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Abstract: Radiotherapy (RT) is a cancer treatment that uses high doses of radiation to kill 
cancer cells and shrink tumors. Although great success has been achieved on radiotherapy, 
there is still an intractable challenge to enhance radiation damage to tumor tissue and reduce 
side effects to healthy tissue. Radiosensitizers are chemicals or pharmaceutical agents that 
can enhance the killing effect on tumor cells by accelerating DNA damage and producing 
free radicals indirectly. In most cases, radiosensitizers have less effect on normal tissues. In 
recent years, several strategies have been exploited to develop radiosensitizers that are highly 
effective and have low toxicity. In this review, we first summarized the applications of 
radiosensitizers including small molecules, macromolecules, and nanomaterials, especially 
those that have been used in clinical trials. Second, the development states of radiosensitizers 
and the possible mechanisms to improve radiosensitizers sensibility are reviewed. Third, the 
challenges and prospects for clinical translation of radiosensitizers in oncotherapy are 
presented. 
Keywords: radiosensitizers, cancer radiotherapy, therapeutics, nanomedicine, mechanism

Introduction
Cancer remains one of the greatest challenges to human health. World Health 
Organization (WHO) reported that about 8.8 million deaths worldwide were due 
to cancer in 2015, and the deaths are expected to break through 13 million in 2030 
according to the report by the International Agency for Research on Cancer 
(IARC). To reduce the deaths from cancer, several strategies have been developed 
in recent years to improve cancer therapy including surgery, radiotherapy, che-
motherapy, immunotherapy, targeted therapy, hormone therapy, stem cell transplant 
and precision medicine.1 Among them, radiotherapy (RT) is considered as one 
important and effective modality to kill or control tumors since Marie Curie, the 
Nobel Prize winner, discovered radioactivity.2 Typically, RT is a treatment modality 
to cancer cells by using high-energy photon radiation such as X-rays, gamma (γ)- 
rays, and others. RT can take effect via direct and indirect mechanisms to destroy 
cancer cells and tumor tissue (Figure 1).

In the direct action, radiation directly induces single-strand breaks (SSB) and 
double-strand breaks (DSB) in DNA, resulting in the termination of cell division 
and proliferation, or even cell necrosis and apoptosis. In the case of indirect action, 
radiation induces the generation of ROS, which can induce cellular stress in, and 
injure biomolecules, and and ultimately alter cellular signaling pathways. Clinical 
studies have shown that more than half (about 70%) of patients need to receive RT, 
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and in some cases RT is the only kind of cancer treatment.3 

Therefore, there is a great need to develop approaches to 
improve radiosensitivity.

Innovative technologies can provide alternative strate-
gies to improve RT efficiency. For example, image-guided 
radiation therapy (IGRT) is the use of imaging during 
radiation therapy to improve the precision and accuracy 
of treatment delivery. IGRT can be used to treat tumors in 
areas of the body that move, such as the lungs. RT 
machines are equipped with imaging technology to allow 
your doctor to image the tumor before and during treat-
ment. By comparing these images to the reference images 
taken during simulation, the patient’s position and/or the 
radiation beams may be adjusted to more precisely target 
the radiation dose to the tumor. To help align and target the 
radiation equipment, some IGRT procedures may use fidu-
cial markers, ultrasound, MRI, X-ray images of bone 
structure, CT scan, 3D body surface mapping, electromag-
netic transponders or colored ink tattoos on the skin.4 

Intensity-modulated radiation therapy (IMRT) is an 
advanced mode of high-precision RT that uses computer- 

controlled linear accelerators to deliver precise radiation 
doses to a malignant tumor or specific areas within the 
tumor.5 Although the abovementioned innovative technol-
ogies greatly improve the therapeutic effect, there are still 
obstacles such as cancer stem cells and tumor heterogene-
ity making it difficult to use RT alone to cure tumors. 
Radiosensitizers with the ability to increase the radiosen-
sitivity of tumor tissue and pharmacologically decrease 
normal tissue toxicity are expected to be an efficient way 
to improve RT.6

Radiosensitizers are compounds that, when combined 
with radiation, achieve greater tumor inactivation than 
would have been expected from the additive effect of 
each modality. G E Adams, a pioneer in the field of RT, 
classified radiosensitizers into five categories: (1) suppres-
sion of intracellular thiols or other endogenous radiopro-
tective substances; (2) formation of cytotoxic substances 
by radiolysis of the radiosensitizer; (3) inhibitors of repair 
of biomolecules; (4) thymine analogs that can incorporate 
into DNA; and (5) oxygen mimics that have electrophilic 
activity.7,8 This classification was based on the mechanism 
of DNA damage and repair and indicated the direction for 
radiosensitizers at the early stage. However, with the con-
tinuous technological innovation, more and more materials 
and drugs with radiotherapy sensitization have been 
defined as radiosensitizers. In addition, some in-depth 
mechanisms for radiosensitization have also been 
discovered.9,10 According to the latest research, radiosen-
sitizers can be classified into three categories based on 
their structures: small molecules (Figure 2), macromole-
cules (Table 1), and nanomaterials (Table 2).11 In the 
following part, the applications, the main role, and influen-
cing factors of these three types of radiosensitizers are first 
summarized, especially those have currently entered clin-
ical trials. Second, the development status and the mechan-
ism of action of the radiosensitizer are also summarized. 
Third, the future development and application of the radio-
sensitizer was presented.

