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Background: Chronic obstructive pulmonary disease (COPD), the third leading cause of 
death worldwide, is often underdiagnosed.
Purpose: To develop machine learning methods to predict COPD using chest radiographs 
and a convolutional neural network (CNN) trained with near-concurrent pulmonary function 
test (PFT) data. Comparison is made to natural language processing (NLP) of the associated 
radiologist text reports.
Materials and Methods: This IRB-approved single-institution retrospective study uses 
6749 two-view chest radiograph exams (2012–2017, 4436 unique subjects, 54% female, 
46% male), same-day associated radiologist text reports, and PFT exams acquired within 
180 days. The Image Model (Resnet18 pre-trained with ImageNet CNN) is trained using 
frontal and lateral radiographs and PFTs with 10% of the subjects for validation and 19% 
for testing. The NLP Model is trained using radiologist text reports and PFTs. The primary 
metric of model comparison is the area under the receiver operating characteristic curve 
(AUC).
Results: The Image Model achieves an AUC of 0.814 for prediction of obstructive lung disease 
(FEV1/FVC <0.7) from chest radiographs and performs better than the NLP Model (AUC 0.704, 
p<0.001) from radiologist text reports where FEV1 = forced expiratory volume in 1 second and 
FVC = forced vital capacity. The Image Model performs better for prediction of severe or very 
severe COPD (FEV1 <0.5) with an AUC of 0.837 versus the NLP model AUC of 0.770 
(p<0.001).
Conclusion: A CNN Image Model trained on physiologic lung function data (PFTs) can be 
applied to chest radiographs for quantitative prediction of obstructive lung disease with good 
accuracy.
Keywords: machine learning, chronic obstructive pulmonary disease, quantitative image 
analysis, natural language processing

Introduction
Deep learning techniques are rapidly being applied to medical image 
interpretation.1–3 Multiple studies show convolutional neural network (CNN) mod
els developed to detect specific image features on chest radiographs.4–9 Subsequent 
evaluation of most models asks: “did the CNN model trained on radiologist-labels 
perform as well or better than the interpreting radiologist?” These approaches to 
supervised learning require costly and time-consuming “labeling” of disease by 
radiologists.
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We pose the question:

can a CNN model based on physiologic measures of 
pulmonary disease be used to improve the identification 
of obstructive lung disease on chest radiograph images 
compared to the radiologist? 

Chest radiographs are, in essence, a “missed screening oppor
tunity” if COPD is present but not described by the radiologist.

COPD is the third leading cause of death worldwide 
but is often underdiagnosed.10–12 Airway inflammation, air 
trapping and emphysema may be secondary to smoking or 
environmental exposures and people with COPD are at 
increased risk of respiratory infections and cancer.13 

Studies report a twofold to fourfold increase in lung cancer 
risk in patients with COPD compared to those without 
airflow obstruction.14 Lung cancer is the highest mortality 
cancer in the US and is often discovered at distant stage.15 

The National Lung Screening Trial (NLST) showed a 20% 
reduction in lung cancer mortality for subjects imaged 
with CT compared to chest radiograph.16 However, 
although lung cancer screening with low-dose computed 
tomography (LDCT) is now recommended, few patients 
actually receive CT screening exams: for 2010–2015 fewer 
than 4% and in 2016 fewer than 2% of those eligible.17–19 

COPD is typically diagnosed based on PFTs. However, 
these studies are performed in a minority of individuals at 
risk. Chest radiographs are the most common imaging 
study performed worldwide. Identification of individuals 
with COPD on chest radiographs alone would be a useful 
adjunct, and, offers an opportunity to target individuals for 
LDCT screening and/or smoking cessation programs.

Our hypothesis is that a deep learning algorithm trained 
using chest radiographs with annotation from PFTs (Image 
Model) will show greater accuracy for the prediction of 
COPD than text evaluation of the associated radiologist 
clinical reports (NLP Model, via both bidirectional recur
rent neural networks and recent state-of-the-art transfor
mer architecture models).20–22 The purpose is to develop 
a CNN Image model that can be used to augment radiol
ogy clinical reports with a quantitative prediction of 
obstructive lung disease, an important pulmonary disease 
associated with significant morbidity, mortality and 
increased risk of lung cancer.

Materials and Methods
Data Acquisition
This study is approved by the University of Utah Institutional 
Review Board, including a waiver of consent (the research 

and privacy risk of the research are no more than minimal), 
approval for the study plan for patient data confidentiality 
and compliance with the Declaration of Helsinki. This sin
gle-institution retrospective study (Figure 1) uses 6749 two- 
view chest radiographs, same-day associated radiologist text 
reports, and near-concurrent PFT exams for 4436 unique 
subjects. Due to insufficient numbers of subjects with post- 
bronchodilator PFTs, pre-bronchodilator PFTs are used to 
enrich the number of cases for training. Inclusion criteria 
are: pre-bronchodilator PFT exams from 2012 to 2017 with 
an electronic medical record (EMR) search showing a two- 
view chest radiograph within 180 days. Subjects with asthma 
or cystic fibrosis (n=200, <5%) are included.23 Lung trans
plant subjects are excluded.

