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Purpose: To investigate the impact of staging on differences in glucose metabolic heterogeneity 
between lung adenocarcinoma (ADC) and squamous cell carcinoma (SCC) by 
18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) textural analysis and to 
develop a stage-specific PET radiomic prediction model to distinguish lung ADC from SCC.
Patients and Methods: Patients who were histologically diagnosed with lung ADC or 
SCC and underwent pretreatment 18F-FDG PET/CT scans were retrospectively identified. 
Radiomic features were extracted from a semiautomatically outlined tumor region in the 
Chang-Gung Image Texture Analysis (CGITA) software package. The differences in radio-
mic parameters between lung ADC and SCC were compared stage-by-stage in 253 con-
secutive NSCLC patients with stages I to III disease. The least absolute shrinkage and 
selection operator (LASSO) algorithm was used for feature selection. A radiomic signature 
for each stage was subsequently constructed and evaluated. Then, an individual nomogram 
incorporating the radiomic signature and clinical risk factors was established and evaluated. 
The performance of the constructed models was assessed by receiver operating characteristic 
(ROC) curve analysis, and the nomogram was further validated by calibration curve analysis.
Results: The performance of the radiomic signature for distinguishing lung ADC and SCC 
in both the training and validation cohorts was good, with AUCs of 0.883, 0.854, and 0.895 
in the training cohort and 0.932, 0.944, and 0.886 in the validation cohort for stages I, II, and 
III NSCLC, respectively. The radiomic-clinical nomogram integrating radiomic features with 
independent clinical predictors exhibited more favorable discriminative performance, with 
AUCs of 0.982, 0.963, and 0.979 in the training cohort and 0.989, 0.984, and 0.978 in the 
validation cohort for stages I, II, and III, respectively.
Conclusion: Differences in PET radiomic features between lung ADC and SCC varied in 
different stages. Stage-specific PET radiomic prediction models provided more favorable 
performance for discriminating the histological subtype of NSCLC.
Keywords: non-small-cell lung cancer, positron emission tomography, PET, textural 
analysis, heterogeneity, staging

Introduction
Lung cancer is the leading cause of cancer-related deaths worldwide.1 Non-small- 
cell lung cancer (NSCLC) accounts for approximately 85% of primary lung 
cancers.2 Adenocarcinoma (ADC) and squamous cell carcinoma (SCC) are the 
two major histologic subtypes of NSCLC, accounting for approximately 60% and 
35% of all cases, respectively.3 The etiology, origin, and genetic characteristics of 
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lung ADC and SCC are different, although both are cate-
gorized as NSCLCs. There is a significant difference in the 
treatment approach, prognosis and recurrence rate of lung 
ADC and SCC at different stages. However, mixed patho-
logical types or mixed stages may have led to various 
biases and inconsistent results in previous studies on the 
prognosis of NSCLC due to confounding tumor heteroge-
neity. Meanwhile, some studies have reported that tumor 
heterogeneity is associated with treatment response and 
patient prognosis.4–6 Therefore, a stage-specific prediction 
model should be further developed to accurately confirm 
the histological subtype of NSCLC prior to treatment.

Pathological diagnosis is the gold standard for distin-
guishing lung ADC from SCC. Clinically, computed tomo-
graphy (CT)-guided biopsy is the standard for the 
classification of NSCLC subtypes.7 However, it is an 
invasive diagnostic process and is unable to explore the 
heterogeneity of the whole tumor. Typically, biopsy can 
only extract very limited portions of the target tissue and is 
incapable of completely characterizing tumor properties.8 

It cannot provide spatial information and cannot allow for 
whole-body assessments. Furthermore, in some cases, CT- 
guided biopsy cannot be performed or is not suitable, 
requiring a multidisciplinary approach for decision- 
making.9 For example, some small lesions are difficult to 
target and cannot provide enough tissue for pathological 
diagnosis. In addition, for deep lesions or lesions close to 
airways or blood vessels, performing CT-guided biopsy is 
challenging. Hence, a noninvasive approach for the accu-
rate identification of lung ADC and SCC that examines the 
whole tumor site is required.