Small Molecules
Oxygen
Hypoxia in tumor microenvironment is one of the major 
limitations to radiotherapy. Tumor cells in the hypoxic 
microenvironment are much more resistant to radiation 
than in the normal oxygen microenvironment.12–14 

Oxygen enhancement ratio (OER) or oxygen enhancement 
effect in radiobiology refers to the enhancement of the 

Figure 1 Schematic of the mechanism of ionizing radiation (IR) in RT. In the case of 
direct effect, IR directly damages the DNA, which, if unrepaired, results in cell death 
or permanent growth arrest. In the case of indirect effect, ROS are formed by the 
radiolysis of a large amount of water and oxygen, and then the ROS damage the 
DNA. There are many types of DNA damage, such as base change, SSB, DSB, cross- 
linkage with protein or with other DNA molecules.
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therapeutic or detrimental effect of ionizing radiation due 
to the presence of oxygen. This so-called oxygen effect is 
most notable when cells are exposed to an ionizing radia-
tion dose.15,16 Oxygen, a potent radiosensitizer, promotes 
free radical formation through its unique electronic con-
figuration. As the most electrophilic cellular molecule, 
oxygen is easily reduced by electrons formed from the 
incident radiation. After oxygenated tumor irradiation, 
energy transfer results in the radiolysis of water with the 
initial formation of an ion radical that then forms the 
highly reactive hydroxyl radical after reaction with another 
water molecule. Oxygen leads to the formation of peroxide 
after reaction with the hydroxyl radical. Then, the peroxide 
results in permanent cellular and DNA damage.13

Accompanied with solid tumor growth, the surround-
ing vasculatures are not in sufficient quantities to supply 
oxygen to the new cells, the cancer cell mass becomes 
heterogeneous gradually, and necrosis occurs following 
ischemia. Normally, cancer cells undergo apoptosis 
through the p53 pathway, while those heterogeneous cells 
adapt to the hypoxic environment efficiently by activation 
of additional signaling pathways, especially the hypoxia- 

inducible factor (HIF) pathway.17–19 Studies showed that 
HIF-1α was associated with vascular endothelial growth 
factor (VEGF) signaling pathway, glucose transport, and 
glycolysis pathway, which could help the tumor to build 
vasculature.19–21 Under hypoxia, the cancer cells are more 
aggressive and resisted radiotherapy significantly. Thus, 
hypoxia often occurs in most solid tumors and leads to 
radioresistance both through increasing free radical 
scavenging and changing patterns of gene expression.22,23

More and more research has been devoted to overcom-
ing hypoxia problems, from using high-pressure oxygen 
tanks and blood substitutes that carried oxygen, to using 
intricate, accurate approaches that proportionated differ-
ences in partial pressure of oxygen (PO2) between tumors 
and healthy tissue.24,25 Hyperbaric oxygen is the most 
direct method to ameliorate hypoxia in tumor cells, while 
this method is inconvenient and may increase complica-
tions sometimes.26,27 A new radiosensitizer, Kochi oxydol- 
radiation therapy for unresectable carcinomas (KORTUC), 
is being evaluated by a Phase I/II clinical trial 
(NCT02757651) for the treatment of malignant tumors 

Figure 2 Molecular structures of some representative small-molecule radiosensitizers discussed in this paper.
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that contain numerous hypoxic cancer cells and/or large 
quantities of antioxidative enzymes.28

Oxygen Mimics
Oxygen mimetics, using the chemical properties of mole-
cular oxygen as a template, have higher electron affinity 
and better diffusion properties to anoxic tissue than oxy-
gen. As oxygen mimetics can theoretically substitute for 
oxygen in “fixing” radiation-induced damage of DNA, 
making it nonrepairable and hence lethal. Therefore, oxy-
gen mimetics are considered as “true radiosensitizers”. 
The most representative oxygen mimetics are nitro- 
containing compounds and nitric oxide (NO).13

The prototype of electron-affinity radiosensitizers is 
nitrobenzene, and then researchers focus on nitroimidazole 
and its derivatives.29–31 Nitroimidazoles, which undergo 
enzymatic and radiation-induced redox reactions. These 

agents are intrinsic inactive, their effect becomes evident 
only in the presence of ionizing radiation to “fix” or stabi-
lize DNA radical lesions in oxygen-deficient cells.32 

Misonidazole, a 2-nitroimidazole, is one of the earliest 
developed nitroimidazoles. In preclinical studies, misonida-
zole showed better radiosensitizing effect than 5-nitro imi-
dazole or metronidazole (Flagyl®) in the majority of solid 
murine tumors.33–35 However, the results were unsatisfac-
tory in clinical trials, since severe neurotoxicity was caused 
by misonidazole.36–39 Metronidazole, a 5-substituted nitroi-
midazole, which has less electron-affinic was proven as an 
inferior radiosensitizer.40,41 In conclusion, because of the 
dose-limiting toxicity at clinically tolerable doses, misoni-
dazole and metronidazole are not the ideal candidates in 
radiotherapy.42

In view of the issues discussed above, further efforts 
have been made to improve the pharmacokinetic 

Table 1 Some Macromolecule Radiosensitizers Discussed in This Paper

Type Name Mechanism of Radiosensitivity Reference

Proteins and 
Peptides

HER3-ADC Inhibiting DNA damage repair 130

SYM004 Inhibiting DNA double strand breaks repair and inducing apoptosis 120

Cetuximab Increasing radiation-induced apoptosis and DNA damage 131

Nimotuzumab Increasing radiation-induced apoptosis and DNA damage 131

AMG102 Inhibiting DNA damage repair and increasing radiosensitivity of glioblastoma multiforme 132

C-reactive 

peptide

Used as radiotherapy targets 133

HSP Used as radiotherapy targets 134

Paraoxonase-2 Used as radiotherapy targets 135

ECI301 Assisted by HSP-70 and HMGB1 134

miRNAs miR-621 Targeting SETDB1 141

miR-205 Targeting zinc finger E-box binding homeobox 1 (ZEB1) and the ubiquitin-conjugating 

enzyme Ubc13

142

miR-144-5p Targeting ATF2 143

miR-146a-5p Activating DNA repair pathway 144

miR-150 Acting on AKT pathway 145

miR-99a Targeting mTOR pathway 146

miR-139-5p Repressing multiple gene networks of DNA repair and ROS defense 147

miR-320a Inducing cancer cell apoptosis 148

siRNAs Silencing genes related to radioresistance 151–155

Oligonucleotides Regulating gene expression 156–159
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properties of nitroimidazoles. Second-generation nitroimi-
dazole radiosensitizers, such as etanidazole or nimorazole, 
are designed to increase the hydrophilicity of the reagents 
and thereby reduce neurotoxicity. For example, etanida-
zole has better hydrophilicity than misonidazole because 
its side chain is modified by hydroxyl.43 Although etani-
dazole presents lower preclinical toxicity and higher effi-
cacy, it shows no obvious benefit for head and neck cancer 
patients in randomized studies.44 Nimorazole, 
a 5-nitroimidazole, is recommended for the treatment of 
head and neck cancers in Denmark since its beneficial 
effects in several clinical trials. Moreover, it has been 
further explored in an EORTC international trial.45–51 

