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Purpose: Sonodynamic therapy (SDT) is considered a promising therapeutic strategy for the 
effective elimination of cancer cells. However, developing novel sonosensitizers with poten-
tially high SDT efficacy remains a considerable challenge. Herein, we utilized near-infrared 
dye IR820 nanobubbles (NBs) combined with a dual PI3K/mTOR inhibitor PI-103 for the 
SDT treatment of hepatocellular carcinoma (HCC) in vitro.
Methods: The generated reactive oxygen species (ROS) were quantified using 2,7-dichlor-
odihydrofluorescein diacetate to determine the feasibility of using IR820 NBs as a potential 
sonosensitizer. The inhibition effects of the synergistic therapy was examined using the cell 
counting Kit 8 assay and apoptosis assay. JC-1 staining was performed to study mitochon-
drial membrane depolarization, and the transwell assay was used for cell migration analysis.
Results: The particle size and zeta potential of IR820 NBs were 545.5±93.1 nm and −5.19 
±1.73 mV, respectively. ROS accumulation was observed after HepG2 cells were treated with 
IR820 NBs under ultrasound irradiation. The SDT combined with PI-103 group inhibited cell 
viability and migration more strongly than the other groups (P < 0.01). The apoptosis assay 
also demonstrated a relatively high anti-HCC efficacy with the synergistic therapy, while JC- 
1 staining showed a decrease in the mitochondrial membrane potential after the combined 
treatment.
Conclusion: The combination of SDT and PI-103 was very effective in suppressing HCC 
proliferation, which might help develop new minimally invasive cancer treatment strategies.
Keywords: minimally invasive cancer treatment strategy, sonosensitizer, PI3K/mTOR 
inhibitor, IR820 nanobubbles

Introduction
Liver cancer is the sixth most common cancer and the fourth leading cause of 
cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the predo-
minant subtype of liver cancer, and approximately 85% of liver cancer patients 
suffer from it.1 The main HCC treatment methods include surgical resection, 
radiation therapy, and chemotherapy; however, all these treatment modalities 
have limitations. As HCC is relatively insensitive to chemotherapy, it is usually 
treated by surgery. Meanwhile, only one third of all patients are good candidates 
for surgery due to the high invasiveness of the procedure and rapid HCC 
progression.2 Therefore, there is an urgent need for the development of novel 
HCC therapeutic methods. Sonodynamic therapy (SDT) is a promising non- 
invasive approach using low-intensity ultrasound (US) and sonosensitizers to 
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produce reactive oxygen species (ROS) that effectively 
induce the apoptosis of tumour cells.3 In contrast to 
photodynamic therapy (PDT), SDT utilizes US to pene-
trate tumour tissues and carefully eliminate cancer cells 
while causing minimal damage to the adjacent normal 
tissues.4,5

According to the results of previous SDT studies, 
proper identification and development of novel sonosensi-
tizers are among the most essential factors affecting the 
SDT efficacy.6 The majority of known sonosensitizers 
were originally developed from photosensitizers used in 
PDT, such as hematoporphyrin, protoporphyrin, and near- 
infrared (NIR) dye. As a derivative of NIR dye indocya-
nine green (ICG), new indocyanine green (IR820) with 
enhanced stability and prolonged circulation time has 
attracted significant attention from researchers.7,8 

However, the shortcomings of IR820 (including poor solu-
bility and lack of distribution specificity) considerably 
limit its practical application.9 To mitigate these issues, 
various nanoparticles, such as nanobubbles (NBs), have 
been introduced as vehicles of therapeutic agents to 
increase their biocompatibility and the ultrasound targeted 
nanobubble destruction (UTND) method has become 
a promising therapeutic application in cancer 
treatment.10,11 It was also found that sonosensitizer- 
conjugated NBs could effectively promote the SDT- 
induced ROS production for the precise targeting of 
tumour tissue.12,13 Hence, in this study we have investi-
gated the feasibility of using IR820 as a SDT sonosensiti-
zer. To the best of our knowledge, this is the first report on 
the application of IR820 NB-mediated SDT for HCC 
treatment.

