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Background: Patients with diabetes have more calcification in atherosclerotic plaque and 
a higher occurrence of secondary cardiovascular events than patients without diabetes. The 
objective of this study was to identify crucial genes involved in the development of diabetic 
atherosclerotic plaque using a bioinformatics approach.
Methods: Microarray dataset GSE118481 was downloaded from the Gene Expression 
Omnibus (GEO) database; the dataset included 6 patients with diabetic atherosclerotic plaque 
(DBT) and 6 nondiabetic patients with atherosclerotic plaque (Ctrl). Differentially expressed 
genes (DEG) between the DBT and Ctrl groups were identified and then subjected to 
functional enrichment analysis. Based on the enriched pathways of DEGs, diabetic athero-
sclerotic plaque-related pathways were screened using the comparative toxicogenomics 
database (CTD). We then constructed a protein–protein interaction (PPI) network and 
transcription factor (TF)–miRNA–mRNA network.
Results: A total of 243 DEGs were obtained in the DBT group compared with the Ctrl 
group, including 85 up-regulated and 158 down-regulated DEGs. Functional enrichment 
analysis showed that up-regulated DEGs were mainly enriched in isoprenoid metabolic 
process, DNA-binding TF activity, and response to virus. Additionally, DEGs participating 
in the toll-like receptor signaling pathway were closely related to diabetes, carotid stenosis, 
and insulin resistance. The TF–miRNA–mRNA network showed that toll-like receptor 4 
(TLR4), BCL2-like 11 (BCL2L11), and glutamate-cysteine ligase catalytic subunit (GCLC) 
were hub genes. Furthermore, TLR4 was regulated by TF signal transducer and activator of 
transcription 6 (STAT6); BCL2L11 was targeted by hsa-miR-24-3p; and GCLC was regulated 
by nuclear factor, erythroid 2 like 2 (NFE2L2).
Conclusion: Identification of hub genes and pathways increased our understanding of the 
molecular mechanisms underlying the atherosclerotic plaque in patients with or without 
diabetes. These crucial genes (TLR4, BC2L11, and GCLC) might function as molecular 
biomarkers for diabetic atherosclerotic plaque.
Keywords: diabetes, atherosclerotic plaque, differentially expressed genes, bioinformatics 
analysis

Introduction
Atherosclerosis is a chronic inflammation disease and the leading cause of morbid-
ity and mortality globally.1 Atherosclerosis is a slowly progressive process, char-
acterized by an accumulation of lipid in the arterial wall accompanied by multifocal 
structural alterations, leading to atheromatous plaque formation.2,3 Over time, the 
large necrotic lipid core is covered by a fibrous cap until, in advanced stages, the 
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stability of the cap is destroyed, inducing plaque rupture 
and thrombosis, which can manifest as stroke or myocar-
dial infarction. Cardiovascular disease is the leading cause 
of death in patients with diabetes.4 There is increasing 
evidence that diabetes induces hypercoagulability, which 
has a role in plaque rupture and increases the incidence 
and severity of clinical events.4

Previous researchers have reported the relationship 
between plaque characteristics and patients with and 
without diabetes. Burke et al indicated that total plaque 
in diabetic patients was significantly greater than that of 
nondiabetic individuals; in addition, the inflammatory 
response of diabetic plaques was stronger than that of 
nondiabetic plaque.5 An optical coherence tomography 
imaging study by Kato et al revealed that plaques in 
diabetic patients had a higher incidence of calcification 
and thrombus.6 Furthermore, van Haelst et al found that 
patients with diabetes had more calcification in athero-
sclerotic plaque and a higher occurrence of secondary 
cardiovascular events than patients without diabetes.7 

Even though we can distinguish atherosclerotic plaque 
in diabetic and nondiabetic patients from morphologic 
fields, the effect of diabetes on gene expression in ather-
osclerotic plaque is not fully understood.

