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Abstract: Glaucoma, a group of diseases characterized by progressive optic nerve degen-
eration that results in irreversible blindness, can be considered a neurodegenerative disorder 
of both the eye and the brain. Increasing evidence from human and animal studies have 
shown that glaucoma shares some common neurodegenerative pathways with Alzheimer’s 
disease (AD) and other tauopathies, such as chronic traumatic encephalopathy (CTE) and 
frontotemporal dementia. This hypothesis is based on the focal adhesion pathway hypothesis 
and the spreading hypothesis of tau. Not only has the Apolipoprotein E (APOE) gene been 
shown to be associated with AD, but also with primary open angle glaucoma (POAG). This 
review will highlight the relevant literature in the past 20 years from PubMed that show the 
pathogenic overlap between POAG and AD. Neurodegenerative pathways that contribute to 
transsynaptic neurodegeneration in AD and other tauopathies might also be similar to those 
in glaucomatous neurodegeneration. 
Keywords: primary open-angle glaucoma, tauopathy, amyloid precursor protein, 
phosphorylated tau, Alzheimer’s disease

Introduction
Intraocular pressure (IOP) is the only known modifiable major risk factor for 
glaucoma, yet progression of visual loss remains inevitable in a subgroup of 
these patients even when conventional medical and surgical therapies optimize 
the IOP. The non-IOP factors contributing to visual loss include neuroinflammation, 
oxidative stress, dysregulation of calcium-dependent processes, defective autop-
hagy, reactive gliosis, translaminar cribrosa pressure differences, and possibly the 
spreading of misfolded proteins.1 Some neurodegenerative pathways in primary 
open angle glaucoma (POAG) appear to overlap with those in Alzheimer’s disease 
(AD) and other tauopathies, such as chronic traumatic encephalopathy (CTE). 
Synaptic dysfunction and synaptic remodeling have recently been implicated as 
key pathogenic mechanisms in Alzheimer’s disease (AD).2 Two prevailing possible 
explanations for the synaptic dysfunction in AD and other tauopathies are the focal 
adhesion circular pathway hypothesis and the spreading hypothesis of tau.

Several genes involved in regulating the metabolic pathways of amyloid precursor 
protein (APP) and amyloid-beta (Aβ) also control the post-translational modification 
of tau protein species.2,3 Some AD genes, such as Apolipoprotein E (APOE), have 
been shown to increase the risk for POAG.4,5 Similar to the chronic insult of repetitive 
head trauma in chronic traumatic encephalopathy (CTE),3 recurrent IOP elevations 
might cause repetitive compressive compromise to the optic nerve head. These 
repetitive forces to the optic nerve head might potentially lead to tau accumulation, 
altered phosphorylation, and mis-sorting in glaucomatous neurodegeneration. Since 
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transsynaptic neurodegeneration has been hypothesized to 
occur through the spreading of tau in AD, it might also 
explain the common neuropathologic involvement of the 
eye and brain in glaucomatous neurodegeneration.

The Focal Adhesion Circular 
Pathway Hypothesis in Synaptic 
Dysfunction
The classic amyloid cascade hypothesis proposed that defec-
tive APP metabolism leads to increased Aβ production, in 
which Aβ oligomers incite the spreading of tau from one 
neuron to another to cause synaptic and neuritic dysfunction. 
This linear model of the amyloid cascade hypothesis has 
recently taken a back seat to a vicious circle where dysfunc-
tional metabolic pathways involving APP, tau, Aβ, and 
synaptic regulation revolve around the “focal adhesion 
core” (Figure 1).2,5 The focal adhesion pathway modulates 
the filamentous actin network by regulating actin-binding 
proteins, such as cofilin, that control dendritic spine morphol-
ogy. This pathway depends on integrin to remodel the den-
dritic spine morphology for synaptic plasticity.2 This circular 
model takes into account the findings from genome-wide 
association studies, that genetic risk factors influence up to 
80% of attributable risk in the more common forms of AD.6 