As SDT alone is not able to completely eradicate 
cancer cells due to the complex pathogenesis of HCC, 
combined therapy is usually adopted to increase antitu-
mour activity and avoid possible adverse effects.14 The 
PI3K/AKT/mTOR signalling pathway plays a pivotal role 
in the regulation of tumour cell proliferation and protein 
synthesis and is confirmed to be active in 30–50% of HCC 
cases.15 As a dual PI3K/mTOR inhibitor, PI-103 was pre-
viously used in pre-clinical studies and exhibited a high 
inhibitory potential for HCC therapy.16 In addition, accu-
mulated ROS were utilized for the suppression of the 
PI3K/AKT/mTOR signalling pathway.17 Therefore, we 
rationally designed a powerful antitumour strategy invol-
ving the comprehensive integration of SDT and PI-103 to 
develop a potential treatment for HCC with high therapeu-
tic value.

The present study aimed to evaluate the synergistic 
therapeutic effects of the IR820 NB-mediated SDT and 
PI-103 for HCC treatment. The obtained results revealed 
that SDT combined with PI-103 not only promoted cell 
apoptosis through the loss of mitochondrial membrane 
potential, but also reduced cell viability and migration of 
HepG2 cells. Our findings suggest that the combination of 
SDT and suppression of the PI3K/AKT/mTOR signalling 
pathway may open new avenues in the development of 
non-invasive HCC treatment methods.

Materials and Methods
Fabrication and Characterization of IR820 
NBs
IR820 NBs were prepared from 1,2-distearoyl-sn-glycero 
-3-phosphocholine (DSPC), 1,2-distearoyl-sn-glycero 
-3-phosphoethanolamine (DSPE), and IR820 combined at 
a molar ratio of 18:2:1. Appropriate amounts of these 
reagents were dissolved in chloroform and methyl alcohol, 
and the resulting mixture was subsequently evaporated at 
a temperature of 37 °C. The dried phospholipid blend was 
hydrated with 4 mL of phosphate-buffered saline (PBS) in 
a sealed vial at 55 °C, after which the air inside the vial was 
replaced with perfluoropropane (C3F8; Research Institute of 
Physical and Chemical Engineering of Nuclear Industry, 
Tianjin, China) using a syringe. Finally, the vial was 
mechanically vibrated in a dental amalgamator (YJT 
Medical Apparatuses and Instruments, Shanghai, China) for 
60 s at a frequency of 60 Hz. The obtained IR820 NBs were 
collected by centrifugation at a speed of 500 rpm for 5 min 
and dispersed in fresh PBS for further analysis (Figure 1A).

After fabrication, the morphology of IR820 NBs was 
observed by transmission electron microscopy (TEM, 
Hitachi TEM system, Japan). Their hydrodynamic dia-
meter, polydispersity index (PDI), and zeta potential 
were determined by dynamic light scattering (DLS) using 
a particle size analyzer (Anton Paar, Litesizer™ 500). 
Absorption spectra were recorded by a DU-640 ultravio-
let–visible spectrophotometer (Beckman Coulter Inc., 
Brea, CA). To further evaluate the stability of IR820 
NBs, they were stored at 37 °C for 48 h and then observed 
by TEM (Hitachi TEM system, Japan).

In vitro US Destructibility of IR820 NBs
UTND was evaluated using a previously reported 
method.18 NBs were exposed to US with a frequency of 
1 MHz and an output intensity of 3 W/cm2 using a 20 mm 
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probe (Institute of Ultrasound Imaging, Second Affiliated 
Hospital of Chongqing Medical University, Chongqing, 
China). Each sonication cycle contained 4 frames of 30 
s at a duty cycle of 50%. The concentration of NBs after 
US irradiation were determined by a hemocytometer.

Cell Culture
The human HCC cell line, HepG2, was obtained from the 
Institute of Cancer Research affiliated with the Harbin 
Medical University and approved by Ethics Committee 
of Harbin Medical University. The HepG2 cells were 
cultured in Dulbecco’s Modified Eagle Medium (DMEM, 
Hyclone, Logan, UT, USA) supplemented with 10% fetal 
bovine serum (FBS, Gibco, Carlsbad, CA) in a humidified 
incubator containing 5% carbon dioxide at 37 °C.