Macrophage accumulation plays a vital role in both plaque 
progression and stability, which can promote inflammation 
and aggravate disease.8,9 Thus, we selected a gene expression 
dataset (GSE118481) containing diabetic plaque macrophage 
(DBT) and nondiabetic plaque macrophage (Ctrl) for analysis. 
Differentially expressed genes (DEGs) between the DBT and 
Ctrl groups were identified, functional enrichment analysis of 
the DEGs was performed, and disease-related pathways were 
screened. We then constructed a protein–protein interaction 
(PPI) network and sub-network. Subsequently, microRNA 
(miRNA) and transcription factors (TFs) of DEGs were pre-
dicted and an integrated TF–miRNA–mRNA network was 
constructed. The analysis process of this study is shown in 
Supplementary Figure 1. We aimed to further understand the 
molecular mechanism by which diabetes promotes the forma-
tion of atherosclerotic plaque and to determine potential gene 
targets for personalized diagnosis and treatment strategies of 
diabetic atherosclerotic plaque.

Materials and Methods
Data Sources
The gene expression profile GSE118481 based on the 
GPL10558 Illumina HumanHT-12 V4.0 expression 

BeadChip platform was downloaded from the Gene 
Expression Omnibus (GEO) database (website: http:// 
www.ncbi.nlm.nih.gov/geo/).10 This microarray data set 
included 16 nondiabetic samples (6 asymptomatic and 10 
symptomatic) and 8 diabetic plaque samples (6 asympto-
matic and 2 symptomatic). In order to study the effect of 
diabetes on atherosclerotic plaque, we selected asympto-
matic samples for subsequent analysis. Therefore, 12 sam-
ples (6 DBT and 6 Ctrl) were included, and the clinical 
characteristics of these patients are listed in 
Supplementary Table 1. There were no significant differ-
ences in age (P = 0.24) and sex (P > 0.05) between the two 
groups.

Data Preprocessing and Identification of 
DEGs
The series matrix file for GSE118481 dataset was obtained 
from the GEO database,10 and the expression data of 6 
DBT and 6 Ctrl macrophage samples were extracted for 
further analysis. Microarray expression profiling was stan-
dardized by Bioconductor bead array package,11 and the 
distribution of expression in each sample was visualized 
by boxplots. The probe ID was converted to a gene symbol 
using the annotation file, and probes that did not mapped 
to gene symbols were removed. If multiple probes 
matched the same gene, the mean value of probes was 
calculated. Empirical Bayes moderated t-test in the limma 
package (version 3.40.6)12 was used to identify DEGs 
between DBT and Ctrl samples. DEGs with P < 0.05 and 
|log fold change (FC)| >0.585 were considered statistically 
significant. The ggplot2 and heatmap of R (http://www. 
R-project.org/) were utilized to visualize the DEGs.

Disease-Related Co-Expression Network 
Analysis
Using Pearson correlation coefficients (r) in the stats of 
R package (version 3.6.1; http://www.R-project.org/), the 
co-expression of DEGs in DBT and Ctrl samples was, 
respectively, analyzed. Pairs with r > 0.95 and P < 0.05 
were selected for further study. Cytoscape was applied to 
construct a co-expression network of Ctrl and DBT groups, 
and then the topological properties of the two networks were 
analyzed by using CytoNCA in Cytoscape.13 Furthermore, 
t-tests were used to calculate the difference between Ctrl and 
DBT networks. The sub-networks of DBT group were struc-
tured using the Cytoscape MCODE plugin,14 and networks 
with a score >3 were selected.
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Functional Enrichment Analysis of DEGs
To understand the major biological functions of DEGs, we 
analyzed Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways of up- and down- 
regulated DEGs using the clusterProfiler package. Significant 
enrichment was defined by P < 0.05 and count >2.

Disease-Related Pathway Screening
Diabetes, carotid stenosis, and insulin resistance have 
effects on the development of diabetic atherosclerotic pla-
que. Therefore, to further identify diabetic plaque-related 
pathways, we screened pathways relevant to these diseases 
from the comparative toxicogenomics database (CTD), 
and these pathways were integrated with the KEGG path-
ways in the previous step.

PPI Network Construction
To determine the relationships among DEGs, we mapped the 
DEGs to the Search Tool for the Retrieval of Interacting 
Genes (STRING, version 11.0, http://www.string-db.org/) 
database, and only interactions with a combined score >0.7 
were selected. Then, Cytoscape software was used to estab-
lish the PPI network, and hub nodes in the network were 
identified by CytoNCA. The PPI network was further ana-
lyzed by MCODE to explore functional modules, and score 
>5 was selected as the threshold.