In recent years, radiomics has become increasingly 
popular in medical imaging analysis.10 Radiomics uses 
quantitative imaging features extracted from medical 
images to characterize tumor pathology or heterogeneity. 
Radiomics has the combined advantages of being highly 
patient-specific and noninvasive. Additionally, unlike 
biopsy specimens, radiomics allows the heterogeneity to 
be sampled over the entire tumor. Recently, CT-based 
texture analysis has been shown to predict tumor stage 
and prognosis in esophageal cancer and NSCLC.11–16 

However, CT image features cannot provide functional 
information on the tumor. 18F-FDG PET texture analysis, 
a method for the quantitative measurement of tumor glu-
cose metabolic heterogeneity, provides functional informa-
tion about tumor uptake. 18F-FDG PET texture analysis 
has been shown to be more powerful than traditional 
metabolic parameters for predicting treatment response, 

recurrence, and survival in NSCLC patients.6,17–24 Many 
studies have shown the potential of discriminating lung 
ADC from SCC by taking advantage of the difference in 
glucose metabolic heterogeneity.8,25 However, to the best 
of our knowledge, PET radiomics has not been used to 
predict the tumor subtype in each tumor stage.

Therefore, in this study, we compared 18F-FDG PET 
radiomic parameters of lung ADC and SCC stage-by- 
stage, clarified the differences in radiomic parameters 
between the two histological subtypes at each stage, and 
constructed and validated a stage-specific 18F-FDG PET 
radiomic prediction model to distinguish lung ADC 
from SCC.

Patients and Methods
Patients Population
This study was approved by the Institutional Review 
Board of Shandong Cancer Hospital and Institute, and 
the need for informed consent was waived because the 
study was an observational, retrospective study using 
a database in which identifying patient information had 
been removed. In addition, this study was conducted in 
accordance with the Declaration of Helsinki. Patients who 
were diagnosed with NSCLC from October 2012 to 
March 2016 were enrolled in this study. The inclusion 
criteria were as follows: (1) pretreatment 18F-FDG PET/ 
CT staging scan; (2) lung ADC or SCC confirmed by 
biopsy or surgical specimens; (3) the primary tumor was 
18F-FDG-avid; and (4) whole body 18F-FDG PET/CT scan 
and contrast-enhanced CT or MRI confirmed that there 
was no distant metastasis. The exclusion criteria were as 
follows: (1) no baseline 18F-FDG PET/CT images and (2) 
mixed pathological types of primary lesions. Furthermore, 
an independent cohort of NSCLC patients who met the 
criteria from April 2016 to December 2019 was included 
as the validation cohort. The patients were staged accord-
ing to the American Joint Committee on Cancer (AJCC) 
7th edition by an experienced radiologist who had more 
than ten years of experience, and then the results were 
checked by another expert with more than fifteen years of 
experience.

PET/CT Image Acquisition
18F-FDG PET/CT scans were obtained using a PET/CT 
scanner (Philips Gemini TF Big Bore, Philips Medical 
Systems, Cleveland, OH, USA). All patients fasted for at 
least 6 hours prior to PET/CT examination, and the blood 
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glucose level had to be <7 mmol/L. Patients were injected 
intravenously with 3.7 MBq/kg 18F-FDG and subsequently 
rested for approximately 1 h in a quiet room prior to 
imaging. The 16-slice CT component was obtained with 
X-ray tube peak voltage 120 kV, tube current 90 mA, slice 
thickness 5 mm, and interval 4 mm for the localization of 
18F-FDG uptake regions in PET images. PET scanning 
was performed covering the same axial range for 2 min 
per bed position (total of three to five bed positions). PET 
images were reconstructed with the default manufacturer- 
provided method: 3D maximum likelihood algorithm 
(4×4×4 mm per voxel size) and CT-based attenuation 
correction, normalized to the injected activity and body 
weight.

Tumor Segmentation and Feature 
Extraction
Tumor segmentation and radiomic features were analyzed in 
CGITA (version 1.3, http://code.google.com/p/cgita),26 

which is an open-source program with a graphical user inter-
face for the texture analysis of molecular images that runs on 
MATLAB (MathWorks Inc., Natick, MA, USA). The meta-
bolically active tumor volume of the primary tumor was 
delineated using the built-in segmentation in CGITA, 
a threshold-based region-growing method that operates semi-
automatically. Primary tumors adjacent to metastatic lymph 
nodes and the heart were manually delineated by an experi-
enced thoracic oncologist. Then, whole-tumor heterogeneity 
indices were calculated. In total, 6 traditional metabolic 
parameters, which included standardized uptake values 
(SUVs) (SUVmax, SUVmin, SUVmean, and SUVpeak), the 
metabolic tumor volume (MTV), and total lesion glycolysis 
(TLG), and 54 texture parameters describing global (n=5), 
local (n=27), and regional (n=22) features of the primary 
tumor were obtained. The texture features are described in 
detail in Supplementary Table 1.