Detection of Intracellular ROS 
Generation
Intracellular ROS generation was examined using 
2,7-dichlorodihydrofluorescein diacetate (DCFH–DA, 
Applygen Technologies Inc., Beijing, PR China) as an 
indicator. After 6 h of treatment, HepG2 cells were loaded 
with DCFH–DA at a final concentration of 10 mmol/L for 
20 min. Subsequently, the cells were collected and analysed 
by flow cytometry after three washes with PBS. 

Fluorescence microscopy (LX71, Olympus, Tokyo, Japan) 
was utilized to detect the intracellular ROS at an excitation 
wavelength of 488 nm and emission wavelength of 525 nm.

Cytotoxicity Assay
HepG2 cells were seeded into 96-well-microplates at 
a density of 5×103 cells per well and incubated overnight. 
Afterwards, the culture medium was replaced with fresh 
DMEM containing different concentrations of PI-103, 
IR820 NBs, or both reagents. The cells incubated with 
IR820 NBs were treated with and without US irradiation 
(frequency: 1 MHz, power density: 3 W/cm2, duty cycle: 
50%) for 90 s. After 24 h of incubation, HepG2 cell viability 
was assessed by the cell counting kit 8 (CCK–8) assay. 
According to manufacturer’s protocol, 10 µL of CCK–8 
solution (Beyotime Institute of Biotechnology, Jiangsu, 
China) was added to each well and the plates were incubated 
for 60 min at 37 °C in the dark. The absorption of each well 
was measured using a microplate reader (Promega Corp, 
Madison, WI, USA) at a wavelength of 450 nm, and the 
combination index (CI) value of the synergetic treatment was 
calculated using CompuSyn software.19

Cell Apoptosis Assay
Following manufacturer’s instructions, cell apoptosis was 
determined with the PE Annexin V Apoptosis Detection Kit 

Figure 1 Fabrication and characterization of IR820 NBs. (A) The microstructural schematic diagram of IR820 NBs. (B) Transmission electron microscopy (TEM) image of 
IR820 NBs. (C) TEM image of IR820 NBs after stored at 37 °C for 48 h. (D) Hydrodynamic diameter of IR820 NBs measured by DLS. (E) Zeta potential of IR820 NBs. (F) 
Absorption spectra of IR820, IR820 NBs and NBs.
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(BD Biosciences, Franklin Lakes, NJ, USA). After HepG2 
cells were collected and washed with cold PBS three times, 
approximately 1×105 cells were resuspended in 500 μL of 1× 
binding buffer and stained with 5 μL phycoerythrin Annexin 
V and 5 μL 7-aminoactivatin (7-AAD) for 15 min in the dark. 
The apoptosis rate of each group was immediately measured 
by flow cytometry (BD Biosciences, USA). For this purpose, 
apoptotic cells were stained with PE Annexin V+/7-AAD− 

(early apoptotic cells) and PE Annexin V+/7-AAD+ (late apop-
totic cells).

Mitochondrial Membrane Potential Assay
For early apoptosis detection, a JC-1 fluorescence probe 
(Beyotime, Jiangsu, China) was used to analyse the mito-
chondrial membrane potential (ΔΨm) via fluorescence 
microscopic imaging. After 24 h of treatment, HepG2 
cells were stained with JC-1 at 37 °C for 20 min in the 
dark and then washed twice with JC-1 staining buffer 
before detection. The average fluorescence intensity was 
determined by ImageJ software (National Institutes of 
Health, Bethesda, MD, USA). A decrease in the fluores-
cence intensity ratio of the JC-1 aggregate (red) to the 
monomer (green) indicated the loss of ΔΨm.

