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Purpose: Biomimetic approaches for the synthesis of silver nanoparticles (AgNPs) had 
created a substantial impression among the research community that focuses on nano-bio 
interactions. In this study, an eco-friendly method using Rhizophora apiculata aqueous leaf 
extract as a reductant-rich hydrosol was followed to synthesize AgNPs and test its 
cytotoxicity.
Methods: To optimise the parameters for the synthesis of AgNPs, central composite design 
based on response surface methodology was used. The particles synthesized at a nano-scale 
were characterized in our previously published report. The present report further charac-
terizes the nanoparticles by X-ray diffraction, SEM and TEM at varying sites and magnifica-
tions. The characterized AgNPs were tested for their cytotoxic effects on HEK-293 and HeLa 
cells.
Results: The cytotoxicity on the cell lines was dose-dependent. At a concentration of 2.5 
μL/mL of the AgNPs-containing hydrosol, 100% inhibition of HEK-293 cells and 75% 
inhibition of the HeLa cells were observed. The IC50 value for AgNPs on HEK-293 was 
0.622 µL/mL (12.135 ng), whereas, for HeLa cells, it was 1.98 µL/mL (38.629 ng).
Conclusion: The nanoparticles were three-fold toxic towards the HEK-293 cells in compar-
ison to the HeLa cells. Therefore, the therapeutic index is low for R. apiculata derived 
AgNPs on HeLa cells when tested in comparison with the HEK-293 cells. The nanotoxicity 
profile of the synthesized AgNPs seems more prominent than the nanotherapeutic index. 
According to our knowledge, this is the first-ever report on the optimization of synthesis of 
AgNPs using response surface methodology and identifying the therapeutic index of man-
grove leaf-derived AgNPs.
Keywords: AgNPs, XRD, HEK-293, HeLa, nanotoxicity

Introduction
Nanoparticles are usually synthesized using two approaches: top-down and bottom- 
up. Physical methods break particles from bulk to fine forms by a top-down 
approach. Biological and chemical methods build particles from the bottom-up. 
The atoms self-assemble into nuclei which later lead to the formation of particles in 
the size of the nanometer via covalent or supramolecular contact.1,2 Green 
approaches for the synthesis of AgNPs using different sources such as plants are 
a blooming area of research because of their antioxidant and the resultant cytotoxic 
effects.3–5 Since plants are a rich source of secondary metabolites that can act as 
reductants and capping agents, the advantages of biological synthesis are 
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numerous.6 The mechanism of nanoparticle synthesis 
using plants has been elucidated by several reports. The 
metal ions interact with the phytochemicals of the plant 
which eventually reduce the metal ions. The reduced ions 
nucleate and combine to form larger materials from tiny- 
sized ones by Ostwald ripening. Later, the particles inte-
grate to form a definite and final shape.7

Although the advantages of nanomedicine appear 
plenty, risk assessment and analysis of the exposure of 
these particles obtained using rapid synthesis procedures 
towards normal or cancer cells are critical at specific doses 
for enhanced applications in nanomedicine.8,9 The toxicity 
assessment for health hazards of AgNPs is still in its 
infancy although their role in nanomedicine is well 
known.10–12 Few reports indicate both local and systemic 
toxicity of AgNPs, with mechanisms that relate to toxicity 
at genome levels, induction of immune cells, and oxidative 
stress. Various modes of exposure can lead to size, dose 
and encapsulation-dependent cellular uptake of AgNPs. 
Further enduring studies using several models can indicate 
the specific modes of toxicity.13–16

Human embryonic kidney 293 (HEK-293) cells are one 
among the widely used standards for normal human cells. 
It is believed to be derived from embryonic kidney cells 
using adenoviral DNA in the 1970s.17 Nanoparticles, espe-
cially nanosilver, are known to be toxic to HEK-293 and 
other cell lines which are considered to be normal.18–20 

HeLa is the first immortalised human cervical adenocarci-
noma cell line to be cultured in vitro in 1951 and stabilised 
in 1953 at Johns Hopkins Hospital in Baltimore, 
Maryland, US. It is a key cell line that revolutionised 
cancer research by accounting for more than sixteen thou-
sand scientific publications related to oncology.21

MTT assay, which is a widely applied or standard 
method to elucidate the cytotoxic potential of agents at 
the preclinical level, was used to determine the dose 
related to cell death.22 In pharmacology, half-maximal 
inhibitory concentration (IC50) is a determinant of how 
potent an antagonistic drug is.23 AgNPs are well known 
for their cytotoxicity on cancer cells, with a special men-
tion to HeLa cells.24,25 Therefore, MTT assay was used in 
this study to determine the IC50 value which is a measure 
of the efficacy of the tested material.

