BA. Table 3 
lists the network performance across input–output scenar-
ios, data sets and pathways using minimum edge detection 
thresholds between 40% and 60% of the possible edges 
among granular inputs. The penalty parameter values are 
approximately the same for both pathways within the data 
set but differed between data sets. Within region or treat-
ment data sets, the penalty estimates overlapped across 
scenarios but differed between the treatment and region 
data sets. The estimate of the penalty parameter decreased 
with the threshold percentage but was generally stable 
between 50% and 65% thresholds. However, similar net-
work performance was observed, indicating that the pen-
alty parameter did not have a major impact on the final 
network. The threshold criteria with a minimum of 50% of 
possible granular edges supporting the aggregate edge 
provided the best performing networks (highest BA) 

Table 3 Comparison of Threshold Criterion to Identify Network Edges Between Agglomerative Gene Nodes Based on Granular 
Transcript Isoform Input Across Data Sets for the Circadian Rhythm and Toll-Like Receptor Pathways

Data Set Circadian Rhythm Pathway Toll-Like Receptor Pathway

Threshold Penalty TPR TNR ACC BA Penalty TPR TNR ACC BA

NA 45% 0.19 0.49 0.46 0.46 0.476 0.30 0.51 0.53 0.52 0.519

NA 50% 0.17 0.51 0.47 0.47 0.486 0.23 0.62 0.46 0.47 0.541
NA 55% 0.17 0.51 0.47 0.47 0.486 0.23 0.62 0.46 0.47 0.542

NA 60% 0.17 0.51 0.47 0.47 0.486 0.23 0.62 0.47 0.47 0.542

NA 65% 0.17 0.51 0.47 0.47 0.486 0.23 0.62 0.47 0.47 0.543
NA 70% 0.15 0.46 0.51 0.50 0.483 0.23 0.59 0.50 0.50 0.542

TG 45% 0.33 0.58 0.53 0.54 0.557 0.28 0.45 0.42 0.42 0.435

TG 50% 0.16 0.67 0.47 0.50 0.569 0.19 0.48 0.47 0.47 0.473
TG 55% 0.16 0.67 0.47 0.50 0.569 0.19 0.46 0.48 0.48 0.467

TG 60% 0.16 0.67 0.49 0.52 0.580 0.17 0.50 0.41 0.41 0.454

TG 65% 0.16 0.67 0.49 0.52 0.581 0.17 0.49 0.41 0.41 0.448
TG 70% 0.16 0.51 0.64 0.61 0.572 0.16 0.52 0.45 0.45 0.485

OIH 45% 1.05 0.54 0.63 0.61 0.585 0.81 0.57 0.45 0.46 0.508

OIH 50% 0.95 0.59 0.63 0.62 0.611 0.79 0.48 0.57 0.56 0.524
OIH 55% 0.95 0.59 0.63 0.62 0.611 0.79 0.47 0.57 0.57 0.524

OIH 60% 0.95 0.60 0.63 0.62 0.611 0.77 0.47 0.56 0.56 0.517

OIH 65% 0.87 0.65 0.53 0.55 0.588 0.79 0.45 0.59 0.59 0.524
OIH 70% 0.87 0.51 0.64 0.62 0.573 0.70 0.55 0.48 0.62 0.517

Veh 45% 0.88 0.59 0.50 0.51 0.546 1.07 0.49 0.53 0.53 0.508

Veh 50% 0.80 0.67 0.48 0.51 0.576 0.95 0.52 0.50 0.50 0.507
Veh 55% 0.80 0.67 0.48 0.51 0.576 0.95 0.51 0.50 0.50 0.508

Veh 60% 0.80 0.67 0.48 0.51 0.576 0.92 0.59 0.45 0.46 0.520

Veh 65% 0.80 0.61 0.51 0.53 0.561 0.92 0.58 0.45 0.46 0.514
Veh 70% 0.65 0.63 0.49 0.52 0.562 0.91 0.55 0.49 0.50 0.522

Note: Penalty: Optimal penalty parameter. 
Abbreviations: TPR, true positive rate of output agglomerative edges; TNR, true negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; BA, 
balanced accuracy of output agglomerative edge; OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set.
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across data sets and pathways. Therefore, the threshold of 
a minimum of 50% of possible edges from granular inputs 
was used in all subsequent analysis to identify edges 
among agglomerative output nodes.

The optimal penalty parameter values were identified 
using the network performance criteria also used to deter-
mine the optimal threshold values (TPR, TNR, ACC, and 
BA) for the six input–output scenarios, four data sets and 
two pathways (Table 4 and Supplementary Figure S1). 
The penalty values are a proxy for the moderation of the 
standardized abundance covariances of the granular input 
used to detect connections among the agglomerative out-
puts. Higher penalty values indicate that high co- 
expression signals among granular inputs need to be 
moderated to minimize false positives among output 
nodes. The penalty values were approximately the same 
for both pathways within a data set, reflecting that net-
work characteristics had a minor impact on the optimal 
penalty values (Table 4). This finding indicates that the 
approach used to infer molecular relationships was 
unbiased by the size or connectivity of the network. 
The application of these findings to more extreme net-
work features necessitates further exploration.

The study of estimated optimal penalty values across 
network input–output scenarios (Table 4) confirmed 
expectations that optimal network parameters were 
impacted by the information used to infer the network 
and the type of inferred network nodes. Among the input 
types considered, higher granularity levels (ie, transcript 
isoform) necessitated higher penalty values than lower 
granularity levels, suggesting a higher propensity to sup-
port edges not annotated in the reference KEGG pathway. 
Consistent with this finding, higher agglomeration levels 
(ie, paralog gene group) among the network outputs 

required lower penalty values to maximize the network 
performance.

The pattern of the estimated penalty values across data 
sets and pathways was more consistent between the tran-
script isoform and gene input for gene than for paralog 
gene group output scenarios (Table 4). The similarity of 
the penalty patterns between inputs for gene outputs rela-
tive to paralog gene group output may be related to the 
input–output ratios across pathways. The transcript iso-
form input to gene output ratio in the CR and TL pathways 
was similar and approximately 2.7:1. On the other hand, 
the gene input to paralog gene group output was 2.3:1 and 
1.5:1 in the CR and TL pathways, respectively. The simi-
larity between the transcript isoform input to gene output 
and gene input to paralog gene group output ratio in the 
CR pathway supported comparable penalty patterns across 
input–output scenarios, whereas the distinct ratios 
obscured the identification of clear patterns across scenar-
ios in the TL pathway.