The dysregulation of synaptic function and downstream cel-
lular signaling through the focal adhesion circular pathway 
may be an important part of the pathogenesis of AD. The 
primary dysfunction in AD is located at the synapse where 
increased oligomeric amyloid-beta peptide causes N-methyl- 

D-aspartate (NMDA) receptor-dependent synaptic depres-
sion and loss of dendritic spines. Cell-surface APP is required 
for the regulation of normal synaptic function and is located 
in the focal adhesion complex where it recruits various intra-
cellular proteins to modulate integrin signaling.7 APP inter-
acts with integrin for the development of neurite outgrowth 
and serves as a synaptic adhesion molecule at the pre- and 
post-synaptic membranes for the proper connection with 
other synapses; and for the development of normal synaptic 
morphology and spine density.7 Therefore, cell-surface APP 
located in the focal adhesion complex serves a physiologic 
function in maintaining normal synaptic function, whereas 
the accumulated oligomeric amyloid-beta peptides in this 
complex can lead to synaptic loss.

Any of the AD genes regulating APP metabolism, such as 
FERMT2, Cass4, CD2AP, and the ones regulating the actin 
cytoskeleton network, such as Kindlin-2, PUk2, CD2AP, and 
BIN1, can disrupt APP function and/or its interaction along 
the focal adhesion pathway.2 Amyloid-beta fibrils have been 
shown to activate integrin signaling to increase N-methyl- 
d-aspartate receptor (NMDAR) sensitivity to ultimately med-
iate Aß- induced neurotoxicity in hippocampal neurons.8 The 
scaffolding protein Ran BP9, that dephosphorylates cofilin, is 
a key regulator of actin filament dynamics, and it has been 
shown to lead to the formation of cofilin-actin rods in distal 
dendrites of synapses.9,10 Ran BP9 simultaneously increases 
APP and ß1-integrin endocytosis to cause elevated Aß pro-
duction that then disrupts the focal adhesion pathway.11 This 
evidence supports the notion that cell surface APP plays an 
important role in synaptic function. Although microglia have 
been shown to form a protective barrier around amyloid 
deposits by compacting the fibrils into a less toxic form,12 

microglial dysfunction can also influence the focal adhesion 
pathway through disrupted Aβ clearance, leading to 
increased toxicity in synapses and early synaptic loss/remo-
deling. The focal adhesion pathway does not preclude the 
spreading hypothesis, which might involve a downstream 
trigger of tau-related excitotoxicity causing synaptic failure. 
Because the focal adhesion pathway is reiterative, it appears 
to recapitulate the vicious cycle of neurodegeneration invol-
ving the dysregulation of APP and tau.

The Spreading Hypothesis of Tau in 
Synaptic Dysfunction
Tau is the major microtubule-associated protein expressed 
in neurons and retinal ganglion cells (RGCs) that is regu-
lated by the microtubule-associated protein tau (MAPT) 
gene on the long arm of chromosome 17q21; it has 16 

Figure 1 The focal adhesion complex regulates the actin cytoskeleton and down-
stream cell signaling pathways, such as in the spread of tau pathology. Integrin, amyloid 
precursor protein (APP), and receptor tyrosine kinase interact at the cell surface 
membrane to modulate cell adhesion. The genes for integrin, kindlin2, and CD2AP 
proteins regulate both APP metabolism and tau metabolism, as indicated by dashed 
outlines; whereas the genes for Cass4 and Pyk2 proteins are involved in only tau- 
related pathways and the gene for APP only in APP-related pathways. The genes for 
proteins inside the yellow-colored shapes are considered risk factors for AD. Adapted 
from Dourlen P, Kilinc D, Malmanche Net al The new genetic landscape of Alzheimer’s 
disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta 
Neuropathol 138, 221–236 (2019). Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/).2
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exons.13 Post-translational alternative splicing of its 
mRNA produces six tau isoforms in the adult human 
brain.13–15 The normal physiological function of tau is to 
promote the assembly of tubulin to form microtubules and 
to help stabilize microtubule polymers involved in intra-
cellular axonal transport.16,17 The spreading hypothesis of 
tau in AD proposes that tau undergoes post-translational 
modifications, such as hyperphosphorylation, which is cat-
alyzed by Pyk2 (tyrosine kinase), one of the proteins in the 
focal adhesion complex,2 to cause its detachment from 
microtubules that then disassemble. Within the focal adhe-
sion circular pathway, it is postulated that APP interacts 
with phosphorylated tau (p-tau) to initiate the process of 
taumisfolding and aggregation that then leads to increased 
NMDAR sensitivity, followed by dendritic spine 
degradation.2 The p-tau is released from the dendrites 
into the extracellular space.18 The exact mechanism of 
abnormal tau propagation amongst neurons in the CNS is 
still not well understood at this time.19 Whether tau is 
spread from one neuron to another in POAG or in AD 
remains unproven.