Radiomic Signature Construction
To make the radiomics signature more effective and 
robust, feature selection was performed using a least abso-
lute shrinkage and selection operator (LASSO) binary 
regression model, which is often used to reduce high- 
dimensional feature data. As a result, the most predictive 
features were selected with coefficients. Then, a radiomic 
signature, also known as the radiomic score or Rad_Score, 
was established by a linear combination of selected fea-
tures and corresponding coefficients. The Rad_Scores of 

this study were built on the training cohort for each stage 
and could be an independent predictor for further predic-
tion models. Meanwhile, the performances of Rad_Scores 
were evaluated using the receiver operating characteristic 
curve (ROC) and the area under the curve (AUC).

Nomogram Construction
Further prediction models were built by incorporating the 
Rad_Score and predictive clinical risk factors. First, poten-
tial clinical risk factors were age, sex, smoke, site and 
location. Then, univariate analysis was performed to select 
the candidate clinical risk factor and ensure that features 
for model training were informative and predictive. 
Subsequently, a multivariable logistic regression algorithm 
was used to build the nomogram and the graphical repre-
sentation of the prediction model and for intuitive visuali-
zation. The nomogram was constructed from the training 
cohort and tested in both the training cohort and validation 
cohort using ROC-AUC and further validated with 
a calibration curve in the validation cohort. The agreement 
between the predicted and observed tumor subtypes in 
each stage was assessed by the Hosmer–Lemeshow test, 
and a p-value >0.05 indicated good agreement.

Statistical Analysis
The Mann–Whitney U-test or Wilcoxon rank-sum test was 
used to analyze the difference in parameters between lung 
ADC and SCC at each stage, where appropriate. We also 
performed statistical analysis using R statistical software 
(version 3.6.1, http://www.r-project.org) to construct and 
validate the prediction model. In this study, univariate 
analysis and model performance assessment were imple-
mented with the “stats” package and “pROC” package, 
respectively. LASSO was implemented with the “glmnet” 
package. Nomograms and calibration curves were imple-
mented with the “rms” package. The reported statistical 
significance levels were all two-sided, and the cutoff was 
set to lower than 0.05.

Results
Patients Characteristics
A total of 416 consecutive patients were analyzed, 
which included 253 in the training cohort and 163 in 
the validation cohort. All enrolled patients were con-
firmed by biopsy, and subsets of these patients were 
confirmed again by surgical specimens. The demo-
graphics and clinical characteristics of all patients in 

Cancer Management and Research 2021:13                                                                               submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
309

Dovepress                                                                                                                                                                 Ji et al

Powered by TCPDF (www.tcpdf.org)

http://code.google.com/p/cgita
https://www.dovepress.com/get_supplementary_file.php?f=287128.docx
http://www.r-project.org
http://www.dovepress.com
http://www.dovepress.com


the two cohorts are listed in Table 1. No significant 
difference was found in the composition of patients 
between the two cohorts.

Correlation Between Radiomic 
Parameters and Staging
First, all indices were classified according to the correlation 
with AJCC staging, ie, positive, negative, or no correlation. All 
six metabolic parameters of the primary tumor were positively 
correlated with the AJCC stage (rs: 0.15–0.51, P < 0.05). Most 
of the radiomic features of NSCLC were either positively or 
negatively correlated with the AJCC stage. Twenty-four tex-
ture parameters of 18F-FDG PET/CT imaging of NSCLC (four 
global, 12 local, and eight regional) were positively correlated 
with the AJCC stage (rs: 0.21–0.49, P < 0.05). Twenty-three 
texture parameters (one global, 13 local, and nine regional) 
were negatively correlated with the AJCC stage (rs: −0.13 to 
−0.50, P < 0.05). Seven texture parameters were not correlated 
with the AJCC stage. Correlations between radiomic para-
meters and stages are shown in Supplementary Figure 1.