The effect of input type on the estimated optimal pen-
alty values varied with the data set studied (Table 4). The 
estimated penalties within the region data set were lower 
than within the treatment data set. This trend can be 
related to the significant effect of treatment on the expres-
sion pattern of the genes in the pathways studied.17 The 
pronounced abundance covariation between inputs across 
treatments within a region data set was consistent with the 
high pathway node connectivity, and therefore lower 
penalties were needed to minimize false edge assignments. 
On the other hand, a lower consistency was detected 
between the abundance covariation between inputs across 
regions within a treatment data set and the pathway node 
connectivity, and higher penalties minimized false edge 
assignments.

Table 4 Optimal Penalty Values Corresponding to the Best Performing Networks According to the Input and Output Scenarios by 
Pathway and Data Set Studied

Circadian Rhythm Pathway Toll-Like Receptor Signaling Pathway

In Out OIH Veh NA TG OIH Veh NA TG

I I 0.95 0.69–0.71 0.27–0.28 0.38–0.39 0.79 0.93 0.34 0.3

I G 0.95 0.8 0.16–0.17 0.15–0.16 0.78–0.79 0.95 0.23 0.19

I P 0.96–0.97 0.79–0.8 0.3–0.32 0.36–0.39 0.75 1–1.01 0.24 0.2–0.21
G G 0.86–0.89 0.96 0.19–0.20 0.08–0.09 0.85 1.09–1.1 0.18 0.13

G P 0.84 0.48–0.86 0.19–0.2 0.14–0.15 0.83 1.07–1.08 0.18 0.15

GI G 1.05 0.89 0.17 0.11 0.84 1.11 0.24 0.17

Abbreviations: In, input; Out, output; I, transcript isoform; G, gene; GI, gene and transcript isoform; P, paralog gene group; OIH, opioid-induced hyperalgesia data set; Veh, 
vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set.
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For the treatment (OIH and Veh) data sets, the effect of 
the type of input on the estimated penalties was less 
definite than for the region data sets. This observation is 
consistent with the higher estimated penalty levels for the 
region data sets that approached the lower penalty limit of 
zero. For the region (TG and NA) data sets, the lower 
estimated penalty levels corresponded to weaker covar-
iances. The estimated penalties for gene input were lower 
than for transcript isoform input scenarios and the penal-
ties for transcript isoform and gene input were intermedi-
ate to the other inputs. This pattern follows the strength of 
the profile covariances to support edge assignment, and 
suggests that transcript isoform input could offer stronger 
edge inference than gene input information.

The effect of output type on the estimated penalty values 
varied with the data set studied (Table 4). For the treatments 
data sets that present high penalty values due to the more 
variable abundances across regions within a treatment data 
set, the output agglomeration (eg, gene output from tran-
script isoform input, or paralog gene group from gene input) 
had a minor impact on the estimated penalties because of 
the similar strength of the inputs. For the region data sets 
that present low penalty values, penalties from outputs that 
agglomerate inputs (eg, gene output from transcript isoform 
input) were lower than from non-agglomerating outputs 

(eg, transcript isoform output from transcript isoform 
input) suggesting that agglomeration provides more robust 
edge assignments, therefore requiring lower penalty values. 
Also, the agglomeration of paralog gene group output from 
gene input has similar penalties as non-agglomeration gene 
output from gene input, likely because the networks 
included few gene clusters, and the paralog gene group 
were made mostly of two to three genes, whereas the 
transcript isoform input to gene output ratio was higher.

The magnitude of the estimated penalty values was 
a function of the magnitude of the covariances between 
input abundance profiles and of the magnitude of the 
profile variability to support the edges in the KEGG data-
base. More extreme (positive or negative) abundance cov-
ariances and higher abundance variances in a data set 
required higher penalty parameter values to control false 
edge assignments. Table 5 summarizes the distribution of 
correlation values across each pathway, data set and input 
granularity. Extreme co-expression patterns and high 
abundance variance were observed in the treatment data 
sets and input types for both pathways. The treatment data 
sets in the CR pathway using the transcript isoform input 
had the lowest node correlation first quartile of all combi-
nations of data sets and pathways. The treatment data sets 

Table 5 Distribution of Correlation Value in the Circadian Rhythm and Toll-Like Receptor Pathways with Different Input Types Across 
the Treatment and the Central Nervous System Region Data Sets

Correlation Distribution

Pathway Data Set Input Min Q1 Median Mean Q3 Max

CR OIH I −0.997 −0.861 −0.026 −0.005 0.881 0.998
CR Veh I −0.998 −0.808 −0.024 −0.021 0.798 0.996

CR NA I −0.84 −0.197 0.162 0.129 0.494 0.926

CR TG I −0.957 −0.146 0.16 0.152 0.488 0.951
TL OIH I −0.998 −0.382 0.532 0.271 0.896 0.998

TL Veh I −0.994 −0.062 0.544 0.34 0.861 0.999
TL NA I −0.955 −0.202 0.074 0.076 0.358 0.991

TL TG I −0.927 −0.242 0.055 0.058 0.352 0.983

CR OIH G −0.997 −0.484 0.099 0.048 0.571 0.998
CR Veh G −0.996 −0.443 0.072 0.039 0.532 0.996

CR NA G −0.95 −0.216 0.048 0.046 0.313 0.95

CR TG G −0.934 −0.241 0.008 0.024 0.29 0.962
TL OIH G −0.999 −0.42 0.091 0.065 0.556 0.998

TL Veh G −0.995 −0.289 0.125 0.093 0.48 0.997

TL NA G −0.948 −0.24 0.022 0.022 0.283 0.988
TL TG G −0.978 −0.237 0.014 0.019 0.276 0.985

Abbreviations: OIH, opioid-induced hyperalgesia; Veh, vehicle; NA, nucleus accumbens; TG, trigeminal ganglia; I, transcript isoform; G, gene; Min, minimum; Max, 
maximum; Q1 and Q3, first and third interquartile range of the distribution of abundance correlations among network nodes; CR, Circadian Rhythm pathway; TL, Toll-Like 
Receptor pathway.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                    

Advances and Applications in Bioinformatics and Chemistry 2021:14 60

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


also tended to have a higher correlation third quartile 
relative to the region data sets regardless of the input type.