TF–miRNA–mRNA Regulatory Network 
Analysis
To further understand the regulatory mechanism of DEGs, 
miRNAs of target genes were predicted using four available 
databases: miRWalk3.0,15 TargetScan,16 MiRDB,17 and 
MirTarBase.18 Putative miRNAs with score >0.95 and sup-
ported by at least two databases were selected; additionally, 
TF–target interactions were predicted by Transcriptional 
Regulatory Relationships Unraveled by Sentence-based Text 
mining (TRRUST) (https://www.grnpedia.org/trrust/).19 

Subsequently, miRNA–target pairs and TF–target pairs were 
integrated to construct the TF–miRNA–mRNA regulatory 
network.

Results
Identification and Analysis of DEGs
The raw data were processed and the boxplots showed 
good normalized properties (Figure 1A). A total of 
33,984 probes were obtained after annotation. A total of 
243 DEGs were identified between the DBT and Ctrl 

groups, including 85 up-regulated and 158 down- 
regulated DEGs. The heat map and volcano plot of 
DEGs are shown in Figure 1B and C.

Disease-Related Co-Expression Network 
Analysis
Co-expression network analysis showed that 144 pairs and 
162 DEGs were identified in the Ctrl group (Figure 2A), 
and 191 relationships and 170 DEGs were screened in the 
DBT group (Figure 2B). The topological properties of the 
Ctrl and DBT networks indicated that betweenness, close-
ness, and degree values were significantly higher in the 
DBT group than in the Ctrl group (Figure 2C), suggesting 
that co-expression of DEGs was more abundant in the 
DBT group than in the Ctrl group. The sub-network 
(score = 3.333) of the DBT group was constructed and 
included serine/threonine kinase 32B (STK32B), tripartite 
motif containing 22 (TRIM22), ninjurin 2 (NINJ2), and 
transmembrane protein 114 (TME114) (Figure 2D).

Functional Enrichment Analysis
Functional enrichment analysis of up-regulated and down- 
regulated DEGs was performed using the clusterProfiler tool. 
The top 10 significantly enriched GO terms and KEGG path-
ways are shown in Figure 3A and B. The up-regulated DEGs 
were significantly enriched in GO terms related to isoprenoid 
metabolic process, response to estradiol, and retinal metabolic 
process, and the down-regulated DEGs were markedly asso-
ciated with regulation of DNA-binding TF activity, alpha- 
amino metabolic process, and response to virus (Figure 3A). 
For the KEGG pathway analysis, up-regulated DEGs were 
primarily involved in adipocytokine signaling pathway, 
cosphingolipid biosynthesis-lacto and neolacto series, and 
non-alcoholic fatty liver disease; in addition, down- 
regulated DEGs were mainly involved in folate biosynthesis, 
cysteine and methionine metabolism, and Chagas disease 
(American trypanosomiasis) pathways (Figure 3B).

Disease-Related Pathway Analysis
A total of 13 pathways were closely related to diabetes melli-
tus, one pathway was associated with carotid stenosis, and 10 
pathways were associated with insulin resistance (Table 1). All 
three of these diseases were relevant to the toll-like receptor 
signaling pathway. Genes such as toll-like receptor 8 (TLR8), 
toll-like receptor 4 (TLR4), mitogen-activated protein kinase 4 
(MAP2K4), and interferon regulatory factor 5 (IRF5) were 
involved in this pathway. In addition, 10 pathways were 
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related to diabetes mellitus and insulin resistance, including 
acute myeloid leukemia, influenza A, non-alcoholic fatty liver 
disease (NAFLD), and adipocytokine signaling.

PPI Network and Module Screening in 
DBT
The 225 proteins encoded by DEGs were searched in the 
STRING database and then used to construct the PPI network, 
which included 76 nodes and 114 pairs of edges (Figure 4A). 
Among these, several nodes with a higher degree [2′-5′- 
oligoadenylate synthetase 2 (OAS2, degree = 15), IRF5 
(degree = 11), guanylate binding protein 1 (GBP1, degree = 
11), and interferon-induced protein with tetratricopeptide 
repeats 3 (IFIT3, degree = 11)] could be considered hub 
proteins. Additionally, a module with score >5 was identified 
using the MCODE plugin. This sub-network was composed of 
12 nodes and 43 pairs (Figure 4B). OAS2 (degree = 5), radical 
s-adenosyl methionine domain containing 2 (RSAD2, degree 
= 6), and eukaryotic translation initiation factor 2 alpha kinase 
2 (EIF2AK2, degree = 5) were involved in diabetes and insulin 
resistance-related pathways.