With this background, the present research intends to test 
the nanotoxic effects of AgNPs synthesized using the leaf 
extract of R. apiculata. This intention is the basis for recog-
nizing the therapeutic index of such particles in normal and 
malignant cell lines for applications at the nanoscale. 

According to the knowledge of the authors, this is the first- 
ever international report to optimize the synthesis of AgNPs 
using response surface methodology (RSM) and to identify 
the therapeutic index of mangrove tree leaf-derived AgNPs 
towards HeLa cells in comparison with HEK-293 cells.

Materials and Methods
Synthesis of AgNPs
One gram of R. apiculata leaf powder was dissolved in 
100 mL of Millipore water and incubated at 60 °C for 5 
minutes. Five millilitres of the resultant aqueous extract 
was mixed with 95 mL of 1 mM aqueous AgNO3 solution 
and incubated at varying temperatures from 30 °C to 
95 °C. After visual observation of colour change to 
brown, the hydrosol was centrifuged at 10,000 rpm for 
20 minutes at 4 °C to derive a pellet that contains AgNPs. 
The synthesis is performed similarly to the method fol-
lowed by Song and Kim et al with slight modifications.26

Characterization of AgNPs
The synthesized nanoparticles were characterized by our 
previous reports using spectroscopic techniques such as 
ultraviolet-visible, X-ray photoelectron and fourier- 
transform infrared spectroscopy. Transmission (TEM) 
and scanning (SEM) electron microscopes were used to 
determine the morphology of AgNPs. Techniques such as 
energy dispersive X-ray analysis and inductively coupled 
plasma-optical emission spectrometry (ICP-OES) were 
used for establishing the elemental composition. Zeta 
potential, particle size and polydispersity index were deter-
mined using dynamic light scattering.27–30 The nanoparti-
cles were further characterized by X-ray diffraction (XRD) 
analysis using PANalytical X’Pert3 Powder instrument 
(Malvern Panalytical Inc., Westborough, MA, USA) in 
this study. SEM and TEM observations were made at 
different sites and magnifications in comparison to our 
published report and presented here.

Cytotoxicity of AgNPs
The cell lines were purchased from National Centre for Cell 
Science (NCCS), Pune and used for the study. To validate 
the use of AgNPs for biomedical applications, toxicity 
assessment against normal HEK-293 and human cervical 
cancer cell line HeLa was performed, in the present report, 
in triplicate. Minimum Essential medium-Eagle supplemen-
ted with 10% fetal bovine serum was used for maintaining 
the cells at 37 °C, 5% CO2, 95% air and 100% relative 
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humidity. One hundred microlitres of the cell suspension 
was implanted at a concentration of 10,000 cells in every 
well and incubated for 24 hours. After incubation, the med-
ium seeded with HEK-293 and HeLa cells were treated with 
different concentrations of the AgNPs-containing hydrosol 
(0.005 to 2.5 µL/mL). After 48 hours of treatment, the cells 
were washed and the rate of cellular proliferation was deter-
mined by observation through an inverted microscope. 
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay was performed and the percentage of 
cell inhibition was calculated using the following formula:

% cell inhibition = 100 - Abs (Test)/Abs (Control) 
x 100

Cell viability was plotted in relation to logarithmic 
concentrations of AgNPs and IC50 was determined using 
GraphPad Prism software (Version 6.01).31,32

Data Analysis
The Central composite design (CCD) based on RSM was 
applied for the study. The optimum responses were calculated 

and the Design-Expert software Version 13 (State-Ease Inc., 
Minneapolis, MN, USA) was used to interpret the results.

Results and Discussion
Regression analysis is a widely used statistical technique 
that employs models such as Langmuir.33–35 According to 
the statistical analysis, the Model F-value of 3.18 indicates 
that the model is significant. The F-value indicates that there 
is an extremely low chance (4.28%) of this phenomenon 
occurring as a resultant of noise. The Adeq Precision indi-
cates a signal-to-noise ratio of 8.067. A ratio larger than 4 is 
usually desired. Therefore, the ratio observed in this study 
seems adequate to navigate the design space.36,37 The R2 

value near to 1 determines an ideal connection between the 
mean and the data.38 The R2 value obtained in this study 
(0.7413) correlates to this connection better. The mean of 
surface plasmon resonance (SPR) of AgNPs in this study 
(429.45 nm) was in the range of 410 to 450 nm indicating 
spherical nanoparticles of sizes less than 100 nm that are 
effectively cytotoxic in comparison to microparticles (Figure 
1, Tables 1 and 2).39,40