Notably, the DAHANCA 28 trial demonstrated that hyper-
fractionated, accelerated radiotherapy with concomitant 
cisplatin and nimorazole (HART-CN) for patients was 

feasible and yielded favorable tumor control.52 Other 
nitro compounds have also been exploited for hypoxia 
radiosensitization. Dinitroazetidine, RRx-001, has been 
evidenced as an effective radiosensitizer with low toxicity 
and is now being evaluated in the NCT02871843 clinic 
trial.53

Nitrogen oxides, in particular, NO, act as radiosensiti-
zers through many direct and indirect mechanisms. Similar 
to the oxidative stress induced by oxygen, NO can “fix” or 
stabilize radiation-induced DNA damage through nitrosa-
tive stress pathways.54 Oxidative and nitrosative stress 
pathways involve the generation of reactive species. For 
example, nitrous acid, peroxynitrite (ONOO–), and nitric 
acid produce cytotoxic effects through mechanisms includ-
ing DNA cross-linking, protein nitrosylation, glutathione 
depletion, and inhibition of mitochondrial respiration.55–58 

Table 2 The List of Nanomaterials Used for Radiosensitization

Nanomaterial Modification Size (TEM) Cell Line/Model Reference

Au GSH <2 nm U14 tumor models 166

Au PEG2k 2, 5, 19 nm PC3pip and PC3flu cells 167

Ag PEG 18 nm C6 cells 171

Ag PVP 26.87±3.68 nm U251 and C6 cells 172

Bi,Gd PEG 11.3±1.6 nm MCF-7 and 4T1 cells 174

Hf, Nb, Ta 100 nm 178

Gd DTPA 3.0±1.0 nm F98 cells 179

AGuIX 2.1±1 nm F344 rats 181

AGuIX DOTA Sub-5 nm HepG2 cells 182

Hf 7–31 nm 184

Ta PEG 65.4±5.6 nm Balb/c mice 188
Zn, Ga, Ge, Cr, Pr, Ta PEG 62.8±8.6 nm Nude mice harboring HepG2 tumors 190

Ta PEG 119±34 nm 4T1 cells 193

Bi PEG 3.6 nm LO2 and 4T1 cells 197

Bi 10–70 nm 4T1 cells 200

Si,Gd,Bi DOTA 4.5±0.9 nm A549 cells 202
Fe,Pt PEI,PEG 10nm A2780 and A2780DDP cells 204

Co,Mn,Fe,Bi PEG 11.2±1.4 nm and 14.4±2.4 nm C6 cells 207

Zn,Fe 5–15 nm LNCaP cells 208

Quantum dots H460 cells 214
Ti PAA 50–100 nm MIAPaCa-2 cells 215

Ti PAA 135±65 and 124±65 nm 216

R-O2-FA-CHI-SWCNTs MDA-MB-231 and ZR-75-1 cells 220

Tf,Se 177, 192, and 312 nm C6,A375 cells 221

GNP PEG, RGD 20.90±0.14nm. HeLa, Hs. 895.Sk and Hs 895.T cells 222
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As an uncharged free radical, NO can diffuse across cell 
membranes freely and bind to soluble guanylate cyclase 
(sGC) to induce cyclic GMP production, thereby regulat-
ing vascular physiology.59–61 Researchers have reported 
that 5-nitroimidazoles and sanazole can release NO.62,63

A phase I study of non-small-cell lung cancer 
(NSCLC) patients suggested that NO donation increased 
tumor perfusion and, therefore, promoted tumor 
growth.64 However, a phase II study of prostate cancer 
patients claimed that low-dose NO had no direct cyto-
toxic effect, but could decrease hypoxia through improv-
ing blood flow in tumor tissue.65 Some anticancer drugs 
approved by US Food and Drug Administration (FDA), 
such as bevacizumab, sorafenib, and etaracizumab played 
their roles by blocking the VEGF pathway to some 
extent.66 VEGF is overexpressed in anoxia environment, 
which leads to endothelial cell proliferation and neovas-
cularization. In angiogenesis, there is a positive and 
negative feedback regulation relationship between 
VEGF and NO, which maintains vascular homeostasis 
precisely.67 In addition, Liebmann et al proved that pre-
treatment with NO improved the survival of mice after 
irradiation.68

Active Compounds from Chinese Herbs
In recent years, more and more researchers reported that 
active compounds from Chinese herbs such as 
curcumin,69–71 resveratrol,72–74 dihydroartemisinin75–77 

and paclitaxel,78–80 could enhance tumor radiotherapy sen-
sitivity (Figure 2). Curcumin is a polyphenolic active 
compound extracted from turmeric. Curcumin exerts anti- 
inflammatory effect by inhibiting the transcription factor 
NF-κB, which is involved in both tumorigenesis and 
radioresistance.81 In a preclinical study, Chendil et al 
reported that when treated with RT and curcumin together, 
the human prostate cancer cell line, PC3 presented three-
fold fewer surviving and the mechanism was supposed to 
have a relationship with NF-κB.82 In addition, nanocurcu-
min as a radiosensitizer is being evaluated by a Phase II 
clinical trial (NCT02724618). Other relevant research on 
mutant p53 Ewing’s sarcoma cells proved that radiosensi-
tivity of curcumin was associated with other p53-response 
genes.83

Resveratrol is an active compound extracted from 
grapes, knotweed, peanuts, mulberry and other plants. 
Tan et al proved that resveratrol enhanced the radiosensi-
tivity in nasopharyngeal carcinoma cells by downregulat-
ing E2F1.73 Liao et al found that resveratrol enhanced 

radiosensitivity in human NSCLC NCI-H838 cells by 
inhibiting NF-κB activation.84 Dihydroartemisinin is 
a derivative of artemisinin, which can shorten the G2/M 
phase, while increases the G0/G1 and S phase, thereby 
reducing the radiation resistance.85 Although the relevant 
clinical research has not yet been carried out, researchers 
have demonstrated that resveratrol86–89 and 
dihydroartemisinin90–92 possessed radiosensitization on 
cancer cells in vitro.