TF–miRNA–mRNA Regulatory Network 
Analysis
After screening, 102 miRNA–mRNA pairs and 114 TF- 
mRNA pairs were predicted, and then these pairs were 
integrated to structure a TF–miRNA–mRNA regulatory 
network. A total of 154 interactions were identified, invol-
ving 57 genes, 30 miRNA, and 75 TFs (Figure 5). In this 
regulatory network, we noted glutamate-cysteine ligase 
catalytic subunit (GCLC), BCL2 like 11 (BCL2L11), and 
TLR4 had higher degrees. GCLC was targeted by the TF 
nuclear factor, erythroid 2 like 2 (NFE2L2); BCL2L11 was 
targeted by hsa-miR-24-3p, and regulated by TF forkhead 
box O3 (FOXO3), and TLR4 was related to the process of 
three diseases and regulated by TF signal transducer and 
activator of transcription 6 (STAT6).

Discussion
Diabetes is known to be associated with atherosclerotic 
plaque; however, the underlying molecular mechanism of 
the effect of diabetes on atherosclerotic plaque has not 
been fully elucidated. We analyzed gene expression 

Figure 1 Gene expression profile data analysis. (A) Boxplot of gene expression data after normalization. (B) Heat map of DEGs between Ctrl and DBT groups; green 
indicates Ctrl group and red indicates DBT group. (C) Volcano plot of DEGs between Ctrl and DBT groups.
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patterns involved in diabetic atherosclerotic plaque using 
the dataset GSE118481. The results revealed that the toll- 
like receptor signaling pathway was associated with the 
pathogenesis of diabetic atherosclerotic plaque. 
Additionally, TLR4, BCL2L11, and GCLC were potential 
biomarkers for atherosclerotic plaque in patients with 
diabetes.

The formation and progression of atherosclerotic plaque 
is related to the accumulation of monocyte-derived macro-
phage in the arterial wall. Compared with patients without 
diabetes, the plaques in the coronary arteries of patients 
with diabetes gene generally exhibit larger necrotic cores 
and significantly greater inflammation, mainly composed of 
macrophages and T lymphocytes.20 Based on analysis of 
disease-related pathways, we observed that the toll-like 
receptor signaling pathway was significantly associated 
with diabetes mellitus, carotid stenosis, and insulin resis-
tance; additionally, hub gene TLR4 was involved in this 
pathway. Madhur et al21 indicated that inflammation 
response could reduce the stability of atherosclerotic pla-
ques in animal models. It is reported that the TLR signaling 
pathway is associated with systemic inflammation and 
immune response, and participates in angiogenesis, survi-
val, and repair.22,23 Meanwhile, TLR4, as a member of the 
TLR family, is believed to activate nuclear factor-κB in 

response to short-chain fatty acids, triggering further acti-
vation of the immune system.24 Thus, TLR4 induced inflam-
mation plays an important role in atherosclerotic plaque 
stability. Xu et al demonstrated that TLR4 was preferentially 
expressed by macrophages in human lipid-rich athero-
sclerotic lesions, where it might play a role to enhance and 
maintain the innate immunity and inflammation. In addi-
tion, the up-regulation of TLR4 in macrophages by oxidized 
low-density lipoprotein (LDL) suggested that TLR4 might 
provide a potential pathophysiological link between lipids 
as well as inflammation and atherosclerosis.25 In this ana-
lysis, we also found the relationship between TLR4 and 
diabetes. Devaraj et al demonstrated that expression of 
TLR4 was significantly increased in patients with type 1 
diabetes, suggesting that TLR4 contributes to the pro- 
inflammatory state in diabetes.26 Moreover, knockout of 
TLR4 might alleviate inflammation in diabetic rats27 and 
TLR4 antagonist could attenuate atherogenesis in mice with 
diabetes.28 The antidiabetic drug class thiazolidinediones 
(TZDs) have been reported to reduce the risk of athero-
sclerosis in patients with type 2 diabetes, which might have 
an anti-atherosclerotic effect by inhibiting the TLR4 signal-
ing pathway.29 These findings emphasized the importance 
of TLR4 in plaque formation of patients with diabetes. In the 
present study, we found that TLR4 was regulated by the TF 