The more extreme co-expression patterns were evidenced 
by thicker tails on the abundance correlation distribution 
(more extreme correlation values). In the CR pathway, the 
stronger correlations within the treatment data set were evi-
denced in the more extreme quartile values (Table 5). In the 
TL pathway, the stronger co-expression patterns that 
occurred within the treatment data set were evidenced by 
a more extreme median correlation values. Conversely, 
weaker co-expression patterns occurred within region data 
sets as evidenced by the less extreme quartiles of correlation 
values.

The distribution of the abundance correlations for dif-
ferent levels of input granularity also offered insights into 
the impact of the input scenarios on the penalty values. 
The lower abundance variability between treatments 
within the region data set was associated with lower 
lambda penalty estimated within region data sets than 
within treatment data sets. Moreover, the abundance inter-
quartile range was lower when using gene than transcript 
isoform inputs. These results reflect that the estimated 

sparse precision matrix is a function of the lambda esti-
mate, the empirical covariance matrix, and therefore of the 
distribution of the input correlations.

Networks of genes from transcript isoforms inputs in CR 
were visualized in Figures 5–8. The CR pathway includes 30 
genes from 13 paralog gene groups: Cry1 and Cry2 belong 
to cryptochromes (CRY) gene group; Per1, Per2, and Per3 
are in period (Per) gene group; Clock and Npas2 are of 
Clock gene group; Rbx1, Cul1 and Skp1a are three core 
subunits of Skp, Cullin, F-box containing complex (SCF) 
gene group; Btrc and Fbxw11 belong to beta-TrCP gene 
group. Overall, the network inference approach was capable 
of detecting edges between genes, but these edges did not 
translate into edges between the corresponding gene groups. 
For example, the transcript isoform-level network of genes 
inferred from the NA and TG data sets included all the 
connections between the SCF gene group and the period 
gene group. The function of both CRY proteins is to slow 
down the clock,24 and Cry1 and Cry2 share all edges except 
in Figure 5. The edges between Cry1 and related gene 
groups were identified in the network inferred using the 
OIH data set. All connections with Per gene group involved 

Figure 6 Circadian rhythm network of gene output nodes, using (A) gene (left), or (B) transcript isoform (right) input granularity using profiles from the vehicle control data 
set. Red edges denote false negative connections based on the relationship from the pathway; grey edges represent true-positive connections based on the relationship from 
the pathway.

Figure 5 Circadian rhythm network of gene output nodes, using (A) gene (left), or (B) transcript isoform (right) input granularity using profiles from the opioid-induced 
hyperalgesia data set. Red edges denote false negative connections based on the relationship from the pathway; grey edges represent true-positive connections based on the 
relationship from the pathway.
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were discovered only with Per2 and no connections with 
Per1 and Per3 in the OIH data set. The CR network visua-
lized in Figure 6 is consistent with a better performance of 
the network of gene group output in the OIH data set. 
Among the genes in the AMPK paralog gene group, the 
abundance of Prkag3 was substantially lower than Prkag1 
across all the samples. This difference in abundance level 
could impact the inference of edges connecting both genes 
in the group, despite the normalization of gene abundances 
that was implemented.

The performance of networks based on transcript isoform 
input was superior to that based on gene input profiles across 
all four data sets. The gene edge or connectivity using gene 
relative to isoform input increased by 12.7% (41 versus 47 
edges detected), 16.5% (44 versus 53 edges detected), 10.1% 
(36 versus 40 edges detected), and 13.9% (46 versus 53 
edges detected), in the OIH, Veh, NA, TG data sets, respec-
tively. Among the genes that presented significant differen-
tial splicing (P-value <0.05 and deltaPSI >0.05) between the 
OIH and Veh treatments, the identification of edges 

connecting Arntl to other nodes improved from 0% (0 con-
nection detected out of 13 connections in KEGG) to 92.31% 
(12 detected connections out of 13 connections in KEGG) 
when transcript isoform input profiles were used in the NA 
data set (Figure 7). The edge TPR for Per3 increased from 
54.55% (6 detected connections out of 11 KEGG connec-
tions) to 81.82% (9 detected connections out of 11 KEGG 
connections) when using transcript isoform input informa-
tion was used instead of gene input information in TG 
data set.

The comparison of the gene output network of the TL 
pathway using gene or transcript isoform input profiles based 
on the NA and TG data sets is visualized in Figure 10. Only 
9 of the 50 known gene connections (18%) in the TL path-
way were not detected when using transcript isoform input 
profiles from the NA data (Figure 9B), while 15 connections 
(30%) were not detected using gene input information 
(Figure 9A). At the individual node level, 75% and 80% of 
the KEGG connections with Pik3cd and Chuk undetected 
when using gene input information, were instead recovered 

Figure 7 Circadian rhythm network of gene output nodes, using (A) gene (left), or (B) transcript isoform (right) input granularity using profiles from the nucleus accumbens 
data set. Red edges denote false negative connections based on the relationship from the pathway; grey edges represent true-positive connections based on the relationship 
from the pathway.

Figure 8 Circadian rhythm network of gene output nodes, using (A) gene (left), or (B) transcript isoform (right) input granularity using profiles from the trigeminal ganglia 
data set. Red edges denote false negative connections based on the relationship from the pathway; grey edges represent true-positive connections based on the relationship 
from the pathway.
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when transcript isoform input information was used. This 
finding is in agreement with the 5% higher exon skipping 
detected in OIH relative to Veh in the NA region. These 
findings confirm the advantage of using transcript isoform 
input information in the inference of networks of gene nodes. 
The better network inference performance resulting from the 
use of transcript isoform input profiles is particularly impact-
ful for experimental conditions, such as pain processing, 
known to be associated with splice variants.11–16

In addition to improved detection of known connections 
between genes, the use of transcript isoform input informa-
tion to infer gene networks lowered the false-negative rate. 