Figure 1 Response surface plots and contour plots for the synthesized AgNPs.
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The examination of the structure and crystalline size of 
the biosynthesized AgNPs was performed using XRD. The 
pattern indicates diffraction peaks at (2ɵ) 32.19º, 38.07º, 
44.25º, 64.43º and 77.38º. The peaks could be allocated to 
the (122), (111), (200), (220), and (311) typical planes of 
face-centered, cubic, and crystalline silver synthesized 
using green methods (JCPDS file number: 04–0783). The 
average crystalline size of the AgNPs was calculated using 
the Debye–Scherrer’s equation: D = Kλ/β cosɵ. K is 
equivalent to 0.94, whereas, λ is equivalent to 1.54178. β 
is the line broadening in radians and θ is the Bragg’s angle. 
According to Bragg’s reflection, the estimated average size 
of the particles was 31.12 nm. The broadening of Bragg’s 
peaks positioned specifies the formation of smaller sized 
nanoparticles. The unassigned peaks could be correlated to 
the existence of phytoconstituents41–44 (Figure 2). SEM 
and TEM are electron microscopic techniques used to 
study the morphology of nanomaterials at various 
magnifications.45,46 The representative images are pre-
sented in Figure 3A–D.

Chemotherapeutic drugs lack the capacity to segre-
gate normal forms from cells that are malignant.47 

Hence, particles are being fabricated at the nano-regime 

to specifically target cancer cells with limited toxicity. 
Such medical systems that can deter the harmful after- 
effects of conventional therapeutic methods are being 
approved for clinical practice recently. These nanoparti-
cles can enter the tumor microenvironment efficiently 
and inhibit the cancer cells with the ability to metasta-
size, from spreading to other sites.48–51 Therapeutic 
index is the measurement or comparison of the ratio of 
inhibition of normal and cancer cells by any medication. 
This can lead to the identification of a safety window 
intended for the treatment of neoplasms.52 Consequently, 
assessment of toxicity on various types of cells is 
a critical point to warrant the safety of such nano- 
carriers.53,54 Toxicity associated with kidneys is usually 
tested to identify a drug as they determine the 

Table 1 ANOVA, Lack of Fit Test and the Significance of Response Surface Model for the Synthesized AgNPs Using CCD

Source Sum of Squares df Mean Square F-value p-value

Model 656.59 9 72.95 3.18 0.0428 Significant
A-AgNO3 (mM) 4.69 1 4.69 0.2047 0.6606

B-Leaf conc (%) 215.57 1 215.57 9.41 0.0119

C-Temp (◦ C) 45.84 1 45.84 2.00 0.1877
AB 70.45 1 70.45 3.07 0.1101

AC 18.42 1 18.42 0.8038 0.3910

BC 44.94 1 44.94 1.96 0.1917
A2 0.0799 1 0.0799 0.0035 0.9541

B2 13.18 1 13.18 0.5752 0.4657
C2 183.58 1 183.58 8.01 0.0178

Residual 229.19 10 22.92

Lack of Fit 229.19 5 45.84
Pure Error 0.0000 5 0.0000

Cor Total 885.78 19

Table 2 Regression Analysis for the Synthesized AgNPs Using 
CCD

Std. Dev. 4.79 R2 0.7413

Mean 429.45 Adjusted R2 0.5084

C.V. % 1.11 Predicted R2 −1.4496

Adeq Precision 8.0669

Figure 2 XRD pattern of the synthesized nanoparticles.
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homeostasis of the body.55 Assessment of toxicity to 
kidneys is critical in clinical practice.56 Therefore, 
HEK-293 cells were chosen for this study with regard 
to the identification of nanotoxicity.

AgNPs are renowned for their biomedical 
applications.57 Yet, extensive exposure to AgNPs can 
cause systemic nanotoxic effects including argyria in 
humans and intensify the hostile effects towards his 
environment.58–60 Supportive of the aforementioned prop-
erties, AgNPs are known to be cytotoxic and genotoxic 
towards normal cells like HEK-293. Although its origin is 
still unclear, this normal cell line is used in various biolo-
gical experiments. The purpose of these trials is to identify 
the toxicity profile and therapeutic effects with an inten-
tion of screening a drug.61–63 Therefore, we analysed the 

cytotoxicity of AgNPs on normal HEK-293 and HeLa 
cells, in order to indicate its therapeutic window. As an 
initial analysis, microscopic observations indicated the 
annihilating effect of AgNPs towards HEK-293 and 
HeLa cells (Figure 4A and B).