Transwell Analysis
Cell migration was assessed using transwell plates (Costar, 
USA) containing chamber inserts with pore sizes of 8.0 
μm. Approximately 1×104 cells cultured in 100 µL of the 
serum-free medium were seeded in the upper chamber, and 
800 μL medium containing 10% FBS was added to the 
lower chamber as an inducing agent. After 24 h of incuba-
tion, the cells migrated to the lower membrane surface 
were fixed with 4% paraformaldehyde solution and stained 
with 0.5% crystal violet solution for 30 min. After care-
fully washing with distilled water twice, the cells were 
quantified by counting three fields.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 8 
software (San Diego, CA, USA). All data were presented 
as mean ± standard deviation, and the p < 0.05 level was 
considered statistically significant. Student’s t-test was 
used to evaluate the statistical difference between two 
groups, and one-way analysis of variance was conducted 
to compare multiple groups.

Results
Fabrication and Characterization of IR820 
NBs
As observed by TEM, IR820 NBs with a spherical morphol-
ogy were well dispersed in an aqueous solution, and the 
particle size did not significantly change after storage at 37 ° 
C for 48 h, which confirmed the stability of IR820 NBs 
(Figure 1B and C). Their particle size measured by DLS was 
545.5±93.1 nm with a mean PDI of 0.255 (Figure 1D), 
which was in agreement with the TEM results. The mean 
zeta potential of the NB surface was −5.19±1.73 mV (Figure 
1E). To verify the successful formation of IR820 NBs, 
absorption spectra were recorded for IR820, IR820 NBs, 
and pure NBs. The characteristic IR820 absorbance peaks 
were also observed for the IR820 NBs (Figure 1F), indicat-
ing the incorporation of IR820 into IR820 NBs.

In vitro US Destructibility of IR820 NBs
The US destructibility experiment was assessed in 3 
groups: blank (no sonication), IR820 NBs, and NBs. The 
corresponding fold line diagram of the concentration of 
NBs is shown in Figure 2. Without US irradiation, the loss 
of NBs in blank measurements was considered negligible. 
Attenuation half-life (t1/2) of IR820 NBs and NBs were 
52.25 s and 55.59 s, respectively, with no significant 
difference between them (p > 0.05). Therefore, IR820 
can be effectively released from IR820 NBs under US 
irradiation through the UTND mechanism.

Figure 2 In vitro US destructibility of IR820 NBs.
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Intracellular ROS Generation
Intracellular ROS generation in HepG2 cells was examined 
by a DCFH–DA fluorescent probe. As shown in Figure 3A, 
very weak fluorescence was detected for the control and 
IR820 groups, whereas the IR820 + US group exhibited 
strong green fluorescence, which confirmed the ability of 
IR820 to serve as a feasible sonosensitizer generating ROS 
under US irradiation. Noticeably, the fluorescence intensity 
of IR820 NBs under US irradiation was much higher than 
that of pure IR820 at the corresponding concentrations, 
which likely resulted from the amplified cavitation of NBs 
induced by US irradiation through sonoluminescence.

The quantitative analysis of ROS generation was 
further performed by flow cytometry (Figure 2B and C). 
Similarly, the maximal fluorescence intensity was gener-
ated by the IR820 NBs + US group, which was almost two 
times greater than that produced by the IR820 + US group 
(p < 0.01). These results indicate that IR820 NBs can 
enhance the therapeutic effects of SDT by inducing 

excessive ROS generation. Thus, IR820 NBs were 
selected for SDT treatment in the subsequent experiments.

Synergistic Cytotoxicity of PI-103 and 
SDT to HepG2 Cells
To evaluate the cytotoxicity of PI-103 and SDT, the via-
bility of HepG2 cells was examined by the standard CCK– 
8 assay after the incubation with PI-103 (concentration: 
0–8 µM) or IR820 NBs (concentration: 0–8 µM) for 24 
h. As shown in Figure 4A, IR820 NBs demonstrated no 
obvious cytotoxicity in HepG2 cells even at a high con-
centration of 8 µM without US irradiation, suggesting the 
good biocompatibility of IR820 NBs. The treatment with 
PI-103 or SDT alone reduced the cell viability in a dose- 
dependent manner, and the half maximal inhibitory con-
centration (IC50) of PI-103 and SDT to HepG2 cells was 
5.021 µM and 3.949 µM, respectively (Figure 4B and C). 
The survival rate significantly decreased to 25.36±0.34% 
for the cells treated with 8 µM of IR820 NBs under US 

Figure 3 Detection of intracellular ROS generation. (A) Fluorescence imaging of HepG2 cells stained by DCFH-DA. (B) ROS generation was analyzed by flow cytometry. 
(C) The quantification of fluorescence intensity in different groups. **p<0.01.
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irradiation (as compared with that of the control group, p < 
0.01), indicating that IR820 NBs acted as potential nano- 
sonosensitizers for SDT.