Among the gene networks inferred using profiles from the 
TG data set, 14% of the undetected connections (ie, 1- NPV, 
Table 6) when using transcript isoform input were false 
negatives while the false-negative rate (ie, 1-TPR, Table 6) 
was 52% when gene inputs were used. The improved per-
formance of the network inferred from transcript isoform 
input was mostly attributable to the better recovery of edges 
connecting the genes Nfkb1, Pik3cd and Chuk. The true- 
positive rates for the networks inferred using OIH and Veh 
data were consistent across input types. Our results demon-
strate that network inference using transcript isoform input is 
more accurate in detecting both edges and lack of 

Figure 9 Toll-like receptor network of gene output nodes, using (A) gene (left), or (B) transcript isoform (right) input granularity using profiles from the nucleus accumbens 
data set. Red edges denote false negative connections based on the relationship from the pathway; grey edges represent true positive connections based on the relationship 
from the pathway.

Figure 10 Toll-like receptor network of gene output nodes, using (A) gene (left), or (B) transcript isoform (right) input granularity using profiles from the trigeminal ganglia 
data set. Red edges denote false negative connections based on the relationship from the pathway; grey edges represent true positive connections based on the relationship 
from the pathway.
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connectivity among gene nodes than using gene information 
as input, and that the superiority of the more granular input 
is particularly advantageous when genes encompass alterna-
tive splicing events.

A comprehensive evaluation of the network perfor-
mance, comparing networks that have the same agglom-
erative output across input types, was undertaken. The 
network performance was calculated for the output-input 
scenarios summarized in Table 1 including, transcript 

isoform output from transcript isoform input (Table 6); 
gene output from transcript isoform input (Table 7), gene 
output from gene input (Table 8), gene output from com-
bined transcript isoform and gene inputs (Table 9); paralog 
gene group from transcript isoform input (Table 10), and 
paralog gene group from gene input (Table 11).

The network of paralog gene group output based on 
transcript isoform and gene inputs provided the highest 
accuracy across the highest number of data sets (Tables 10 

Table 6 Performance Indicators for the Network of Transcript Isoform Output Nodes Using Transcript Isoform Input Abundance 
Across the Circadian Rhythm (CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment Data Sets (Opioid-Induced 
Hyperalgesia, and Vehicle), and the Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia)

Circadian Rhythm Pathway Toll-Like Receptor Pathway

Indicators OIH Veh NA TG OIH Veh NA TG

Penalty 0.950 0.69–0.71 0.27–0.28 0.38–0.39 0.790 0.930 0.340 0.300

TPR 0.519 0.609 0.541 0.510 0.528 0.542 0.538 0.529

TNR 0.534 0.466 0.453 0.572 0.507 0.466 0.522 0.472
ACC 0.531 0.490 0.468 0.562 0.509 0.472 0.523 0.477

F1 0.275 0.291 0.258 0.285 0.146 0.141 0.153 0.139

MCC 0.040 0.057 −0.005 0.062 0.019 0.004 0.033 0.001
BM 0.053 0.075 −0.007 0.082 0.036 0.008 0.060 0.002

PPV 0.187 0.191 0.169 0.198 0.085 0.081 0.089 0.080

NPV 0.843 0.852 0.827 0.850 0.925 0.921 0.929 0.920
MK 0.030 0.043 −0.004 0.047 0.010 0.002 0.018 0.000

BA 0.526 0.537 0.497 0.541 0.518 0.504 0.530 0.501

Abbreviations:  OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; TPR, true-positive rate of 
output agglomerative edges; TNR, true-negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; F1, harmonic mean of sensitivity and 
specificity; MCC, Mathews correlation coefficient; BM, bookmaker informedness; PPV, positive predicted value; NPV, negative predictive value; MK, markedness; BA, 
balanced accuracy of output agglomerative edge.

Table 7 Performance Indicators for the Network of Gene Output Nodes Using Gene Input Abundance Across the Circadian Rhythm 
(CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment Data Sets (Opioid Induced Hyperalgesia, and Vehicle), and the 
Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia)

Circadian Rhythm Toll-Like Receptor

Indicators OIH Veh NA TG OIH Veh NA TG

Penalty 0.86–0.89 0.96 0.19–0.20 0.08–0.09 0.85 1.09–1.1 0.18 0.13

TPR 0.468 0.506 0.405 0.532 0.546 0.522 0.678 0.498
TNR 0.455 0.522 0.610 0.584 0.513 0.475 0.485 0.455

ACC 0.457 0.520 0.572 0.575 0.515 0.478 0.496 0.457

F1 0.239 0.277 0.256 0.312 0.117 0.105 0.137 0.097
MCC -0.059 0.022 0.012 0.090 0.028 −0.002 0.077 −0.023

BM −0.077 0.029 0.015 0.116 0.059 −0.003 0.163 −0.048

PPV 0.160 0.190 0.187 0.221 0.065 0.058 0.076 0.054
NPV 0.794 0.827 0.822 0.849 0.948 0.941 0.960 0.935

MK −0.046 0.017 0.009 0.070 0.013 −0.001 0.036 −0.011

BA 0.462 0.514 0.507 0.558 0.529 0.498 0.581 0.476

Abbreviations: OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; TPR, true-positive rate of 
output agglomerative edges; TNR, true-negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; F1, harmonic mean of sensitivity and 
specificity; MCC, Mathews correlation coefficient; BM, bookmaker informedness; PPV, positive predicted value; NPV, negative predictive value; BA, balanced accuracy of 
output agglomerative edge; MK, markedness.
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and 11). The networks of paralog gene group or gene 
outputs from gene input had the highest number of data 
sets with high specificity or TNR. The networks of gene 
group output from transcript isoform input provided had 
high TPR across most data sets.