The Difference in Metabolic Parameters 
and Radiomic Features Between Lung 
ADC and SCC
All six metabolic parameters of lung SCC were significantly 
higher than those of ADC in the same stage. Particularly, 
SUVmax and SUVpeak, the two most commonly used meta-
bolic parameters to predict prognosis in other studies,27–29 

were significantly higher in stage I lung SCC than in stage 
I lung ADC (13.439 ± 5.690 and 8.847 ± 3.912 vs 7.553 ± 
3.575 and 4.790 ± 2.464, respectively, P all < 0.001), and 
similar results were found for stages II and III 
(Supplementary Figure 2A and B). Consistently, the MTV 
and TLG of lung SCC were significantly higher than those of 
ADC in stage I (30.044 ± 17.976 and 162.724 ± 117.552 vs 
14.566 ± 14.654 and 55.719 ± 78.152, respectively, P all < 
0.001), and the same was true for stage II and stage III 
(Supplementary Figure 2C and D). The differences in meta-
bolic parameters are shown in Supplementary Table 2.

Among the texture parameters that were positively corre-
lated with the AJCC stage, the differences between lung ADC 
and SCC varied with the stage. A total of 22, 21, and 21 texture 
parameters of lung SCC were significantly higher than those of 
ADC in stages I, II, and III, respectively. For example, the 
entropyCM of lung SCC was significantly higher than that of 
ADC in both stage I and stage III (6.511 ± 0.407 and 6.862 ± 
0.275 vs 6.093 ± 0.511 and 6.586 ± 0.415, respectively, P < 
0.001) (Supplementary Figure 3A). The homogeneityCM of 
lung SCC was significantly higher than that of ADC in stage 
I (0.198 ± 0.027 vs 0.169 ± 0.028, respectively, P < 0.001) and 

Table 1 The Demographic and Clinical Characteristics of 
Patients

Characteristics Training Cohort 

(n=253)

Validation Cohort 

(n=163)

P value

Age, years 0.871

Median [range] 61 [38, 85] 64 [44, 85]

Sex, no. (%) 0.382

Male 206/253(81.4%) 127/163 (77.9%)

Female 47/253(18.6%) 36/163 (22.1%)

Smoking, no. (%) 0.354

Yes 186/253 (73.5%) 113/163 (69.3%)

No 67/253 (26.5%) 50/163 (30.7%)

Site, no. (%) 0.089

LUL 64/253 (25.3%) 43/163 (26.4%)

LLL 65/253 (25.7%) 54/163 (33.1%)

RUL 65/253 (25.7%) 22/163 (13.5%)

RML 7/253 (2.8%) 5/163 (3.1%)

RLL 52/253 (20.5%) 39/163 (23.9%)

Location, no, (%) 0.815

Central 115/253 (45.5%) 76/163 (46.6%)

Peripheral 138/253 (54.5%) 87/163 (53.4%)

GTV (cm3) 0.809

I 15.63 [4.35–51.23] 14.32 [2.85–49.89]

II 50.14 [13.88–145.18] 43.75 [15.83–186.45]

III 109.33 [34.95–361.61] 115.43 [33.58–428.33]

AJCC stage*, no, (%) 0.974

IA 39/253 (15.4%) 24/163 (14.7%)

IB 46/253 (18.2%) 31/163 (19.0%)

IIA 31/253 (12.2%) 20/163 (12.3%)

IIB 26/253 (10.3%) 16/163 (9.8%)

IIIA 50/253 (19.8%) 33/163 (20.3%)

IIIB 61/253 (24.1%) 39/163 (23.9%)

T stage*, no, (%) 0.106

1a 29/253 (11.5%) 15/163 (9.2%)

1b 25/253 (9.9%) 15/163 (9.2%)

2a 90/253 (35.6%) 48/163 (29.4%)

2b 31/253 (12.2%) 21/163 (12.9%)

3 46/253 (18.2%) 41/163 (25.2%)

4 32/253 (12.6%) 23/163 (14.1%)

N stage, no, (%) 0.839

0 112/253 (44.3%) 65/163 (39.9%)

1 46/253 (18.2%) 39/163 (23.9%)

2 54/253 (21.3%) 36/163 (22.1%)

3 41/253 (16.2%) 23/163 (14.1%)

Note: Age and Volume are represented as median and ranges. 
Abbreviations: ADC, adenocarcinoma; SCC, squamous cell carcinoma; AJCC stage*, 
AJCC stage subgroup; T state*, the T stage subgroup; LUL, left upper lobe; LLL, left lower 
lobe; RUL, right upper lobe; RML, right middle lobe; RLL, right lower lobe.
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stages II and III (Supplementary Figure 3B). Among the 
remaining parameters, no significant differences were found. 
The differences in radiomic parameters that were positively 
correlated with the AJCC stage between lung ADC and SCC 
are shown in Supplementary Table 2.