The Role of Apolipoprotein 
E (APOE) Gene in Primary 
Open-Angle Glaucoma (POAG)
Genome-wide association studies (GWAS) have shown 
that the APOE gene ε2/ε3/ε4 polymorphism has been 
associated with the focal adhesion pathway in AD. 
Although not all the AD genes participating in the focal 
adhesion pathway model have been shown to increase the 
risk of POAG, the APOE ε4ε4 has been significantly 
associated with POAG. In a meta-analysis of fifteen stu-
dies including 2700 cases and 2365 controls from the 
literature since January 2014, the APOE ε4ε4 genotype 
was found to be significantly associated with an increased 
risk of POAG in Asians, but not in Caucasians (P = 
0.003).5 Apolipoprotein E plays a key role in lipid meta-
bolism, cholesterol transport, protein synthesis, tissue 
repair, cell growth and differentiation, and immune 
regulation.20–22 Apolipoprotein E binds to the low- 
density lipoprotein receptor to regulate the clearance of 
extracellular Aβ across the blood-brain barrier and the 
blood-ocular barrier. An increased Aß deposition in the 
cerebral blood vessels and plaques has been shown on 
histopathology in AD brains with the APOE ε4ε4 
genotype.23 A more recent study showed the opposite 
finding, such that APOE ε4 decreased the risk of POAG, 

while it increased the risk of AD. These conflicting find-
ings regarding APOE ε4 as a risk factor for POAG were 
thought to be attributed to the over-representation of nor-
mal tension glaucoma (NTG) in previous studies with 
mainly Asian subjects.24

Based on another meta-analysis of 108 case control 
studies with 35,389 POAG patients and 51,742 controls, 
the APOE gene was one of the 12 genes associated with an 
elevated risk of POAG,25 particularly APOE (−219G) with 
more optic nerve damage. APOE (−491T) also interacts 
with the myocilin (MYOC) promoter (−1000G) which is 
associated with an increased risk of ocular hypertension in 
POAG. Based on the pooled data, the rs449647 of the 
APOE gene had a significant association with POAG in 
the allelic, homozygote, heterozygote, and dominant com-
parisons. In a more recent GWAS study on 2320 patients 
of African ancestry with POAG and on 2121 without 
POAG,4 the Aß A4 precursor protein-binding family 
B member 2 (APBB2), located on chromosome 4 with 
the variant rs59892895T>C, was significantly associated 
with POAG (P = 2 x 10−8). Each copy of the 
rs59892895*C risk allele, most frequently found in indi-
viduals of African ancestry compared to those of European 
or Asian ancestry, was associated with an increased risk of 
POAG. The APBB2 gene is one of the genes regulating 
the processing of APP. Increased APBB2 gene expression 
was related to increased ß-amyloid plaque deposition in 
POAG human retinal and primary visual cortex tissues. 
Therefore, defective clearance of Aß in the optic nerve 
might contribute to the development of POAG.