For 70% of the study dataset, the PFT is within 15 days 
of the chest radiograph; other time differences are as 
follows: 1, 10, 20, 30, 60 and 90 days (51%, 66%, 72%, 
79%, 87%, 92%, respectively). Table 1 shows the demo
graphics of the 4436 unique study subjects, the first PFT 
occurring within the study timeline, and COPD diagnosis 
code in the EMR if present.

PFTs
All PFTs in the study are pre-bronchodilator values, as 
used in multiple COPD studies.24–26 FEV1 is forced 
expiratory volume in 1 second. All ‘FEV1ʹ values reported 
in this paper are “percent-predicted” (%predFEV1) as 
provided by the institution’s PFT lab using the National 
Health and Nutrition Examination Survey (NHANESIII). 
FVC is forced vital capacity. COPD is defined as FEV1/ 
FVC<0.7 and Global Initiative for Chronic Obstructive 
Lung Disease (GOLD) stages indicate the severity of dis
ease based on the %predFEV1, ranging from GOLD stage 
I—mild to GOLD stage IV—very severe.27

Images
Chest radiograph exams in the initial dataset are filtered: 1) 
both posterior-anterior (PA) and lateral images must be 
present, 2) exams with greater than two images are 
excluded, and 3) only the pair of chest radiograph and 
PFT exams with the smallest date difference is used (max
imum date 180 days).

Text
The associated complete radiologist text report, including 
indication, findings and impression, is acquired for the 
chest radiograph exams.
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Dataset
Before filtering is applied, 10% of the subjects are selected 
for the validation set and 20% for the test set. There are 
4436 unique subjects. After filtering, this results in 10% 
for validation and 19% for testing. The study uses a total 
of 6749 PFT – Image/Text pairs: 4773 pairs for training, 
752 pairs for validation, and 1224 pairs for testing.

Data Preprocessing
Images are cropped using the largest centralized square 
fitting within the image, resized to 256x256 pixels, and 
normalized using the mean and standard deviation of the 
ImageNet dataset.28 The dataset is augmented by horizontal 
flipping (PA images) and extracting random 224x224 crops. 
Figure 2 shows an example of original and preprocessed 
images. The text reports are converted into a sequence of 
tokens using the spaCy tokenizer (http://spacy.io/).

Model Implementation
Image Model
The Image model (Figure 3) uses PA and lateral chest radio
graphs as inputs to two independent CNNs based on the 
Resnet-18 model, with weights from a model pretrained on 

ImageNet for initialization with the final fully connected 
layer removed.29 The output layers of both CNNs are con
catenated. The resulting vector is used as input to a block of 
fully connected layers with two hidden layers and softplus 
output non-linearity. The hidden layers use ReLU activation 
and dropout (with p=0.25).30 The outputs of the model are 
two positive real values, FEV1/FVC and %predFEV1. The 
overall model is trained end-to-end with an L1 loss. The 
batch size is 20, the initial learning rate is 0.0001, and the 
model is trained for 50 epochs using the Adam optimizer.31 

The learning rate was reduced by a factor of 10 every time the 
loss plateaued for 5 epochs.

NLP Model
The NLP pipeline regresses raw text to the same two 
positive real values, FEV1/FVC and FEV1. We experi
ment with two strong NLP models: BiLSTM, which repre
sents a standard design of recurrent neural networks, and 
RoBERTa, which represents recent state-of-the-art trans
former architecture.20–22

With the BiLSTM model, we use the Common Crawl 
version of GloVe embeddings with 100 dimensions, com
bined with character-level embeddings convoluted by 

Figure 1 Study overview. The Image Model (CNN = convolutional neural network) is trained using frontal and lateral chest radiograph images and pulmonary function test 
(PFT) data: FEV1/FVC and FEV1. For 70% of the dataset, the PFT is within 15 days of the chest radiograph, overall within 180 days. The Natural Language Processing (NLP) 
Model is trained using the associated radiologist text report for the chest radiograph and the PFT data. Two NLP models are used: recurrent neural network (RNN) and 
state-of-the-art transformer architecture. The Image Model and NLP Model are used in the testing phase to predict PFT values, and therefore the presence or absence of 
obstructive lung disease.
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a 2-dimensional filter of size 5.32 The output character 
encodings of the convolutional network are 100 dimen
sional. The character encodings and token embeddings 
(GloVe) are combined by 2-layer highway networks, 

resulting in 200-dimensional token-level encodings.33 

Such encodings are then processed by the BiLSTM with 
the same output dimensionality. The sequence of token 
encodings is aggregated via self-attention to form 

Table 1 Demographics, Spirometry and EMR Diagnosis Code for N=4436 Unique Subjects (for Subjects with More Than One PFT 
Exam, Their First PFT Exam is Reported in This Table)

Training Set Validation Set Test Set All

Total subjects (%) 3159 (71%) 440 (10%) 837 (19%) 4436 (100%)

No. of subjects
Normal PFT 2079 289 553 2921 (66%)

GOLD I 254 30 78 362 (8%)