For texture parameters that were negatively correlated 
with the AJCC stage, 17, 14 and 18 texture parameters of 
SCC were significantly lower than those of ADC in stages 
I, II, and III, respectively. For example, the 
dissimilarityCM and coarsenessNGTDM of lung SCC 
were significantly lower than those of ADC in stage 
I (8.345 ± 1.875 and 0.017 ± 0.006 vs 10.440 ± 2.307 
and 0.027 ± 0.011, respectively, P all < 0.001), and similar 
results were found for stages II and III (Supplementary 
Figure 3C and D). For the remaining parameters, no sig-
nificant differences were found. The differences in radio-
mic parameters that were negatively correlated with the 
AJCC stage between lung ADC and SCC are shown in 
Supplementary Table 3.

For the seven texture parameters unrelated to the AJCC 
stage, only LGLZE in stage I and RP, LGLRE and LGLZE 
in stage II of lung SCC were significantly higher than 
those of ADC. The differences in radiomic parameters 
unrelated to the AJCC stage between lung ADC and 
SCC are shown in Supplementary Table 4.

Radiomic Features Selection
In the training phase of stage I and stage III, 13 and 12 out of 
60 extracted features were selected with nonzero coefficients, 
indicating that it had the power to distinguish lung ADC from 
SCC. However, 5 out of 60 extracted features were selected for 
stage II. The tuning phase and coefficient profile of each stage 
are plotted in Figure 1A–F, respectively. The selected features 
and corresponding coefficients are listed in Table 2. The 
negative coefficients had a major contribution to the predicted 
risk of SCC, whereas the positive coefficient contributed to the 
predicted risk of ADC.

Radiomic Signature Construction and 
Validation
The radiomic signature was established using a linear 
combination of selected features and corresponding coeffi-
cients. The signatures, also named Rad_Score in this 
study, of stages I, II, and III are as follows.

Rad_Score stage I = 0.0805*LGSRE + 0.2446*Strength 
NGTDM + 0.0875*ZP+ 0.0253*HGZE – 0.5174*IDM 
CM – 0.0468*SUVmin – 0.2532* SUVmax – 0.7096* 

SUVmean – 0.0930*SUVsd – 0.1296* CoarsenessTFC + 
0.0256* IDMTFCCM + 0.2016* CodeSimilarity – 
0.0489*LNE (1).

Rad_Score stage II = 0.0410* LGZE + 0.0252* 
ContrastCM – 0.8377* SUVpeak + 0.0324* CoarsenessTFC 
+ 0.2342*MeanconvergenceTFC (2).

Rad_Score stage III = –0.0744*RLV + 
0.1401*ContrastNGTDM – 0.1233*BusynessNGTDM – 0.12 
77*SZE + 0.3261*ZP + 0.3970*LGSZE –0.2040*LGLZE + 
0.3625*EnergyCM – 0.0022*SUVmin – 0.8940*SUVmean 

–0.3982*SUVpeak – 0.1066*EnergyTFCCM (3).
Figure 2A–C shows the sum of the absolute coeffi-

cients of these features in terms of the feature categories 
in each stage, from which we found that metabolic para-
meters had the highest weight in the Rad_Score formula. 
The Rad_Scores of the training and validation cohorts for 
each stage are plotted in Figure 3A–F, respectively. 
A cutoff value of 0 was used to identify ADC 
(Rad_Score≥0) and SCC (Rad_Score<0) in the training 
cohort and was then validated in the validation cohort 
(all P<0.0001). A patient who had a higher Rad_Score 
value had a risk of ADC, and a lower value indicated 
a risk of SCC. The ROCs of the Rad_Score are plotted 
in Figure 4A–C. The AUCs of stages I, II, and III were 
0.883, 0.854, and 0.895 in the training cohort and 0.932, 
0.944, and 0.886 in the validation cohort, respectively.