Evidence for Abnormal Metabolism 
of Amyloid-Beta (Aß) and Tau in 
Glaucomatous Neurodegeneration
Recent epidemiologic studies have reported a potential 
association between glaucoma and AD.26–29 These studies 
support that glaucoma and AD might share similar patho-
physiologic pathways in the metabolism of Aß and tau 
protein species. The histopathological defining features 
of AD are extracellular Aß plaques and intracellular neu-
rofibrillary tangles consisting of phosphorylated tau 
(ptau).30 In glaucoma animal models, Aß has been shown 
to play a role in RGC apoptosis.31 Not only have ptau 
deposits been demonstrated in human glaucomatous 
retinas,32 but further evidence of Aß deposits in the retina 
of POAG patients have also been shown to be consistent 
with decreased vitreous Aß levels.33
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Abnormal tau deposition in the retina has been found 
in 11 enucleated human eyes with a history of uncontrolled 
primary and secondary open-angle glaucoma compared to 
10 age-matched controls.32 The immunofluorescent inten-
sity for hyperphosphorylated tau, in the form of AT8 
(phosphor-epitope at serine 202) was significantly higher 
in the outer region of the inner nuclear layer compared to 
controls. The optic nerve heads, however, did not show 
evidence of AT8 immunoreactivity. Normal tau immunor-
eactivity was absent in the glaucomatous retina, whereas it 
was present in all the control eyes. Normal tau was seen in 
the inner nuclear, inner plexiform layers, and less in RGCs 
and the retinal nerve fiber layer.32

Further evidence of abnormal beta-amyloid and abnor-
mal tau accumulation in eyes have been demonstrated in 
animal models of ocular hypertension. In a rhesus monkey 
model of glaucoma,34 both eyes were induced to have 
elevated intraocular pressure by laser photocoagulation, 
and extracellular amyloid-beta 1–42 and intracellular abnor-
mal phosphorylated tau (AT8) deposits were observed in 
the lateral genicular nucleus (LGN). More neurofibrillary 
tangles and amyloid plaques, like those in AD, were seen 
in the LGN than in the primary visual cortex, V1, which 
could imply that the disease progresses transsynaptically 
from the anterior to posterior visual pathways.34 In another 
study by Chiasseu, M. et al, tau accumulation, altered 
phosphorylation, and tau mis-sorting were shown in a rat 
glaucoma model.35 Like AD, glaucoma, and other tauopa-
thies that progress with advancing age, tau accumulation 
in the rat retina increased with age and ocular 
hypertension,36,37 as compared with age-matched controls. 
It is known that different types of oxidative stress can lead 
to hyper-, hypo-, or de-phosphorylation of tau species.38 

As shown in AD and other tauopathies, the ocular hyper-
tension rat models demonstrate that phosphorylation of tau 
residues S396 and S404 is increased, but S199 phosphor-
ylation is decreased, relative to the total tau levels in the 
retina.3 Chiasseu et al33 also showed that tau monomers 
likely converted to oligomers in the glaucomatous retinas 
because there was no evidence of transcriptional upregula-
tion by increased mRNAs for these oligomers. Without 
any increase in retinal tau mRNA, they further hypothe-
sized that tau accumulation in non-RGCs could be due to 
impaired autophagy or proteasomal degradation and/or 
spreading from one cell to another. Tau oligomers, rather 
than tau monomers and neurofibrillary tangles, were impli-
cated as the main toxic forms that initiate and propagate 
glaucomatous degeneration.33,39,40 Like AD and other 

tauopathies, considerable tau mis-sorting was also 
observed in these glaucomatous rat retinas. The abnormal 
forms of tau were found in RGC dendrites and not in 
axons, suggesting that the abnormal tau was mis-sorted 
from axons to dendrites in the glaucomatous rat retinas, 
instead of anterogradely from RGC somas to the axons.41 

It has also been hypothesized that impaired anterograde 
axonal transport could lead to tau accumulation in den-
drites, where it could interact with postsynaptic protein 
Fyn and with A-beta to mediate excitotoxicity in the 
microtubules.42 These proposed neurodegenerative path-
ways are consistent with a previous study showing that 
elevated IOP can initiate damage to RGC dendrites via tau 
mis-sorting.43 Other studies also support the idea that 
remodeling of the RGC dendritic circuitry and axonal 
loss and synaptic dysfunction precedes RGC death in 
glaucoma.44,45 It, therefore, appears that tau dysregulation 
in these experimental glaucomatous models might recapi-
tulate some of the key common pathological features in 
human glaucoma, AD, and other tauopathies.