Network modules, including genes that have signifi-
cantly alternative splicing, benefited from the 

consideration of transcript isoform input because of the 
potential loss of information by accumulating individual 
transcript isoform abundance into a gene. The combined 
transcript isoform and gene input provided the highest 
balanced accuracy that averages TPR and TNR. The dif-
ferences between the performance measures across data 
sets indicated that the loss of granularity in the outputs 

Table 8 Performance Indicators for the Network of Gene Output Nodes Using Combined Transcript Isoform and Gene Input 
Abundances Across the Circadian Rhythm (CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment Data Sets (Opioid- 
Induced Hyperalgesia, and Vehicle), and the Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia)

Circadian Rhythm Toll-Like Receptor

Indicators OIH Veh NA TG OIH Veh NA TG

Penalty 0.95 0.8 0.16–0.17 0.15–0.16 0.78–0.79 0.95 0.23 0.19

TPR 0.595 0.671 0.506 0.671 0.478 0.517 0.620 0.478

TNR 0.626 0.480 0.466 0.466 0.570 0.497 0.463 0.468
ACC 0.621 0.515 0.474 0.503 0.564 0.498 0.472 0.469

F1 0.363 0.334 0.259 0.329 0.114 0.108 0.121 0.096

MCC 0.173 0.117 −0.021 0.107 0.023 0.007 0.039 −0.025
BM 0.221 0.151 −0.027 0.137 0.048 0.014 0.083 −0.053

PPV 0.261 0.223 0.174 0.218 0.065 0.060 0.067 0.053

NPV 0.875 0.868 0.810 0.865 0.946 0.943 0.951 0.935
MK 0.136 0.091 −0.016 0.083 0.011 0.003 0.018 −0.012

BA 0.611 0.576 0.486 0.569 0.524 0.507 0.541 0.473

Abbreviations: OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; TPR, true-positive rate of 
output agglomerative edges; TNR, true-negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; F1, harmonic mean of sensitivity and 
specificity; MCC, Mathews correlation coefficient; BM, bookmaker informedness; PPV, positive predicted value; NPV, negative predictive value; BA, balanced accuracy of 
output agglomerative edge; MK, markedness.

Table 9 Performance Indicators for the Network of Gene Output Nodes Using Transcript Isoform-Gene Input Abundance Across the 
Circadian Rhythm (CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment (Opioid-Induced Hyperalgesia, and Vehicle), 
and the Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia) Data Sets

Circadian Rhythm Toll-Like Receptor

Indicators OIH Veh NA TG OIH Veh NA TG

Penalty 1.05 0.89 0.17 0.11 0.84 1.11 0.24 0.17

TPR 0.532 0.519 0.481 0.544 0.615 0.561 0.624 0.454

TNR 0.525 0.472 0.492 0.576 0.456 0.519 0.482 0.463
ACC 0.526 0.480 0.490 0.570 0.466 0.521 0.491 0.463

F1 0.290 0.266 0.255 0.315 0.119 0.121 0.126 0.090
MCC 0.044 −0.007 −0.021 0.093 0.034 0.038 0.050 −0.039

BM 0.057 −0.009 −0.027 0.120 0.071 0.080 0.107 −0.083

PPV 0.199 0.179 0.174 0.222 0.066 0.068 0.070 0.050
NPV 0.835 0.816 0.810 0.851 0.950 0.950 0.954 0.931

MK 0.034 −0.005 −0.016 0.072 0.016 0.018 0.024 −0.018

BA 0.528 0.495 0.486 0.560 0.535 0.540 0.553 0.458

Abbreviations: OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; TPR, true-positive rate of 
output agglomerative edges; TNR, true-negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; F1, harmonic mean of sensitivity and 
specificity; MCC, Mathews correlation coefficient; BM, bookmaker informedness; PPV, positive predicted value; NPV, negative predictive value; BA, balanced accuracy of 
output agglomerative edge; MK, markedness.
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generally decreased the number of false-positive matches, 
albeit sometimes at the expense of true-positive matches.

An interesting finding is that the performance of the 
CR network when inferred from the TG data set was 
superior to the performance of the network inferred from 
the NA data set. On the other hand, the performance of the 
TL pathway network inferred from the NA data set out-
performed the network performance from the TG data set. 

This result is in agreement with the unsupervised cluster 
patterns of gene profiles across samples in the CR pathway 
(Figure 1) and the TL pathway (Figure 2) in the region 
data sets. Also, the expression differences between OIH 
and Veh treatment samples for the CR genes are more 
significant in NA than in TG.17

The comparison of network features between data sets 
(OIH, Veh, NA, TG) within input–output scenario offered 

Table 10 Performance Indicators for the Network of Paralog Gene Group Output Nodes Using Transcript Isoform Input Abundance 
Across the Circadian Rhythm (CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment (Opioid-Induced Hyperalgesia, 
and Vehicle), and the Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia) Data Sets

Circadian Rhythm Toll-Like Receptor

Indicators OIH Veh NA TG OIH Veh NA TG

Penalty 0.96–0.97 0.79–0.8 0.3–0.32 0.36–0.39 0.75 1–1.01 0.24 0.2–0.21

TPR 0.556 0.667 0.222 0.500 0.523 0.459 0.622 0.505

TNR 0.717 0.617 0.717 0.650 0.519 0.506 0.471 0.455
ACC 0.679 0.628 0.603 0.615 0.519 0.503 0.481 0.458

F1 0.444 0.453 0.205 0.375 0.131 0.114 0.143 0.115

MCC 0.241 0.240 −0.058 0.130 0.021 −0.018 0.047 −0.021
BM 0.272 0.283 −0.061 0.150 0.042 −0.035 0.092 −0.041

PPV 0.370 0.343 0.190 0.300 0.075 0.065 0.081 0.065

NPV 0.843 0.860 0.754 0.813 0.936 0.926 0.943 0.925
MK 0.214 0.203 −0.055 0.113 0.011 −0.009 0.024 −0.011

BA 0.636 0.642 0.469 0.575 0.521 0.483 0.546 0.480

Abbreviations: OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; TPR, true-positive rate of 
output agglomerative edges; TNR, true-negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; F1, harmonic mean of sensitivity and 
specificity; MCC, Mathews correlation coefficient; BM, bookmaker informedness; PPV, positive predicted value; NPV, negative predictive value; BA, balanced accuracy of 
output agglomerative edge; MK, markedness.