Nomogram Construction and Validation
After univariate analyses, only location (0 for central and 1 for 
peripheral) served as an independent clinical predictor inte-
grated into the nomogram, and the results of univariate analysis 
can be found in Supplementary Table 5. Combined with clin-
ical risk factors and Rad-Scores, nomograms were built and are 
presented in Figure 5A–C. The coefficients of multivariable 
logistic regression are presented in Supplementary Table 6. 
The ROCs of the nomogram are plotted in Figure 4D–F. The 
AUCs of stages I, II, and III were 0.982, 0.963, and 0.979 in the 
training cohort and 0.989, 0.984, and 0.978 in the validation 
cohort, respectively. Finally, the calibration curves of the vali-
dation cohort of each stage are plotted in Figure 6. The 
Hosmer–Lemeshow test showed that the difference between 
the calibration curves and the ideal curves was nonsignificant 
(P-values were 0.367, 0.241, and 0.556 for stages I, II, and III, 
respectively).

Discussion
In this study, we developed three stage-specific prediction 
models to identify lung ADC and SCC. The results 
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demonstrated that there was a significant difference in 
glucose metabolic heterogeneity for each stage between 
lung ADC and SCC. Notably, the differences between lung 
ADC and SCC with respect to PET radiomic parameters 
seem to depend on the correlations between the parameters 
and staging. Therefore, we developed and validated 
a stage-specific radiomic-clinical nomogram that incorpo-
rated PET-based textural features and primary clinical 
features to discriminate the histological subtype of 
NSCLC. The performance of the nomograms in both the 

training and validation cohorts indicates that they had 
a favorable discriminative power and that the nomogram 
could be an effective, noninvasive alternative for the dis-
crimination of histological subtypes of NSCLC.

Previous studies have shown that lung ADC and SCC 
exhibit different glucose metabolic levels, probably due to 
different glut-1 expression levels and different tumor micro-
environments. The SUVmax and SUVmean of lung SCC were 
higher than those of lung ADC.30,31 Some investigations 
showed that the MTV and TLG were significantly higher in 

Figure 1 Feature selection using least absolute shrinkage and selection operator (LASSO) with a binary regression model. (A–C) show the LASSO tuning parameter λ with 
10-fold cross-validation for stages I, II, and III, respectively. The misclassification error was plotted versus log(λ). (D–F) show coefficient profiles of stages I, II, and III, 
respectively. The minimum criteria were chosen to identify the optimal discriminative features and are plotted with a gray vertical line.

Table 2 Selected Features and Corresponding Coefficients for Each Stage by LASSO Algorithm

Stage I Stage II Stage III

Features Coefficients Features Coefficients Features Coefficients

LGSRE 0.0805 LGZE 0.0410 RLV −0.0744

StrengthNGTDM 0.2446 ContrastCM 0.0252 ContrastNGTDM 0.1401

ZP 0.0875 SUVpeak −0.8377 BusynessNGTDM −0.1233
HGZE 0.0253 CoarsenessTFC 0.0324 SZE −0.1271

IDMCM −0.5174 MeanconvergenceTFC 0.2342 ZP 0.3261
SUVmin −0.0468 LGSZE 0.3970

SUVmax −0.2532 LGLZE −0.2040

SUVmean −0.7096 EnergyCM 0.3625
SUVsd −0.0930 SUVmin −0.0022

CoarsenessTFC −0.1296 SUVmean −0.8940

IDMTFCCM 0.0256 SUVpeak −0.3982
CodeSimilarity 0.2016 EnergyTFCCM −0.1066

LNE −0.0489
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SCC patients than in ADC patients.31,32 Similar in this study, 
the results demonstrated that when FDG PET traditional meta-
bolic parameters and texture parameters were positively cor-
related with the tumor stage, they were higher for lung SCC 
than ADC in the same stage. However, when texture para-
meters were negatively correlated with the tumor stage, they 
were lower for lung SCC than ADC in same stage. Fewer 
differences in parameters were unrelated to the tumor stage. In 
particular, the difference in texture features representing glu-
cose metabolic heterogeneity between lung ADC and SCC 
varied with different tumor stages.

All these findings provide evidence that staging and 
histological subtypes might affect the predictive efficacy 
of FDG PET radiomic analysis, thereby leading to impor-
tant bias. Consequently, there were conflicting results in 
previous studies on predicting the prognosis of NSCLC 
with 18F-FDG PET textural analysis.21,24,33–36 Therefore, 
it would be more appropriate if prediction studies based on 
FDG PET imaging were performed in patients with the 
same pathological types and the same stage unless the 
parameter was not affected by staging and histological 
subtype.