Paclitaxel is widely known as a very good natural 
anticancer drug.93,94 As a new type of antimicrotubule 
drug, paclitaxel can inhibit the microtubule networks for-
mation and prevent the tumor cells proliferation to achieve 
radiosensitization.95 Results showed that paclitaxel could 
obviously enhance the radiosensitivity of inoperable 
patients with locally advanced esophageal cancer and 
improve the prognosis of patients with acceptable thera-
peutic effect.96 A three-arm randomized Phase III trial 
(NCT02459457)—comparison of paclitaxel-based three 
regimens concurrent with radiotherapy for patients with 
local advanced esophageal cancer and a Phase III study 
(NCT01591135) of comparing paclitaxel plus 5-fluorour-
acil vs cisplatin plus 5-fluorouracil in chemoradiotherapy 
for locally advanced esophageal carcinoma are 
underevaluated.

Hypoxia-specific Cytotoxins
Some bioreductive agents, such as aromatic N-oxides, 
transition metal complexes, quinones, aliphatic N-oxides 
and nitro compounds, have radiosensitization effects by 
virtue of their preferential cytotoxicity toward hypoxic 
cells.11 Tirapazamine (TPZ), a hypoxia-selective radiosen-
sitizer, has shown promising results in clinical trials.97,98 

Under hypoxic environments, TPZ can be reduced by 
reductase in cells to a metabolite that produces free radical 
and then leads to SSB, DSB, and base damage on DNA.99 

A Phase I clinical trial of TPZ with cisplatin and radio-
therapy in small cell lung cancer showed prolonged survi-
val of patients.100 A Phase II study of TPZ with 
chemoradiotherapy in locally advanced head and neck 
cancer reported improvements in failure-free survival and 
response of patients.101 However, further phase III trials of 
TPZ with chemoradiotherapy in locally advanced head and 
neck cancer concluded that there was no obvious improve-
ment in patient survival.102 In addition, SN30000 (pre-
viously known as CEN-209), an analog of TPZ, with 
more favorable diffusion property that provides greater 
toxicity in hypoxic cancer cells than TPZ, is currently 
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under development by the Drug Development Office of 
Cancer Research UK.103

AQ4N, a representative to aliphatic N-oxide, can be 
reduced to AQ4 by cytochrome P450 isoenzymes or nitric 
oxide synthase 2A.104 In vivo experiments showed that 
combined utilization of AQ4N with radiotherapy resulted 
in increased antitumor efficacy, as well as negligible toxi-
city to normal tissue compared with radiation alone.105 

Positive results were also evidenced in Phase I clinical 
trials.106 A Phase I clinical trial in glioblastoma and head 
and neck tumor patients proved that AQ4N could be 
specifically activated in hypoxic regions of solid 
tumors.107 Unfortunately, a Phase II clinical trial of 
AQ4N with radiotherapy and temozolomide in glioblas-
toma began in 2006, was in a pending status 
(NCT00394628).

TH-302 (evofosafamide), a similar compound that can 
be reduced to bromo-isophosphoramide mustard in 
hypoxic conditions, has radiosensitization activity, espe-
cially in hypoxic cells.108,109 In preclinical models of 
rhabdomyosarcoma (skeletal muscle) and NSCLC, TH- 
302 combined with radiotherapy treatment resulted in sig-
nificant tumor growth delay.110 In addition, in a study in 
patient-derived xenograft models of pancreatic cancer, 
combination treatment of TH-302 and radiotherapy was 
more efficient than either treatment alone.111 TH-302 can 
specifically target the hypoxic tumor cells and induce 
DNA damage simultaneously in adjacent tumor tissue of 
the hypoxic zone, and thus holds potential radiosensitiza-
tion effects in solid tumor treatment.112 However, on the 
database of US National Institutes of Health clinical trials, 
only one of the 26 trials listed proposed combination 
treatment of TH-302 with radiotherapy (NCT02598687), 
and it was withdrawn because two phase III trials did not 
meet their primary endpoint.113

Mitomycin C, a quinone-based anticancer therapeutic, 
can be activated via DNA cross-linking. In preclinical 
study, mitomycin C showed only slight toxicity in hypoxic 
cells, which promotes the development of other hypoxia- 
sensitive quinones selection.114 Among them, porfiromycin 
(POR) and apaziquone (EO9) are bioreductive prodrugs, 
represent the leading candidates.104 Preclinical studies con-
cluded that POR held higher hypoxic selectivity than mito-
mycin C.115 Although preclinical trials proved POR had 
acceptable toxicity, the following Phase 3 trial demonstrated 
that POR had a poorer therapeutic effect than mitomycin 
C.116 Preclinical studies indicated that EO9 had greater 

antitumor property than mitomycin C, indicating EO9 can 
be a ideal radiosensitizer.117

Other Chemical Radiosensitizers
Other types of chemical radiosensitizers have also seen 
some progress and some of them are in preclinical evalua-
tions. For example, chemicals that influence cell signaling, 
suppress radioprotective substances, pseudosubstrates and 
targeted delivery systems are exploited. With the develop-
ment of research on radioresistance mechanism, it has 
been found that multiple signal pathways are related to 
radioresistance, providing more targets for radiosensitiza-
tion, such as PI3K–Akt–mTOR,118 Wnt,119 MAPK,120 