To further investigate the synergistic effects of PI-103 
and SDT, HepG2 cells were treated with PI-103 and IR820 
NBs at a concentration ratio of 1:1 and subjected to US 
irradiation for 90 s. The results revealed that PI-103 com-
bined with SDT decreased the cell viability more signifi-
cantly than with SDT alone. Moreover, the CI value of the 
combination of 8 µM PI-103 and 8 µM IR820 NBs was 
equal to 0.18, which indicated the synergistic cytotoxicity 
of PI-103 and SDT to HepG2 cells (Table 1).

PI-103 Enhancement of SDT-Induced Cell 
Apoptosis
To determine a possible correlation between the decrease in 
cell viability and cell apoptosis, HepG2 cells were treated with 
PI-103, SDT, and their combination for 24 h. Subsequently, 
cell apoptosis was accessed by flow cytometry after the double 
staining with Annexin V and 7-AAD. As shown in Figure 5A, 
the IR820 NB-mediated SDT induced noticeable apoptosis in 
HepG2 cells. Comparatively, only 5.17±2.00% and 15.87 
±1.95% apoptotic cells were detected in the control group 
and PI-103 group, respectively. As shown in Figure 5B, the 
combination of PI-103 and SDT increased the number of 
apoptotic cells as compared with those in the other groups 
treated with single agents. After adding PI-103 to SDT, the 
apoptotic rate increased from 53.50±1.83% to 77.37±1.78% (p 
< 0.01), indicating that PI-103 significantly enhanced the SDT- 
induced apoptosis in HepG2 cells.

Effect of Mitochondrial Membrane 
Depolarization on Cell Apoptosis
To evaluate the relationship between the cell apoptosis 
induced by the combined treatment and the mitochon-
drial function, ΔΨm changes for the HepG2 cells stained 
by JC-1 were determined by fluorescence microscopic 
imaging. As shown in Figure 6A, the treated cells in the 
control and PI-103 groups exhibited intense red fluores-
cence, while the SDT-treated cells mainly produced 
green fluorescence. In addition, the combined treatment 

Figure 4 Cytotoxic effect of PI-103 and SDT in HepG2 cells. (A) HepG2 cells were treated with IR820 NBs for 24 h without US irradiation, and cell viabilities were 
analyzed by CCK-8 assay. (B) HepG2 cells were treated with PI-103 (concentration: 0–8 µM) for 24 h, and cell viabilities were analyzed by CCK-8 assay. (C) HepG2 cells 
were treated with IR820 NBs (concentration: 0–8 µM; ultrasound: 1 MHz, 3 W/cm2) for 24 h, and cell viabilities were analyzed by CCK-8 assay. **p<0.01.

Table 1 Synergistic Cytotoxicity of the Combination Treatment 
of PI-103 and SDT in HepG2 Cells

PI-103 SDT PI-103 + SDT

Dose 
(μM)

IR (%) Dose 
(μM)

IR (%) IR (%) CI

0.5 14.3 ± 

1.1

0.5 11.2 ± 

0.5

31.0 ± 

0.2

0.58

1 27.2 ± 

1.0

1 20.1 ± 

0.6

36.3 ± 

0.4

0.87

2 37.1 ± 

1.4

2 31.0 ± 

0.3

68.1 ± 

0.2

0.39

4 45.4 ± 

0.7

4 45.9 ± 

0.6

84.5 ± 

0.5

0.27

6 51.8 ± 

1.2

6 59.4 ± 

0.6

89.3 ± 

0.4

0.26

8 58.1 ± 

0.7

8 74.6 ± 

0.3

94.2 ± 

0.2

0.18

Abbreviations: IR, inhibition rate; CI, combination index.
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further increased the green fluorescence intensity of 
HepG2 cells, indicating a significant loss of ΔΨm. As 
mitochondrial depolarization was demonstrated by the 
decrease in the JC-1 aggregate/monomer ratio,20 the 
loss of ΔΨm was quantified by measuring the average 
fluorescence intensity. After the combined treatment 
with PI-103 and SDT, the JC-1 aggregate within mito-
chondria converted to a monomeric form and signifi-
cantly decreased the aggregate/monomer ratio (Figure 
6B). These data illustrated the involvement of mitochon-
drial membrane depolarization in the cell apoptosis 
induced by the combined treatment.