Figure 2 Disease-related co-expression network. (A) Co-expression network of Ctrl group. (B) Co-expression network of DBT group. (C) Topology properties of Ctrl 
and DBT group co-expression network. (D) Sub-network of DBT group. Red nodes indicate up-regulated DEGs, blue nodes indicate down-regulated DEGs, red lines 
represent positive correlation, and blue lines represent negative correlation. *Indicates the average of the data in each group.
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STAT6. STAT6 has a major role in the immune system30 

and is associated with macrophage polarization, which is 
critically involved in atherosclerosis progression and 
regression.31 Based on our results, we speculated that 
TLR4 and STAT6 might participate in the pathogenesis of 
diabetic atherosclerotic plaque via the TLR signaling 
pathway.

In the regulatory network, BCL2L11 had higher 
degree and was considered a hub gene. BCL2L11 
encodes BCL-2 protein family, and its members parti-
cipate in various cellular activities as anti- or proapop-
totic regulators.32 A previous study revealed that 
BCL2L11 was connected to apoptosis of podocytes in 
diabetes.33 However, there are few reports about the 

Figure 3 Functional enrichment analysis of DEGs. (A) GO analysis of the DEGs. (B) KEGG pathway analysis of the DEGs. The y-axis represents the GO terms or KEGG 
pathways, and the x-axis represents up-regulated and down-regulated DEGs. The size of bubbles represents the number of assigned genes, and the color of bubbles 
represents the adjusted P-value. The greater the number of DEGs associated with the term or pathway, the larger the bubble.

Table 1 Disease-Related Pathways Analysis

Cluster ID Description Gene_Symbol CTD

UP_DEG hsa03018 RNA degradation ENO2/BTG3 Diabetes mellitus

DOWN_DEG hsa00830 Retinol metabolism DHRS4L1/ALDH1A1/DHRS4L2 Diabetes mellitus

DOWN_DEG hsa00270 Cysteine and methionine metabolism GOT1/APIP/GCLC Diabetes mellitus

DOWN_DEG hsa04620 Toll-like receptor signaling pathway TLR8/TLR4/MAP2K4/IRF5 Diabetes mellitus/carotid stenosis/insulin resistance

DOWN_DEG hsa05221 Acute myeloid leukemia MPO/PML/ZBTB16 Diabetes mellitus/insulin resistance

DOWN_DEG hsa05164 Influenza A RSAD2/TLR4/EIF2AK2/OAS2/PML Diabetes mellitus/insulin resistance

DOWN_DEG hsa05142 Chagas disease (American trypanosomiasis) TLR4/C3/C1QC/MAP2K4 Diabetes mellitus/insulin resistance

DOWN_DEG hsa05133 Pertussis TLR4/C3/C1QC Diabetes mellitus/insulin resistance

DOWN_DEG hsa05020 Prion diseases C1QC/PRKACB Diabetes mellitus/insulin resistance

UP_DEG hsa04932 Non-alcoholic fatty liver disease (NAFLD) LEPR/BCL2L11/PRKAG2 Diabetes mellitus/insulin resistance

UP_DEG hsa04920 Adipocytokine signaling pathway LEPR/ACSL4/PRKAG2 Diabetes mellitus/insulin resistance

DOWN_DEG hsa01523 Antifolate resistance SHMT1/ABCC1 Diabetes mellitus/insulin resistance

DOWN_DEG hsa00562 Inositol phosphate metabolism ITPKC/OCRL/PIP4K2C Diabetes mellitus/insulin resistance

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                          

Pharmacogenomics and Personalized Medicine 2021:14 216

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


association between BCL2L11 and carotid plaque. Our 
analysis showed that BCL2L11 was targeted by hsa- 
miR-24-3p. Erener et al observed that miR-24-3p was 
an effective biomarker to predict and diagnose 
diabetes.34 Moreover, miR-24-3p was found to limit 
macrophage vascular inflammation and slow the pro-
gression of atherosclerotic plaque.35 Taken together, 
hsa-miR-24-3p might affect the progression of diabetic 
atherosclerotic plaque by directly targeting BCL2L11. 
However, the specific regulatory mechanism of 
BCL2L11 in diabetic atherosclerotic plaque needs 
further elaboration.