MDM2121 and c-MET–PI3K–Akt.122 For example, 
BKM120, the oral PI3K inhibitor, can inhibit the activity 
of PI3K/Akt by targeting the PI3K-Akt pathway, thereby 
increasing cell apoptosis and inhibiting DNA double- 
strand break repair in liver cancer cells.123 BEZ235, 
a dual PI3K–mTOR inhibitor, can improve the radiosensi-
tivity of colorectal cancer cells.124 AMG 232, a picomolar 
affinity piperidinone inhibitor of MDM2, can suppress 
tumor growth on a mouse model.121

Suppression of radioprotective substances, such as glu-
tathione (GSH), is another strategy of radiosensitization. 
Inhibition of GSH can prevent DNA damage repair and 
lead to increased damage in tumor cells, which improves 
the efficacy of radiotherapy in turn.125 In addition, pseu-
dosubstrates lead cells undergoing DNA synthesis unable 
to distinguish thymidine and its halogenated analogs effi-
ciently. It is a new area of clinical research to use haloge-
nated pyrimidine analogs, like bromodeoxyuridine 
(BrdUrd) and iododeoxyuridine (IdUrd), as potential clin-
ical radiosensitizers.126 One study demonstrated that elec-
tron affinities of 5-halogenated deoxyuridine led to enough 
ability to bind a radiation-produced secondary electron, 
thereby increasing the sensitivity of radiotherapy.127

In addition, research on new indications for existing 
drugs provides a new paradigm for the development of 
radiosensitizers. For instance, papaverine, an ergot alka-
loid first isolated from Papaver somniferum in 1848, has 
been used for treatment of vasospasm, cerebral thrombo-
sis, pulmonary embolism and erectile dysfunction.128 

Denko et al identified papaverine as an inhibitor of mito-
chondrial complex I and proved that papaverine could 
increase oxygenation and enhance radiation response.128 

A phase I trial (NCT03824327) study on papaverine and 
stereotactic body radiotherapy (SBRT) for NSCLC or lung 
metastases is under evaluation. In summary, small- 
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molecule chemicals as radiosensitizers initiated in the past 
five years under clinical trials are summarized in Table 3.

Macromolecules
Proteins and Peptides
Proteins and peptides, such as antibodies and short pep-
tides, have high affinity with antigens and receptors over-
expressed on the surface of tumor cells, making them 
usable as radiosensitizers.129 For instance, HER3-ADC, 
a maytansine-based antibody-drug conjugate targeting 
HER3, which induces cell arrest in the G2/M phase to 
inhibit DNA damage repair and thereby improves radio-
sensitivity of HER3-positive pancreatic cancer cells.130 

SYM004, a epidermal growth factor receptor targeting 
antibody, can inhibit DNA double strand breaks repair 
and induces apoptosis via downregulating MAPK signal-
ing, and thereby improves radiosensitivity in tumor 
cells.120 Cetuximab and nimotuzumab, binding the epider-
mal growth factor receptor (EGFR), can increase radia-
tion-induced apoptosis and DNA damage, and thereby 
improve the radiosensitivity of human epidermal-like 
A431 cells.131 The hepatocyte growth factor (HGF)/Met 
signaling pathway which mediates DNA double-strand 
break repair is upregulated in the majority of cancers. 
AMG102, a monoclonal antibody against HGF, can inhibit 
DNA damage repair and increase radiosensitivity of glio-
blastoma multiforme.132 In addition, proteins and peptides 
in serum, such as C-reactive peptide,133 HSP134 and 
paraoxonase-2135 contribute to radioresistance and can be 
used as radiotherapy targets. ECI301, a mutant derivative 
of macrophage inhibitory protein-1a, can be assisted by 
HSP-70 and HMGB1, thereby enhancing the effect of 
radiotherapy.134 Other proteins, like DNAzyme (DZ1)136 

and NKTR-214,137 can also improve the effect of 
radiotherapy.

miRNAs
MicroRNAs (miRNAs), which encode by endogenous 
genes are noncoding single-stranded RNA molecules con-
taining about 22 nucleotides. Studies have shown that some 
specific miRNAs can be used to improve radiotherapy 
efficacy138,139 and some miRNAs can be used as radio-
therapy sensitization targets.140 For example, miR-621 tar-
gets SETDB1 in hepatocellular carcinoma can be used as 
a tumor radiosensitizer directly.141 miR-205 targets zinc 
finger E-box binding homeobox 1 (ZEB1) and the ubiquitin- 
conjugating enzyme Ubc13 to enhance the radiosensitivity 
of breast cancer cells.142 miR-144-5p targets ATF2 to 
enhance radiosensitivity of NSCLC.143 miR-146a-5p 
enhances radiosensitivity in hepatocellular carcinoma 
through activation of DNA repair pathway.144 miR-150 
modulates AKT pathway in NK/T cell lymphoma to 
enhance radiosensitivity.145 miR-99a targets mTOR path-
way to enhance the radiosensitivity of NSCLC.146 miR- 
139-5p modulates radiotherapy resistance in breast cancer 
by repressing multiple gene networks of DNA repair and 
ROS defense.147 Transcriptional activation of miR-320a 
induces cancer cell apoptosis under ionizing radiation 
conditions.148 However, inhibition of miR-21-5p promotes 
the radiation sensitivity of NSCLC.149 Inhibition of miR- 
630 enhances radiotherapy resistance in human glioma by 
directly targeting CDC14A.150 Furthermore, a clinical study 
included 55 atypical meningioma patients found in seven 
upregulated miRNAs (miR-4286, miR-4695-5p, miR-6732- 
5p, miR-6855-5p, miR-7977, miR-6765-3p, miR-6787-5p) 
and seven downregulated miRNAs (miR-1275, miR-30c- 
1-3p, miR-4449, miR-4539, miR-4684-3p, miR-6129, 