Suppression of HepG2 Migration Ability
Cell migration is a fundamental function of tumour cell 
metastasis.21 In this study, we evaluated the migration 
of HepG2 cells by the transwell assay to investigate the 
inhibitory effect of the combined treatment on HCC 
metastatic processes. As shown in Figure 7A, the com-
bination of PI-103 and SDT significantly inhibited the 
migration of HepG2 cells. The average number of 
migrated cells in the co-treated group was dramatically 
reduced as compared with those in the single-treated 
groups (P < 0.01, Figure 7B). Hence, the combined 
treatment suppressed the migration ability of HepG2 
cells.

Discussion
Despite the multitude of research studies and clinical trials 
involving HCC treatment, the disadvantages of the cur-
rently used therapies, such as low selectivity and long- 
term adverse effects, require the development of more 
effective therapeutic strategies.22 SDT, a non-invasive US- 
triggered therapeutic approach, has attracted much atten-
tion in the cancer treatment field.23 A previous study 
confirmed that SDT alone or in combination with other 
anticancer agents exhibited a promising anti-HCC 
performance.24 However, the low biocompatibility and 
chemical instability of traditional sonosensitizers limit 
the therapeutic efficacy of SDT and its possible clinical 
applications.25

Recently, nanoparticles with encapsulated therapeutic 
compounds have started playing an important role in antic-
ancer research as they can passively accumulate in malig-
nant lesions due to the enhanced permeability and retention 
effect.26,27 Among these particles, gas-filled NBs are widely 
used as delivery vectors for sonosensitizers because of their 
good biocompatibility.28,29 The IR820 NBs prepared in this 
study had spherical shapes with an average particle size of 
545.5±93.1 nm (Figure 1D). Previous research also showed 
that the NBs encapsulated in sonosensitizers could signifi-
cantly enhance the therapeutic effect of SDT by promoting 
ROS accumulation.30 In the present study, excessive ROS 

Figure 5 PI-103 enhanced SDT induced cell apoptosis. (A) HepG2 cells were treated with PI-103, SDT or both for 24 h, and then stained with Annexin-V and 7-AAD before 
being analyzed by flow cytometry. (B) Statistical results from three independent experiments of cell apoptosis in HepG2 cells. **p<0.01.
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Figure 6 Involvement of mitochondrial membrane depolarization in combination treatment induced apoptosis. (A) Fluorescence microscopic imaging of HepG2 cells 
stained with JC-1 under different treatments. (B) The aggregate/monomer fluorescence intensity ratio of JC-1. **p<0.01.
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production was detected in the HepG2 cells treated with 
IR820 NBs under US irradiation (Figure 3). To the best of 
our knowledge, IR820 has not been previously used as 
a sonosensitizer for SDT. The results of this study con-
firmed that IR820 NBs acted as an efficacious nano- 
sonosensitizer during the SDT treatment of HCC.

ROS generation was found to be the basis of SDT 
therapeutic effects and played an important role in trigger-
ing cell cytotoxicity.31 Previous studies have shown that 
ROS accumulation can induce the mechanical disruption 
of membranes, protein degradation, and DNA fragmenta-
tion in cancer cells.32 The IR820 NBs-mediated SDT in 
this study reduced the cell viability in a dose-dependent 
manner (Figure 4C). Furthermore, ROS accumulation pro-
duced an inhibitory effect on HCC proliferation via the 
PI3K/AKT/mTOR signaling pathway, which was mainly 
activated in advanced HCC due to the poor prognosis of 
patients.33,34

PI-103 is a synthetic small molecule that selectively 
inhibits class I PI3K and mTOR.35 It has been used in 
preclinical studies to demonstrate antiproliferative effects 
against several cancer types.36 As PI-103 was found to be 
potentially usable in combinations with other types of 
anticancer therapies, it was important to develop inhibitor- 
based combined strategies with synergistic treatment 
effects.37 Thus, we investigated the synergistic effects of 
SDT and PI-103 for anti-HCC treatment. As proliferation 

inhibition was examined in vitro, the SDT combined with 
PI-103 produced stronger inhibitory effects than those of 
HCC monotherapy, and the corresponding CI value 
reached 0.18 (Table 1).