Nanotoxicity of AgNPs is dependent on quite a lot of 
characteristics such as size, surface, shape, agglomeration, 
dose and route of administration. Dose determination of an 
anticancer drug is very critical and foremost for formulating 
therapeutic strategies. This is due to the fact that an increased 
dose can cause a decline in the antitumor effect and an upsurge 
in unintended toxicity. Observations from cytotoxicity experi-
ments indicate that 0.4 μg/mL is the minimal IC50 value for 
AgNPs among cell lines which are considered to be normal. 
The highest value analysed was 250 μg/mL. Twenty-five ppm 

Figure 3 Electron microscopic images of the synthesized AgNPs (A) SEM image taken at 0.2 μm (B) SEM image taken at 0.5 μm (C) SEM image taken at 1 μm (D) TEM 
image taken at 200 nm.
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was the most toxic dose for liver cells. However, genotoxic 
effects were observed at 0.01–10 mg/mL in BEAS-2B, 
a normal lung epithelial cell line. It is interesting to note that 
the human body can tolerate 0.4 to 27 μg of AgNPs per day 
when consumed through the oral route. Therefore, the nano-
toxicity profile can differ based on the dose and the origin of 
cell lines subjected to a specific toxicity analysis.64–67

The results of the present study reveal 100% cell death 
of HEK-293 cells at 2.5 μL/mL. At the same concentration 
of 2.5 μL/mL required for 100% killing of HEK-293 cells, 
only 75% cell death was observed among HeLa cells. The 
percentage of viability is depicted in Figure 5A and B. 
AgNPs used in this study were less effective against the 
HeLa cells in comparison to the cytotoxicity exerted by 
AgNPs on other cancer cell lines like HepG2, NIH-3T3, 

PC-12, A-549, HCT116 and SiHa cells. In previous such 
reports, the IC50 value for AgNPs on cancerous cell lines 
did range from 3 to 99 ppm.68–71 Explicitly, according to 
existing reports, the IC50 values for AgNPs on HeLa cell 
lines range from 19 to 51 ppm.72–74

In the current study, IC50 value for AgNPs on HeLa cells 
was 1.98 µL/mL (1980 ppm). The concentration of AgNPs 
in the hydrosol was equivalent to 38.629 ng, as per ICP-OES 
analysis (19.51 μg/mL). The IC50 value for the hydrosol 
against HEK-293 cells was 0.622 µL/mL (622 ppm). The 
concentration of AgNPs in 0.622 µL of the hydrosol was 
equivalent to 12.135 ng. The IC50 values determine that the 
AgNPs were three-fold toxic towards HEK-293 cells in 
comparison to toxicity exerted on HeLa cells. Therefore, 
based on the IC50 value, this study determines that AgNPs 

Figure 4 Microscopic observations of the cytotoxic effects of AgNPs on (A) HEK-293 cells (B) HeLa cells.

Figure 5 Cytotoxicity of AgNPs on (A) HEK-293 cells (B) HeLa cells. Results were expressed as Mean ± SEM (n = 3) and statistically analysed using one-way ANOVA along 
with Tukey’s post hoc test of significance; different alphabets denote significant difference (p <0.05).
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synthesized using R. apiculata were more toxic towards 
HEK-293 cells in comparison to HeLa cells.

A general expectancy in screening an anticancer drug 
is to sensitize and destroy the cancer cells rather than the 
normal cells.75 The mechanism of cytotoxicity of nanopar-
ticles is dependent on mechanisms that involve (i) an 
increase in calcium levels, (ii) genotoxic effects that lead 
to cell cycle arrest at G2/M phase, and (iii) ROS, JNK 
signaling and mitochondria-dependent apoptosis.76 To 
conclude, the therapeutic index is low for the metastatic 
HeLa cells, in comparison to the normal cells (HEK-293), 
as analysed through the present report.

Conclusion
Conferring to the results of the present study and the sup-
portive conclusions of previously published reports, the 
AgNPs synthesized using R. apiculata could be considered 
to be nanotoxic against HEK-293 cells while comparing the 
IC50 values with those of HeLa cells. The cell inhibiting 
effects were dependent on the dose used. The AgNPs were 
less effective against HeLa cells in comparison to HEK-293 
cells. Therefore, this study identified that the therapeutic 
index for HeLa cells is poor and the therapeutic window is 
not extensive. The nanotoxic effects emerge more towards 
HEK-293 cells. Although HEK-293 and HeLa cells are of 
various origins, the work was based on the ideology for 
future analysis of the systemic toxicity of AgNPs. This 
means that the AgNPs intended for the therapy of cervical 
cancer cell model HeLa was toxic towards the normal cell 
line HEK-293 of the renal system. Further comparative 
nanotoxicity analysis and mechanistic studies on such toxic 
effects may provide an insight into the use of these AgNPs 
for applications in cancer nanomedicine.
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