Table 3 Registered Ongoing Clinical Trials (https://Clinicaltrials.gov/) of Small-molecule Chemical Radiosensitizers

Identifier Drugs Conditions Phase Initiation

NCT02363829 Nelfinavir Uterine cervix cancer I February 2015
NCT02459457 Paclitaxel Stage III esophageal squamous cell carcinoma III July 2015

NCT02598687 TH-302 Esophageal cancer I December 2015

NCT02724618 Curcumin Prostate cancer II March 2016
NCT03066154 Docetaxel Prostatic neoplasms I September 2016

NCT02757651 Hydrogen peroxide Breast cancer I/II January 2017

NCT02871843 RRx-001 Glioblastoma I February 2017
NCT03101995 Gemcitabine Cervical cancer II July 2017

NCT03824327 Papaverine Hydrochloride Lung non-small-cell carcinoma I February 2019
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miR-6891-5p) in patients. Those miRNAs may induce 
radioresistant and radiosensitive, respectively.

siRNAs
siRNA, known as short interfering RNA or silencing 
RNA, is a class of double-stranded RNA, noncoding 
RNA molecules, typically 20–27 base pairs in length, 
similar to miRNA, and operating within the RNA inter-
ference (RNAi) pathway.151 HuR is a protein related to 
radiotherapy resistance, knockdown of HuR by siRNA 
resulting DNA damage and enhanced radiosensitivity.152 

S100A4, a member of the S100 family of transcription 
factors, modulates various activities of malignant tumor 
cells through different mechanisms. A short siRNA against 
S100A4 enhances the radiosensitivity of human A549 
cells.153 NBS1 plays an important role in the radiation- 
induced DNA double-strand breaks reparation, siRNA tar-
gets NBS1 can increase radiation sensitivity of cancer 
cells.154 Survivin, a member of the inhibitor of apoptosis 
(IAP) protein family, is overexpressed in most cancers 
resulting in aggressive behavior of tumor and therapy 
resistance. Downregulation of survivin by siRNA can 
enhance radiosensitivity in head and neck squamous cell 
carcinoma.155 Therefore, numerous siRNAs can be used as 
radiosensitizers by silencing genes related to 
radioresistance.

Oligonucleotides
Similar to siRNAs, oligonucleotides also play important 
roles in gene expression regulation. Since they are easy to 
design and synthesize, antisense oligonucleotides have 
great potential to develop as radiosensitizers.11 

Telomerase expresses in many kinds of tumors (>85%), 
while the expression of telomerase is restricted in normal 
tissues. A study indicated that expression of telomerase 
could be inhibited by radiolabeled oligonucleotides, 
which targeted the RNA subunit of telomerase, thereby 
inducing DNA damage in telomerase-positive tumor 
cells.156 In addition, the phosphorothioate-modified anti-
sense oligonucleotides (PS-ASODN) against human tel-
omerase reverse transcriptase were reported to promote 
radiotherapy effect in liver cancer.157 Furthermore, Park 
et al reported that inhibition of cyclic AMP response 
element-directed transcription using decoy oligonucleo-
tides enhanced tumor-specific radiosensitivity.158 Yu et al 
demonstrated that antisense oligonucleotides targeted 
human telomerase RNA (hTR ASODN) could improve 
the radiosensitivity of nasopharyngeal carcinoma cells.159 

The radiosensitization mechanism of macromolecules 
was summarized in Figure 3.

Nanomaterials
Noble Metal nanomaterials
The X-ray absorption coefficient (μ) represents the rela-
tionship between the X-ray absorption phenomenon (E) 
and atomic number (Z), μ=ρZ4/(AE3), where ρ is the 
density and A is the atomic mass of the element.160 

Therefore, the change of atomic number (Z) causes 
a significant change of X-ray absorption coefficient (μ). 
Noble metal nanomaterials, such as gold (Au, Z=79), 
silver (Ag, Z=47) and platinum (Pt, Z=78) can effectively 
absorb X-ray energy and interact with radiation in tumor 
cells, and then emit photoelectrons, auger electrons, comp-
ton electrons and other secondary electrons. These second-
ary electrons not only interact with DNA directly, but also 
react with water to increase the production of ROS and 
further increase the sensitivity of tumor cells to radiation. 
This process is a physical sensitization mechanism.161 

Furthermore, functionalized noble metal nanomaterials 
promote the generation of ROS, transfer the cell cycle 
into a radiosensitive state, and inhibit p53 signaling path-
way to induce cell autophagy and lysozyme body function 
disorder, thereby increasing radiotherapy sensitivity. This 
process is a biochemical sensitization mechanism.162,163

Gold nanoparticles with good chemical stability, easy 
preparation, controllable size and shape, easy surface func-
tionalization, high biocompatibility, and low toxicity have 
proven satisfactory radiosensitizing effects in various 
tumors.164–167 Silver nanoparticles and platinum nanopar-
ticles are also commonly used in biomedicine.168,169 

Research found that silver nanoparticles combined with 
radiotherapy could enhance the radiosensitivity of human 
glioma cells in vitro and extended the survival time of 
glioma mice.170,171 Liu et al demonstrated that silver nano-
particles could induce apoptosis of cancer cells through G2 

/M phase arrest after radiation, and they suggested that 
silver nanoparticles could be used as a nanoradiosensitizer 
for hypoxic glioma radiotherapy.172 Recently, Fathy 
reported that thymoquinone-capping silver nanoparticles 
represented a promising engineered nanoformulation for 
enhancing cancer radiosensitivity.173 Li et al demonstrated 
that platinum nanoparticles could enhance radiosensitivity 
through increasing DNA damage, ROS stress, and cell 
cycle arrest.163 They also proved that platinum nanoparti-
cles could convert endogenic H2O2 to O2 in cancer cells, 
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thus significantly improving radiosensitivity without 
apparent toxicity to animals in vivo.163