Table 11 Performance Indicators for a Network of Paralog Gene Group Output Nodes Using Gene Input Abundance Across the 
Circadian Rhythm (CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment (Opioid-Induced Hyperalgesia, and Vehicle), 
and the Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia) Data Sets

Circadian Rhythm Toll-Like Receptor

Indicators OIH Veh NA TG OIH Veh NA TG

Penalty 0.84 0.48–0.86 0.19–0.2 0.14–0.15 0.83 1.07–1.08 0.18 0.15

TPR 0.667 0.611 0.222 0.333 0.486 0.523 0.613 0.468
TNR 0.467 0.267 0.617 0.750 0.515 0.487 0.547 0.512

ACC 0.513 0.346 0.526 0.654 0.513 0.489 0.551 0.509

F1 0.387 0.301 0.178 0.308 0.122 0.125 0.160 0.117
MCC 0.113 −0.113 −0.143 0.079 0.001 0.005 0.081 −0.010

BM 0.133 −0.122 −0.161 0.083 0.002 0.009 0.159 −0.020

PPV 0.273 0.200 0.148 0.286 0.070 0.071 0.092 0.067
NPV 0.824 0.696 0.725 0.789 0.931 0.932 0.950 0.928

MK 0.096 −0.104 −0.126 0.075 0.000 0.002 0.041 −0.005

BA 0.567 0.439 0.419 0.542 0.501 0.505 0.580 0.490

Abbreviations: OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; TPR, true-positive rate of 
output agglomerative edges; TNR, true-negative rate of output agglomerative edges; ACC, accuracy of output agglomerative edges; F1, harmonic mean of sensitivity and 
specificity; MCC, Mathews correlation coefficient; BM, bookmaker informedness; PPV, positive predicted value; NPV, negative predictive value; BA, balanced accuracy of 
output agglomerative edge; MK, markedness.
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insights into the potential impact of OIH on two pathways 
and the distinct response of two central nervous system 
regions. The networks of gene group output closely resem-
ble the KEGG pathway structure that connects genes and 
gene groups and among these, the transcript isoform input 
offered higher TPR (Table 11). The similar TPR that the 
treatment networks present relative to the region networks 
suggests that the combination of OIH and Veh profiles in the 
region networks may hinder the detection of CR and TLR 
relationships that the KEGG pathways rely. Furthermore, 
assuming that the profiles from the Veh samples are more 
likely to be similar to information considered in the con-
struction of KEGG pathways, our network results suggest 
that the representation of some molecular interactions under 
OIH conditions is partly represented among the molecular 
connections in KEGG. This is expected in consideration that 
few OIH studies relative to other conditions are likely to 
have informed the KEGG pathways.

Additional inspection of the networks of gene groups 
inferred across data sets (Table 11) suggests that the TPR 
is more variable among the region data sets than among 
the treatment data sets for both KEGG pathways. Since 
both region data sets include even number of OIH and Veh 
samples, the broader range of TPRs across region data sets 
may support the consideration that both central nervous 
system regions studied are differentially impacted by 
OIH.17 This differential impact of OIH in both regions 
(Figures 7 and 8) leads to differential alignment of the 
resulting networks against the reference KEGG pathway.

The overall summary of the comparison of input– 
output scenarios to infer networks are summarized in 
Table 12. In this table, a “+” denotes scenarios when the 
granular input outperformed the agglomerative input, “-” 
denotes scenarios when the agglomerative input outper-
formed the granular input, and “=” denotes scenarios 
that have comparable network performance within 
a 2% difference. For example, the first three rows of 
results in Table 11 indicate the superiority (+), compar-
able (=), or inferiority (-) of using the more granular 
transcript isoform input relative to the more aggregated 
gene input to infer networks of paralog gene group, for 
three performance indicators, PPV, NPV, and BA.

Table 12 demonstrates that for a majority of cases, net-
works of agglomerative outputs (eg, gene or paralog gene 
group nodes) inferred using more granular information (eg, 
transcript isoform input) performed better than networks 
inferred using more aggregate information (eg, gene input). 
The typically higher penalty estimates from isoform inputs 
(Table 4) and the more spread distribution of the abundance 
correlations (Table 5) did not compromise the advantage of the 
granular input to support the inference of high-performing 
networks. The trends in Table 12 also confirm that the indivi-
dual granular transcript isoform (or gene) correlations are less 
extreme in magnitude than the gene (or paralog gene group) 
correlations (Table 4), the agglomeration of granular correla-
tion information using a minimum % threshold compensated 
the lower individual correlation levels. The consideration of 
a minimum percentage of weaker granular input correlations 

Table 12 The Relative Performance of the Network Inferred Using Different Inputs Including Transcript Isoform (I), Isoform-Gene 
(IG) and Gene (G) Abundance to Infer Networks with Different Node Outputs, Including Paralog Gene Group (GG) and Gene, 
Across the Circadian Rhythm (CR) and Toll-Like Receptor (TL) Pathways and Across the Treatment (Opioid-Induced Hyperalgesia, 
and Vehicle), and the Central Nervous System Region (Nucleus Accumbens and Trigeminal Ganglia) Data Sets

Circadian Rhythm Pathway Toll-Like Receptor Pathway

Output Inputs Indicator OIH Veh NA TG OIH Veh NA TG

Gene group I vs G PPV + + + = = = = =
NPV + + + + = = = =

BA + + + + + = - =

Gene I vs G PPV + + = = = = = =
NPV + + = = = = = =

BA + + = = = = - =

Gene IG vs G PPV + = = = = = = =
NPV + = = = = = = =

BA + = = = = + - =

Notes: +: first input performed > 0.02 units better than the second input network; -: first input performed > 0.02 units worse than the second input network; =: both 
inputs performed similarly. 
Abbreviations: OIH, opioid-induced hyperalgesia data set; Veh, vehicle data set; NA, nucleus accumbens data set; TG, trigeminal ganglia data set; PPV, positive predicted 
value; NPV, negative predictive value; BA, balanced accuracy of output agglomerative edge.
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provided better performing networks than the consideration of 
stronger correlations at a more agglomerative level.

Conclusions
A framework to infer networks using different levels of 
input granularity and levels of node output agglomeration 
was developed. The framework included criteria to 
agglomerate edges reconstructed at the more granular 
input level and a penalization parameter to optimize edge 
detection. The performance of a grid of network input and 
output scenarios was evaluated against two reference 
KEGG pathways that represent different dimensionality 
and connectivity. The CR and TL pathways were also 
enriched among genes differentially expressed between 
samples from two treatments and across two CNS regions. 
Supporting the motivation to evaluate the advantage of 
using transcript isoform input profiles to infer networks, 
differential splicing events between the OIH and Veh con-
trol treatment were detected in the genes of both pathways.