Retinotopic Transsynaptic 
Neurodegeneration in Glaucoma
Elevated IOP is a major risk factor for the progression of 
glaucoma that leads to impaired axonal transport and 
synaptic degenerative changes that results in RGC 
apoptosis.46,47 In a mouse model of ocular hypertension, 
anterograde axonal transport deficits were observed to 
precede retrograde deficits located at the optic nerve 
head.48 Experimental glaucoma models have also demon-
strated a significant correlation between mean IOP and the 
degree of LGN neuronal loss,49 and a higher mean IOP 
duration reduced the time to neuronal loss.50 CaMKII-α 
isoform (calcium/calmodulin-dependent kinase type II- 
alpha), an important post-synaptic density protein that 
regulates synaptic strength and the density of glutaminer-
gic synapses, and its absence can lead to synaptic dysfunc-
tion and synaptic loss.51,52 Elevated IOP with or without 
optic nerve fiber loss was shown to reduce the expression 
of this protein in koniocellular neurons,49 leading to the 
theory of impaired transsynaptic changes in LGN in early 
glaucoma.

It has been demonstrated that atrophy of the posterior 
visual pathway is retinotopically consistent with the visual 
field defects and retinal nerve fiber layer loss in glaucoma. 
Examples of this anterograde transsynaptic degeneration has 
been demonstrated in several clinical, pathologic, and 
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radiologic studies. In a clinicopathologic case study of a 79- 
year-old man with POAG, the clinical manifestations of 
glaucoma, which included his inferior neuroretinal rim atro-
phy in the optic disc and his superior visual field defect, 
correlated with the post-mortem pathological findings of 
neuronal atrophy in the intracranial optic nerves, the poster-
ior lateral part of the LGN (Figure 2), and the primary visual 
cortex below the calcarine sulcus.53 Furthermore, magnetic 
resonance imaging (MRI) evidence of LGN atrophy was 
shown to correlate with neuropathologic findings showing 
neuronal shrinkage and loss associated with reactive astro-
gliosis in the LGN of experimental primate glaucoma 
models.50,54,55 Deafferentation of the larger nerve fibers in 
this glaucoma model was followed by atrophy in the relay 
neurons and their dendrites in both the magnocellular and 
parvocellular layers of the LGN.56,57 In another study of 18 
patients with POAG compared with 18 age- and sex-matched 
healthy controls,58 ganglion cell-inner plexiform layer thin-
ning significantly correlated with contralateral LGN volume 
reduction on 7-Tesla MRI.

Further evidence for a transsynaptic degenerative pro-
cess has been shown by the axonal degeneration of the 
visual pathway from the LGN to the primary visual cortex 
on neuroimaging studies.57 Compared to normal controls, 
significant atrophy of the optic tracts, optic radiations,58 

and the occipital white matter59,60 in POAG patients was 
seen on 3-Tesla diffusion tensor imaging. The degree of 

visual cortical thinning correlated with the severity of 
RNFL thinning.61 In a more recent study using pixel- 
based analysis of the white matter visual pathway in 12 
patients with POAG compared with 16 healthy controls, 
the optic tracts had significantly reduced fiber density 
(representing early microstructural axonal changes) and 
fiber-bundle cross-sectional area (representing later macro-
structural axonal alterations) in the glaucomatous patients 
compared with controls.62 The more advanced white mat-
ter degeneration in the optic tracts of glaucomatous 
patients compared with that in the optic radiations implies 
that transsynaptic degeneration might account for the ante-
rior to posterior visual pathway progression of glaucoma. 
Furthermore, functional MRI studies have also shown 
decreased activity in the primary visual cortex using 
blood-oxygen-level-dependent (BOLD) contrast.63,64