Heavy Metal Nanomaterials
Similar to noble metal nanomaterials, gadolinium (Gd, 
Z=64), hafnium (Hf, Z=72), tantalum (Ta, Z=73), tungsten 
(W, Z=74), and bismuth (Bi, Z=83) are also metal ele-
ments with large atomic coefficients and have a great 
X-ray attenuation capability.174–176 Based on this, numer-
ous studies have focused on these heavy metal nanomater-
ials to investigate their radiotherapy sensitization. 
However, they usually cause damage to healthy tissues 
with direct contact.177 Therefore, their stable forms such 
as oxides, sulfides, and selenides are explored as the 
radiosensitizers.178–180

Gadolinium-based nanoparticles are usually known as 
magnetic resonance imaging (MRI) contrast agents. It 

should be noted that researchers discovered a family of 
gadolinium-based nanoparticles called AGuIX for com-
bined MRI and radiosensitization.181 Results showed that 
AGuIX could interact with X-rays and γ-rays at a certain 
concentration. After internalization through the enhanced 
permeability and retention (EPR) effect, AGuIX could be 
resident in the tumor for a long time before being cleared 
by the kidneys.182 Preclinical animal experiments proved 
that AGuIX held obvious radiosensitization effects in 
several tumor models without obvious toxicity.183 

A Phase I clinical trial (NCT03308604) to evaluate the 
optimal dose of AGuIX combined with chemoradiation in 
patients with locally advanced cervical cancer; a Phase II 
clinical trial (NCT03818386) using AGuIX gadolinium- 
chelated polysiloxane based nanoparticles and whole 
brain radiotherapy in patients with multiple brain metas-
tases; and a single-arm phase II trial (NCT04094077) 

Figure 3 Radiosensitization mechanism of macromolecules. (A) Proteins and peptides. (a1) Direct interaction of key proteins. (a2) Loading of radioactive seeds. (a3) 
Radiosensitizers delivery. (a4) Conjugation with nanomaterials. (B) miRNAs can then bind with mRNAs to implement radiosensitization. (b1) Downregulation by inhibitors. 
(b2) Upregulation. (C) siRNAs can improve radiosensitivity by binding and degrading complementary mRNAs. (D) Oligonucleotides improve the radiosensitivity by 
complementary binding with DNAs.
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aiming to evaluate the efficacy of AGuIX during fractio-
nated stereotactic radiotherapy of brain metastasis are 
being evaluated.

Hafnium, in the same family as titanium and zirco-
nium, is chemical inertness. The oxidation state of haf-
nium, hafnium dioxide (HfO2), was usually used in 
radioactive protective coatings, biosensors, and X-ray con-
trast agents.184,185 Jayaraman et al demonstrated that HfO2 

nanoparticles had excellent biocompatibility.185 

Researchers from France discovered that HfO2 can be 
used as a radiosensitizer with low cytotoxicity.186 

A Phase I trial (NCT03589339) combining hafnium 
oxide nanoparticles (NBTXR3) with anti-PD-1 therapy in 
microsatellite instability-high solid malignant tumour and 
a Phase I–II clinical trial (NCT02805894) of NBTXR3 in 
prostate adenocarcinoma are under evaluation.

Tantalum is a nontoxic, biologically inert element with 
good biocompatibility.187 Studies found that TaOx and 
Ta2O5 could be used as CT imaging contrast 
agents.188–190 Brown et al found Ta2O5 nanoparticles 
showed a radiasentizition effect on radioresistant glioma 
cells.191 Song et al showed hollow shell tantalum oxide 
(HTaOx) had a large X-ray attenuation capability and 
could enhance radiation therapy effects by Compton scat-
tering and Auger effect.192 In addition, TaOx can be used 
as functional group carrier to load drugs, thereby improv-
ing tumor hypoxic environment. For example, HTaOx 
loaded with catalase, which reacted with H2O2 in the 
tumor microenvironment, then improved the oxygen con-
tent and overcame the radiotherapy tolerance of hypoxic 
tumor cells, thereby improving the radiotherapy effect.193

Tungsten and bismuth also have significative applica-
tions in medicine.194,195 Hossain et al concluded that bis-
muth nanoparticles had stronger radiosensitizing effect 
than gold and platinum nanoparticles at the same physical 
and chemical conditions.196 Yu et al found that the ultra- 
small semi-metallic Bi nanoparticles with LyP-1 peptide 
modified at 3.6 nm showed obvious radiosensitization 
effect.197 Recently, a large number of studies shown that 
some nanomaterials of tungsten and bismuth had excellent 
photothermal absorption conversion performance and 
strong X-ray absorption capacity, therefore they can be 
used for tumor radiosensitization as well as synergistic 
therapy of hyperthermia and radiotherapy.198–201

In addition, research about several high Z metal ele-
ments combined together to further improve the radiosen-
sitization effect were also explored. For example, 
SiBiGdNP chelated Bi and Gd in organosilane to improve 

the sensitivity of radiotherapy.202 GdW10O36 contained 
both W and Gd to expect they had better radiotherapy 
sensitization effect.203

Ferrite Nanomaterials
Ferrite-based nanomaterials can catalyze the generation of 
free radicals through Fenton’s reaction (1) and Haber– 
Weiss reaction (2) to enhance the effect of 
radiosensitization.204

Fe2+ + H2O2 → Fe3+ + OH + OH−

Fe3+ + H2O2 → Fe2+ + OOH + H+ (1)
Fe3+ + O2 

− → Fe2+ + O2

Fe2+ + H2O2 → Fe3+ + OH− + OH (2)
Studies proved that Fe3O4 had a dose-enhancing effect 

for radiotherapy, especially superparamagnetic Fe3O4 

nanoparticles (SPIONS) possessing MRI imaging property 
had good application prospects in image-guided tumor 
radiotherapy.205