A previous study revealed that SDT promoted cell 
apoptosis through the mitochondria-caspase signalling 
pathway and induced the expression of the proapoptotic 
effector Bax.38 In addition, PI-103 was reported to accel-
erate cell apoptosis by promoting Annexin V binding and 
nuclear fragmentation.39 To identify the mechanisms of 
the synergistic inhibition induced by the combined treat-
ment, cell apoptosis was examined by the flow cytometric 
analysis using the PE Annexin V Apoptosis assay. 
Consistent with the previous data, a larger degree of apop-
tosis was obtained for the co-treated HepG2 cells, as 
evidenced by the increase in the apoptosis rate from 
53.50±1.83% to 77.37±1.78% (Figure 5B).

Mitochondria integrated various decisive events of the 
intrinsic apoptotic pathway, and mitochondrial membrane 
depolarization resulting in the loss of ΔΨm confirmed the 
apoptosis in HepG2 cells.40 As the ROS-induced oxidative 
injury destroys the stability of the mitochondrial mem-
brane, cytochrome C is released from mitochondria and 
conjugates the apoptotic protein activator in the cytoplasm, 
leading to the cell apoptosis by proteolysis.41 We also 
investigated the effects of SDT and PI-103 on the damage 
caused to ΔΨm using the JC-1 method. The combined 

Figure 7 Combination treatment suppressed migration viability of HepG2 cells. (A) Transwell assay was performed in HepG2 cells to investigate the inhibitory effect of 
combination treatment on HCC metastatic processes. (B) Quantitation of migrated cell number of HepG2 cells. **p<0.01.
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treatment significantly reduced the JC-1 aggregate-to- 
monomer fluorescence intensity ratio, indicating the loss 
of ΔΨm and mitochondrial dysfunction (Figure 6B). These 
results suggest that the combination of SDT and PI-103 
played a potentially important role in regulating the mito-
chondrial function and inducing apoptosis in HepG2 cells, 
which helped to elucidate the HCC synergistic inhibition 
mechanism.

Because the proliferation and migration of cancer cells 
are strongly related to the oxidative stress and mitochon-
drial function,42 the migration of HepG2 cells was exam-
ined by the transwell assay to investigate the role of the 

combined therapy in regulating HCC metastatic processes. 
As a minimal number of HepG2 cells migrated through the 
lower chamber after the combined treatment, the latter 
significantly inhibited the HepG2 cell migration 
(Figure 7).

The methodology used in the present study also has 
some limitations. First, although the obtained experimental 
results confirmed the synergistic effects of SDT and PI- 
103 on the anti-HCC treatment efficiency, the underlying 
reaction mechanisms have not been fully clarified. Second, 
the combined strategy was applied only to the HepG2 cell 
line, while its effects on other HCC cell lines have not 

Figure 8 Overview of combination treatment of sonodynamic therapy and PI-103 in HCC cells.
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been examined. Future research studies will involve an 
in vivo xenograft model to verify the safety of the pro-
posed method and validate the in vitro results.

Conclusion
The data obtained in the present study not only confirmed 
the possibility of using IR820 NBs as a novel sonosensi-
tizer for SDT, but also suggested new HCC treatment 
strategies. We demonstrated for the first time that SDT 
combined with PI-103 exhibited synergistic inhibitory 
effects on HCC by restricting cell proliferation and migra-
tion and promoting cell apoptosis through the mitochon-
drial pathway (Figure 8). Our findings may help to develop 
new non-invasive cancer treatment approaches with good 
clinical application prospects.
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