Networks were estimated from transcript isoform, gene 
and transcript isoform combined with gene-level input 
profiles. The evaluated output nodes included transcript 
isoform, gene, and paralog gene groups. The comprehen-
sive list of network performance indicators, including sen-
sitivity, specificity, precision, NPV, FDR, accuracy, 
markedness and balanced accuracy, were considered. For 
the KEGG pathways and data sets studied, the best- 
supported edge agglomeration threshold was >50%, 
while the penalty estimates varied with the scenario con-
sidered. Therefore, in the absence of known molecular 
interactions, an evaluation of the sensitivity of the output 
network to the parameter specifications is granted.

A noteworthy finding is that agglomerative networks 
(eg, networks of gene or paralog gene node output) 
inferred using more granular information (eg, transcript 
isoform level) outperformed networks inferred using 
more aggregate information (eg, gene level) across the 
majority of the data sets and KEGG pathways studied. 
This improvement was traced back mainly to the edges 
that connected genes presenting differential alternative 
splicing, including Per3, Chuk, Nfkb1, and Pik3cd. 
Differences in the inferred network structure between 
data sets highlight the differences in OIH effect between 
central nervous system regions. Altogether, the compre-
hensive study of a wide range of scenarios and condi-
tions, innovative strategy to agglomerate edges, and 
systemic benchmarking against a reference database 
enabled us to gather evidence supporting network 

inference based on granular information, especially 
when high splicing variation is involved.

Funding
This research was supported by the National Institute of 
Health [grant numbers P30 DA018310-14 (SRZ, BS, JS), 
and DA031243 (AP)], the Department of Defense [grant 
number PR100085 (AP)], and US Department of 
Agriculture NIFA [ILLU-538-909 (SR)].

Disclosure
The authors report no conflicts of interest in this work.

References
1. Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression 

network analysis reveals common system-level properties of prog-
nostic genes across cancer types. Nat Commun. 2014;5:3231. 
doi:10.1038/ncomms4231

2. Xiao X, Moreno-Moral A, Rotival M, Bottolo L, Petretto E. Multi- 
tissue analysis of co-expression networks by higher-order generalized 
singular value decomposition identifies functionally coherent tran-
scriptional modules. PLoS Genet. 2014;10(1):e1004006. 
doi:10.1371/journal.pgen.1004006

3. Piro RM, Ala U, Molineris I, et al. An atlas of tissue-specific con-
served coexpression for functional annotation and disease gene 
prediction. Eur J Hum Genet. 2011;19(11):1173–1180. doi:10.1038/ 
ejhg.2011.96

4. Stuart JM, Segal E, Koller D, Kim SK. A gene-coexpression network 
for global discovery of conserved genetic modules. Science. 
2003;302(5643):249–255. doi:10.1126/science.1087447

5. Iancu OD, Colville A, Oberbeck D, Darakjian P, McWeeney SK, 
Hitzemann R. Cosplicing network analysis of mammalian brain 
RNA-Seq data utilizing WGCNA and Mantel correlations. Front 
Genet. 2015;6:174. doi:10.3389/fgene.2015.00174

6. Li HD, Menon R, Eksi R, et al. A network of splice isoforms for the 
mouse. Sci Rep. 2016;6:24507. doi:10.1038/srep24507

7. Tseng YT, Li W, Chen CH, et al. IIIDB: a database for 
isoform-isoform interactions and isoform network modules. BMC 
Genomics. 2015;16(Suppl 2):S10. doi:10.1186/1471-2164-16-S2-S10

8. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M. KEGG 
for representation and analysis of molecular networks involving dis-
eases and drugs. Nucleic Acids Res. 2010;38(Database issue):D355– 
60. doi:10.1093/nar/gkp896.

9. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M. 
BioGRID: a general repository for interaction datasets. Nucleic Acids 
Res. 2006;34(Database issue):D535–9. doi:10.1093/nar/gkj109

10. Saha A, Kim Y, Gewirtz ADH, et al. Co-expression networks reveal 
the tissue-specific regulation of transcription and splicing. Genome 
Res. 2017;27(11):1843–1858. doi:10.1101/gr.216721.116

11. Donaldson LF, Beazley-Long N. Alternative RNA splicing: contribu-
tion to pain and potential therapeutic strategy. Drug Discov Today. 
2016;21(11):1787–1798. doi:10.1016/j.drudis.2016.06.017.

12. Chakrabarti S, Liu NJ, Gintzler AR. Relevance of mu-opioid receptor 
splice variants and plasticity of their signaling sequelae to opioid 
analgesic tolerance. Cell Mol Neurobiol. 2020. doi:10.1007/s10571- 
020-00934-y

13. Chakrabarti S, Liu NJ, Gintzler AR. Phosphorylation of unique 
C-terminal sites of the mu-opioid receptor variants 1B2 and 1C1 
influences their Gs association following chronic morphine. 
J Neurochem. 2020;152(4):449–467. doi:10.1111/jnc.14863

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                    

Advances and Applications in Bioinformatics and Chemistry 2021:14 68

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1038/ncomms4231
https://doi.org/10.1371/journal.pgen.1004006
https://doi.org/10.1038/ejhg.2011.96
https://doi.org/10.1038/ejhg.2011.96
https://doi.org/10.1126/science.1087447
https://doi.org/10.3389/fgene.2015.00174
https://doi.org/10.1038/srep24507
https://doi.org/10.1186/1471-2164-16-S2-S10
https://doi.org/10.1093/nar/gkp896
https://doi.org/10.1093/nar/gkj109
https://doi.org/10.1101/gr.216721.116
https://doi.org/10.1016/j.drudis.2016.06.017
https://doi.org/10.1007/s10571-020-00934-y
https://doi.org/10.1007/s10571-020-00934-y
https://doi.org/10.1111/jnc.14863
http://www.dovepress.com
http://www.dovepress.com


14. Tooke K, Girard B, Vizzard MA. Functional effects of blocking 
VEGF/VEGFR2 signaling in the rat urinary bladder in acute and 
chronic CYP-induced cystitis. Am J Physiol Renal Physiol. 
2019;317(7):F43–F51. doi:10.1152/ajprenal.00083.2019

15. Grubinska B, Chen L, Alsaloum M, et al. Rat NaV1.7 loss-of- 
function genetic model: deficient nociceptive and neuropathic pain 
behavior with retained olfactory function and intra-epidermal nerve 
fibers. Mol Pain. 2019;15:1744806919881846. doi:10.1177/ 
1744806919881846