The composition of the spinel structure ferrite is 
usually stated as MFe2O4, where M=Fe, Zn, Co, Mn, 
Ni.206 Among them, ZnFe2O4, MnFe2O4, CoFe2O4 nano-
particles were widely investigated.207 For example, 
Meidanchi et al confirmed that ZnFe2O4 nanoparticles 
interacted with γ-rays to produce photoelectric effect 
resulting in a higher release level of electron in radio-
resistant cells.208 Studies also indicated that ZnFe2O4 

nanoparticles could be used as radiosensitizers.208,209 

Salunkhe et al demonstrated that MnFe2O4 and CoFe2O4 

nanoparticles could improve the therapeutic efficacy of 
cancer through multimodal image-guided combination 
therapy.210

Semiconductor Nanomaterials
Semiconductor quantum dots have unique properties, such 
as quantum dimension effect, surface effect, and quantum 
confinement effect, making them great candidates in biome-
dicine applications.211 Until now, numerous studies focused 
on using semiconductor quantum dots as photosensitizers 
and radiosensitizers for tumor treatment have been 
reported.212–214 When the electronic energy levels are in 
the range of 1–5 eV, the semiconductor nanomaterials can 
absorb the photon energy and perform as photosensitizers, 
showing photocatalytic properties. When the electronic 
energy levels are at keV and MeV (X-rays and γ-rays), 
semiconductor nanomaterials can enhance absorption of 
high-energy photons acting as radiosensitizers and causing 
damage to cancer cells.212 Nakayama et al synthesized 
a semiconductor nanomaterial PAA-TiOx to generate 
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hydroxyl radicals under the irradiation of X-rays, which 
increased DNA damage and inhibited tumor growth 
significantly.215 Morita et al clarified the radiosensitization 
mechanism of PAA-TiOx nanoparticles by releasing H2O2 

to relieve hypoxia in tumor cells.216 TiO2 nanotubes have 
been reported to enhance the radiosensitization effect 
through regulating G2/M cycle arrest and reducing DNA 
repair of tumor cells.177 The mechanism of radiosensitiza-
tion of metal-based nanomaterials is shown in Figure 4.

Nonmetallic Nanomaterials
Many nonmetallic nanomaterials also possess the function of 
radiosensitization.217 For example, C60, fullerene, has potent 
anticancer activities, however, the potential toxicity to normal 
tissues limits its further use. Therefore, nanocrystals of C60 

(Nano-C60) with negligible toxicity to normal cells have been 
developed as a radiosensitizer.218 In addition, nanodiamonds 
and carbon nanotubes can reduce radioresistance of tumor 
cells by promoting ROS generation, destroying DNA double- 
strands, and regulating the cell cycle.219,220 Selenium (Se) 
nanoparticles not only work as chemotherapeutic drugs, but 
also improve the antitumor effect of X-rays by activating 
ROS to induce DNA damage in cancer cells.221

Nanostructured Chemicals and Drug 
Delivery Systems
Nano-based delivery systems are efficient approaches for 
drug targeted transportation, which can deliver radiosensiti-
zers, such as chemicals, oxygen carriers, siRNAs and cata-
lases to the tumor sites and have attracted wide interest of 
researchers recently.222 More importantly, nanobased deliv-
ery systems can precisely deliver radioactive particles like223 

Ac (releasing a-particles), 131I, and 125I to tumor sites.223 

With the development of nanotechnology, nanobased deliv-
ery systems have great potential for radiosensitizer delivery.

However, there is still a challenge to achieve clinical 
translation of nanobased delivery systems, factors like phy-
sicochemical properties of the nanoformulations, radiation 
sources, and indications block their clinical translation.223 In 
addition, long circulation lifetime of nanodelivery systems 
may increase the risk of long-term toxicity.224 Another cri-
tical factor is stability in body fluid of nanodelivery systems. 
Because the aggregation of nanoparticles in body fluid will 
influence the pharmacokinetics and the cellular response and 
generate serious side effects such as blocking the blood 
vessels.222 Therefore, attention should be paid to these fac-
tors when designing the nanodelivery systems. Size is also an 

Figure 4 Radiosensitization mechanism of metal-based nanomaterials. The process contains physical and biochemical sensitization mechanism.
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important factor, small size and high Z nanoparticles often 
hold better radiosensitizing effect than larger-size ones.223 In 
particular, the small size nanoparticles with positive charge 
can bind to negative charged DNA and can be eliminated by 
renal clearance conveniently. In addition, functional modifi-
cation of nanostructures using biocompatible materials can 
improve their stability and targeting.225

Conclusions and Prospects
Radiosensitizers have been developed for decades from the 
earliest “free radical damage and fixation” strategies to gene 
regulation, from chemicals to biological macromolecules and 
nanomaterials. Although each radiosensitizer has dialectical 
advantages and limitations, the mechanisms of sensitization 
are similar. The main mechanisms include: (I) inhibiting 
radiation-induced repair of DNA damage, increasing the 
degree of DNA damage; (II) disturbing the cell cycle and 
organelle function to improve cytotoxicity; and (III) inhibit-
ing the expression of radiation resistance genes or promoting 
the expression of radiation sensitive genes.

Although small molecules, macromolecules, and nanoma-
terial radiosensitizers are being developed, and some nanora-
diosensitizers have been used for clinical research (Table 4), 
the result still cannot meet clinical translation needs. Therefore, 
there is an urgent need to find new targets of radiotherapy and 
new mechanisms of sensitization, and after that to develop 
more effective radiosensitizing drugs. First of all, multitarget 
radiosensitizers often have more obvious efficacy than single 
target, researchers can focus on screening multitarget radio-
sensitizers or drug combinations. New approaches, in particu-
lar, nanotechnology based as radiosensitizers have shown 
promise. Nanomaterials with low cytotoxicity, good biocom-
patibility, and ease of functionalization need to be explored. In 
addition, other technologies, such as molecular structure ana-
lysis, molecular cloning technology, and bioinformatics analy-
sis can accelerate the development of new radiosensitizers. 
Moreover, development of new drug delivery systems can 

also improve radiosensitization efficacy. Finally, the applica-
tion of artificial intelligence and machine learning in new drug 
discovery and clinical trials, may guide development of new 
radiosensitizers and optimization of existing radiosensitizers.
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