We also found that GCLC was closely related to dia-
betic atherosclerotic plaque. GCLC is a rate-limiting 
enzyme of glutathione synthesis, and it is involved in 
susceptibility to myocardial infarction.36 Callegari et al 
found that the gain and loss of the ability to synthesize 
glutathione especially in macrophages had reciprocal 
effects on the initiation and progression of atherosclerosis 
at multiple sites in apoE-/- mice.37 Jain et al reported that 
the plasma level of GCLC was lower in diabetic patients 
than in healthy controls.38 Moreover, the GCLC poly-
morphism was associated with cellular redox imbalances 
and modulate the risk for diabetic nephropathy.39 In the 

Figure 4 PPI network. (A) PPI network composed of 76 nodes and 114 edges. (B) Sub-network consisted of 12 nodes and 43 pairs. Triangle indicates up-regulated DEG, 
V-shape indicates down-regulated DEGs. Blue represent genes not involved in diseases-related pathways, yellow represent genes involved in diabetes-related pathways, green 
indicate genes enriched in diabetes and insulin resistance pathways, and red indicates genes participated in diabetes, insulin resistance, and plaque pathways.

Figure 5 The TF–miRNA–mRNA regulatory network. Red nodes represent up-regulated DEGs, blue nodes represent down-regulated DEGs, green triangles represent 
miRNAs, green diamonds represent TF, and blue and red diamonds represent both TF and DEGs. Red lines indicate activation relationships and blue lines indicate inhibitory 
relationships. 
Abbreviations: TF, transcription factor; miRNA, microRNA; mRNA, messenger RNA; DEG, differentially expressed gene.
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TF–miRNA–mRNA network, GCLC was regulated by 
NFE2L2 (also known as NRF2), which is considered to 
be a master regulator of the antioxidant response.40 It 
regulates the expression of several genes including Phase 
II metabolic and antioxidant enzymes, and therefore plays 
an important role in preventing oxidative stress-mediated 
diabetes and related complications.41 In addition, overex-
pression of Nrf2 could protect pancreatic cells from oxi-
dative damage in diabetes.42 Furthermore, a study by 
Harada et al revealed that activation of Nrf2 was observed 
in advanced atherosclerotic plaques, suggesting that Nrf2 
might influence the inflammatory reactions in the 
plaques.43 Thus, we speculated that GCLC targeted by 
NFE2L2 might participate in the pathogenesis of diabetic 
atherosclerotic plaque.

Some limitations should be noted in the current study. 
First, the sample size of this study was small; further 
investigations based on a larger sample should be per-
formed. Second, hub genes were identified using bioinfor-
matics analysis; thus, experimental studies are needed to 
validate our results. Despite these limitations, this study 
provided some new insights into the pathogenesis and 
treatment of diabetic atherosclerotic plaques. Further 
large-scale studies are needed to corroborate these findings 
and investigate the potential underlying mechanisms 
involved. Meanwhile, clinical trials with more detailed 
investigation are also warranted before genes such as 
TLR4, BCL2L11, GCLC can be used in clinical setting.

Conclusion
In summary, we have conducted a comprehensive bioin-
formatics analysis of DEGs between diabetic and nondia-
betic atherosclerotic plaque. Several genes have been 
identified with different expression patterns in diabetic 
and non-diabetic atherosclerotic plaque, such as TLR4, 
BCL2L11, GCLC, STAT6, and NFE2L2, as well as hsa- 
miR-24-3p. Meanwhile, pathway analysis showed that 
these genes were involved in the toll-like receptor signal-
ing pathway. These findings provided better understanding 
of the underlying molecular mechanisms of diabetic ather-
osclerotic plaque. However, further research of these can-
didate genes was needed to confirm their effects in diabetic 
atherosclerotic plaque.
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