Figure 2 The sum of the absolute coefficients of features with different categories in each stage (A–C) show stages I, II, and III, respectively).
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Our study showed that there was a significant differ-
ence in glucose metabolic heterogeneity for each stage 
between lung ADC and SCC. Therefore, we aimed to 
develop a PET-based radiomic model to predict the 
NSCLC histological subtype for each stage. Recently, 
radiomics has grown as a promising approach to develop 

quantitative imaging biomarkers and predict pathological 
types, supporting therapeutic decisions in personalized 
medicine.37–39 Hyun et al40 used a machine-learning algo-
rithm with PET-based radiomic features to distinguish lung 
ADC from SCC. However, the feasibility and performance 
of the PET-based radiomic approach for NSCLC 

Figure 3 Box plots of the Rad_Score calculated from the training cohort ((A–C) show stages I, II, and III, respectively) and validation cohort ((D–F) show stages I, II, and III, 
respectively). Red and blue dots are Rad_Score values of each patient in the corresponding cohorts.

Figure 4 ROC curves were generated to assess the discriminative power of the Rad_Score ((A–C) show stages I, II, and III, respectively) and nomogram ((D–F) show 
stages I, II, and III, respectively) for predicting the subtype of lung cancer, including ADC and SCC.
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histological subtype discrimination need further explora-
tion. No stage-specific PET radiomic signature for the 
prediction of the NSCLC histological subtype was estab-
lished. Therefore, we explored a feasible way to discrimi-
nate ADC from SCC in NSCLC and verified whether 
integrating radiomic features with clinical features further 
improved the discriminative power in this study.

Selecting optimal features from a massive feature pool 
is the key procedure of a radiomic study. The less useful 
features can streamline the prediction model and prevent 
overfitting issues. In this study, 13, 5, and 12 features were 
selected from the 60 features using a LASSO regression 
algorithm for stages I, II, and III, respectively. The 

constructed radiomic signatures showed a significant dif-
ference between lung ADC and SCC (P<0.0001). Among 
these optimal radiomic features that were selected, the sum 
of the absolute coefficients of metabolic parameters was 
the highest, indicating that the metabolic parameters could 
accurately reflect the histological differences between 
ADC and SCC in NSCLC.

Primary clinical risk factors such as age, sex, smoke, site, 
and location are commonly used for the clinical diagnosis of 
patients with lung cancer, but it was unclear whether incorpor-
ating these factors with the Rad_Score would improve the 
discriminative performance. Therefore, univariate analyses 
were performed and showed that location can serve as an 
independent predictor for distinguishing ADC from SCC in 
NSCLC. Then, a holistic nomogram incorporating indepen-
dent clinical predictors with the Rad_Score was generated. 
The discriminative performance of the nomogram was evi-
dently better than that of the radiomic model, apparently 
demonstrating that integrating radiomic features with primary 
clinical features further improved the discriminative power. In 
addition, the Hosmer–Lemeshow test further demonstrated the 
good predictive precision of the nomogram.

There were several limitations in our study. First, this was 
a retrospective study and included a limited number of 
patients for each tumor stage. Especially for mixed patholo-
gical subtypes, the limited number of patients did not allow 
us to develop multiclass classifiers. Second, the texture fea-
tures of 18F-FDG PET/CT images are susceptible to factors 
that may introduce interstudy or interobserver variability in 
texture analysis, including respiratory motility, the lesion 

Figure 5 Nomograms developed using the training cohort of stage I (A), II (B), and 
III (C). The nomogram incorporates the Rad_Score and clinical risk factors.

Figure 6 Calibration curves of nomograms were plotted to assess the agreement 
between the nomograms predicted subtype probability and actual observed subtype 
probability of the validation cohort.
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morphology, partial volume effect, image acquisition mode, 
image reconstruction algorithm, tumor segmentation 
method, and image postprocessing method. These sources 
of variation must be fully addressed to transform texture 
analysis from a research tool to a clinical tool. Finally, the 
nomograms built in this study are only suited for NSCLC and 
not for small cell lung cancer or metastatic cancer.

Conclusion
The difference in glucose metabolic heterogeneity between 
lung ADC and SCC varied with different stages. Stage- 
specific PET radiomic prediction models provided more favor-
able performance for discriminating the histological subtype 
of NSCLC.
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