16. Upadhyay U, Zhuang GZ, Diatchenko L, et al. Profound analgesia is 
associated with a truncated peptide resulting from tissue specific 
alternative splicing of DRG CA8-204 regulated by an exon-level 
cis-eQTL. PLoS Genet. 2019;15(6):e1008226. doi:10.1371/journal. 
pgen.1008226

17. Zhang P, Moye LS, Southey BR, et al. Opioid-induced hyperalgesia 
is associated with dysregulation of circadian rhythm and adaptive 
immune pathways in the mouse trigeminal ganglia and nucleus 
accumbens. Mol Neurobiol. 2019;56(12):7929–7949. doi:10.1007/ 
s12035-019-01650-5

18. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and 
genomes. Nucleic Acids Res. 2000;28(1):27–30. doi:10.1093/nar/ 
28.1.27

19. Congdon P. Gaussian Markov random fields: theory and applications. 
J Royal Statistical Society Series A-Statistics Society. 2007;170:858. 
doi:10.1111/j.1467-985X.2007.00485_8.x

20. Schafer J, Strimmer K. An empirical Bayes approach to inferring 
large-scale gene association networks. Bioinformatics. 2005;21 
(6):754–764. doi:10.1093/bioinformatics/bti062

21. Scheinberg K, Rish I. Learning sparse Gaussian Markov networks 
using a greedy coordinate ascent approach Machine Learning 
Knowledge Discovery Databases, Pt III 2010;6323(196–212).

22. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance esti-
mation with the graphical lasso. Biostatistics. 2008;9(3):432–441. 
doi:10.1093/biostatistics/kxm045

23. Hsieh CJ, Sustik MA, Dhillon IS, Ravikumar P. QUIC: quadratic 
approximation for sparse inverse covariance estimation. J Mach 
Learn Res. 2014;15(2911–47).

24. Patch Iii RK, Eldrige JS, Moeschler SM, Pingree MJ. 
Dexmedetomidine as part of a multimodal analgesic treatment regi-
men for opioid induced hyperalgesia in a patient with significant 
opioid tolerance. Case Rep Anesthesiol. 2017;2017:9876306. 
doi:10.1155/2017/9876306

25. Hayhurst CJ, Durieux ME. Differential opioid tolerance and 
opioid-induced hyperalgesia: a clinical reality. Anesthesiology. 
2016;124(2):483–488. doi:10.1097/ALN.0000000000000963

26. Andrews S. FastQC: a quality control tool for high throughput 
sequence data. Available from: http://www.bioinformatics.babraham. 
ac.uk/projects/fastqc. Accessed  January 28, 2021.

27. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal 
RNA-seq aligner. Bioinformatics. 2013;29(1):15–21. doi:10.1093/ 
bioinformatics/bts635

28. Frankish A, Diekhans M, Ferreira AM, et al. GENCODE reference 
annotation for the human and mouse genomes. Nucleic Acids Res. 
2019;47(D1):D766–D73. doi:10.1093/nar/gky955

29. Li B, Dewey CN. RSEM: accurate transcript quantification from 
RNA-Seq data with or without a reference genome. BMC 
Bioinform. 2011;12:323. doi:10.1186/1471-2105-12-323

30. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software envir-
onment for integrated models of biomolecular interaction networks. 
Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303

31. Xing W, Busino L, Hinds TR, et al. SCF (FBXL3) ubiquitin ligase 
targets cryptochromes at their cofactor pocket. Nature. 2013;496 
(7443):64–68. doi:10.1038/nature11964

32. St John PC, Hirota T, Kay SA, Doyle FJ 3rd. Spatiotemporal separa-
tion of PER and CRY posttranslational regulation in the mammalian 
circadian clock. Proc Natl Acad Sci U S A. 2014;111(5):2040–2045. 
doi:10.1073/pnas.1323618111.

33. Yang WL, Wang J, Chan CH, et al. The E3 ligase TRAF6 regulates 
Akt ubiquitination and activation. Science. 2009;325 
(5944):1134–1138. doi:10.1126/science.1175065

34. Wang Z, Zhang YH, Guo C, et al. Tetrathiomolybdate treatment leads 
to the suppression of inflammatory responses through the TRAF6/ 
NFkappaB pathway in LPS-stimulated BV-2 microglia. Front Aging 
Neurosci. 2018;10:9. doi:10.3389/fnagi.2018.00009;.

Advances and Applications in Bioinformatics and Chemistry                                                            Dovepress 

Publish your work in this journal 
Advances and Applications in Bioinformatics and Chemistry is an 
international, peer-reviewed open-access journal that publishes articles 
in the following fields: Computational biomodelling; Bioinformatics; 
Computational genomics; Molecular modelling; Protein structure 
modelling and structural genomics; Systems Biology; Computational 

Biochemistry; Computational Biophysics; Chemoinformatics and Drug 
Design; In silico ADME/Tox prediction. The manuscript management 
system is completely online and includes a very quick and fair peer- 
review system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/advances-and-applications-in-bioinformatics-and-chemistry-journal

Advances and Applications in Bioinformatics and Chemistry 2021:14                                                submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                          
69

Dovepress                                                                                                                                                           Zhang et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1152/ajprenal.00083.2019
https://doi.org/10.1177/1744806919881846
https://doi.org/10.1177/1744806919881846
https://doi.org/10.1371/journal.pgen.1008226
https://doi.org/10.1371/journal.pgen.1008226
https://doi.org/10.1007/s12035-019-01650-5
https://doi.org/10.1007/s12035-019-01650-5
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.1111/j.1467-985X.2007.00485_8.x
https://doi.org/10.1093/bioinformatics/bti062
https://doi.org/10.1093/biostatistics/kxm045
https://doi.org/10.1155/2017/9876306
https://doi.org/10.1097/ALN.0000000000000963
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1093/nar/gky955
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1038/nature11964
https://doi.org/10.1073/pnas.1323618111
https://doi.org/10.1126/science.1175065
https://doi.org/10.3389/fnagi.2018.00009
http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

	Introduction
	Materials and Methods
	Network Reconstruction
	Transcript and Gene Identification and Data Sets
	Network Construction
	Network Evaluation

	Results and Discussion
	Profiles and Alternative Splicing Variants
	Network Inference

	Conclusions
	Funding
	Disclosure
	References