In addition to the transsynaptic degenerative changes in 
the brain and eye, other brain regions beyond the visual 
cortex have been shown to have reduced volumes. In 18 
POAG patients, the left temporal and right nasal RNFL 
were found to be significantly thinner than the right tem-
poral and left nasal RNFL.65 The voxel-based morphome-
try and diffusion tensor imaging in these patients showed 
significant volume reduction in the left visual cortex, the 
left LGN, and the intracranial portion of the optic nerves 
and chiasma. Fractional anisotropy was significantly 
decreased in the inferior frontal-occipital fasciculus, the 
longitudinal and inferior frontal fasciculi, the putamen, the 
caudate nucleus, the anterior and posterior thalamic radia-
tions, and the anterior and posterior limbs of the internal 
capsule of the left hemisphere (P < 0.05).65 In 57 patients 
with POAG, ranging from the earliest stages to the end 
stages (absolute glaucoma), compared with 29 age- 
matched normal controls, the disruption of anatomical 
connectivity along the visual pathway and in the nonvisual 
white matter tracts was significantly correlated with the 
stages of POAG based on RNFL thinning and visual field 
defects.66 Functional connectivity was decreased in the 
visual and working memory networks, but it was increased 
in the default mode and subcortical networks. Both the 
anatomical connectivity and the functional connectivity 
were already affected in the early stage of POAG. 
Nonvisual regions of the brain, such as the hippocampus 
and the frontal cortex, also progressed with advancing 
POAG stage.66 These observations of concomitant non- 
visual pathway abnormalities in POAG patients could 
reflect pathology from comorbid conditions, such as AD 
or other types of dementias. Furthermore, the defective 

6

5*

4

3*

2*

1

Figure 2 Coronal section of the left lateral geniculate nucleus in a 72-year-old 
patient after 8 years of optic atrophy from absolute glaucoma in the left eye. The 
smaller cells with less staining in ipsilateral layers 2, 3, and 5 (marked with an 
asterisk) represent transsynaptic atrophy. Layers 1 and 2 are the magnocellular 
layers. Layers 3 to 6 are the parvocellular layers. (Contrast-enhanced grayscale 
photo of a Nissl-stained specimen at 20x magnification; unpublished observation).
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metabolism of APP secondary to the APOE gene mutation 
in POAG might account for the cognitive dysfunction that 
was shown to be significantly associated with POAG in 
African-Americans.67 Whether transsynaptic neurodegen-
eration in human glaucoma occurs via the focal adhesion 
pathway and/or the transsynaptic spreading of tau will 
require further detailed temporal and spatial transcrip-
tomics and proteomic studies to decipher the regulatory 
pathways controlling beta-amyloid and tau metabolism in 
the retina and in the brain.

Conclusion
Lowering IOP remains to be the most modifiable risk 
factor for the successful treatment of POAG. However, 
future treatments will be developed to address the non- 
IOP-related factors of POAG to delay disease progression 
in the eye and in the brain. Structural and functional 
changes, such as inner retinal layer thinning, disc cup-
ping, and reduced choline levels in the visual cortex from 
glaucomatous degeneration have been demonstrated to be 
already present in the brain before detectable visual field 
defects.68 The underlying genetic and metabolic path-
ways of transsynaptic neurodegeneration in glaucoma 
remains to be elucidated. If tauopathy is considered as 
a final common pathway for neurodegenerative diseases, 
then therapies should be aimed at these downstream path-
ways, in addition to the preventive therapies aimed at 
upstream ones. Future investigations are needed to search 
for more comprehensive therapeutic strategies that 
address not only the elevated IOP risk factors, but also 
the non-IOP-related genetic regulatory pathways contri-
buting to glaucomatous neurodegeneration in the eye and 
in the brain. Currently, GAL-101, a novel small molecule 
that prevents and reverses the synaptotoxic effects of Aß 
1–42, is being investigated as a promising therapy for 
glaucoma.69
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