GOLD II 492 78 126 696 (16%)
GOLD III 246 36 53 335 (8%)

GOLD IV 88 7 27 122 (3%)

Age, mean*

Normal PFT 54.6 (16) 53.5 (17) 54.1 (17) 54.4 (17)
GOLD I 63.9 (15) 66.2 (18) 63.7 (15) 64.0 (15.7)

GOLD II 60.9 (16) 60.0 (15) 60.6 (14) 60.7 (15.7)

GOLD III 60.6 (14) 52.8 (17) 63.1 (15) 60.1 (15.1)
GOLD IV 55.3 (15) 54.9 (22) 56.0 (17) 55.4 (16.1)

Male/Female
Normal PFT 892/1187 113/176 252/301 1257/1664

GOLD I 146/108 6/24 44/34 196/166

GOLD II 245/247 36/42 65/61 346/350
GOLD III 137/109 14/22 22/31 173/162

GOLD IV 48/40 3/4 14/13 65/57

PFT: FEV1/FVC*

Normal PFT 0.79 (0.05) 0.79 (0.05) 0.79 (0.06) 0.79 (0.05)

GOLD I 0.65 (0.05) 0.65 (0.05) 0.66 (0.04) 0.66 (0.05)
GOLD II 0.61 (0.07) 0.62 (0.06) 0.61 (0.06) 0.61 (0.07)

GOLD III 0.51 (0.10) 0.53 (0.10) 0.52 (0.11) 0.51 (0.10)

GOLD IV 0.39 (0.12) 0.41 (0.06) 0.40 (0.09) 0.39 (0.12)

PFT: FEV1*

Normal PFT 0.89 (0.20) 0.91 (0.20) 0.89 (0.21) 0.89 (0.20)
GOLD I 0.91 (0.09) 0.89 (0.09) 0.93 (0.09) 0.91 (0.09)

GOLD II 0.65 (0.09) 0.65 (0.08) 0.65 (0.09) 0.65 (0.09)

GOLD III 0.41 (0.05) 0.42 (0.06) 0.40 (0.06) 0.41 (0.05)
GOLD IV 0.23 (0.04) 0.22 (0.05) 0.23 (0.05) 0.23 (0.04)

COPD diagnosis code present in EMR
Normal PFT – – – 491 (16.8%)

GOLD I – – – 103 (28.5%)

GOLD II – – – 338 (48.6%)
GOLD III – – – 223 (66.6%)

GOLD IV – – – 86 (70.5%)

Notes: COPD is defined as FEV1/FVC ratio of <0.7 by PFT (spirometry). FEV1 is the amount of air that can be forcibly exhaled from the lungs in the first second of a forced 
exhalation. FVC is the amount of air that can be forcibly exhaled from the lungs after taking the deepest breath possible. The FEV1/FVC ratio is the percentage of the total 
amount of air that can be exhaled from the lungs during the first second of forced exhalation. GOLD stages indicate the severity of airflow limitation in COPD. GOLD 
I (mild): FEV1≥80% predicted, GOLD II (moderate): 50%≤FEV1<80% predicted, GOLD III (severe): 30%≤FEV1<50% predicted, and GOLD IV (very severe): FEV1<30% 
predicted. *Data in parentheses are ± standard deviation. 
Abbreviations: COPD, chronic obstructive pulmonary disease; GOLD, Global Initiative for Chronic Obstructive Lung Disease; PFT, pulmonary function test; EMR, 
electronic medical record; FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.
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a representation of the entire text, which is fed into 
a single linear layer with a soft plus activation for the 
final regression output. For training, the model parameters 
and character-level embeddings were initialized randomly 
with uniform distribution (with gain=1).34 We train this 

model for 50 epochs with learning rate 0.0001 and dropout 
rate 0.1 using the Adam optimizer.35,36

With the RoBERTa model, we fine-tuned the pre- 
trained language model for this task. We used the base 
version of RoBERTa and take the encoding of the CLS 

Figure 2 Top row. Example of frontal and lateral chest radiograph images (2048 × 2048 pixels, 12 bits per pixel) for (a) normal case: 36-year-old male, never smoker, 
pulmonary function test FEV1/FVC = 0.91, FEV1 = 0.89 and (b) COPD case: 62-year-old female, 75 pack-year smoking history, pulmonary function test FEV1/FVC = 0.51, 
FEV1 = 0.27. The FEV1/FVC ratio is the percentage of the total amount of air that can be exhaled from the lungs during the first second of forced exhalation. In COPD 
(FEV1/FVC <0.7), air is trapped in the lungs resulting in high lung volumes, flattened hemidiaphragms, increased retrosternal clear space, vascular pruning and lucent lungs as 
demonstrated in (b) images. Bottom row. Associated pre-processed images used as inputs to the deep learning image model (224 × 224 pixels, 8 bits per pixel) for the 
example (a) normal case and (b) COPD case. ImageNet normalization is not included for visualization purposes.

Figure 3 Image model architecture. The frontal and lateral images are inputs to two parallel convolutional neural networks (CNN) trained with annotation data from 
pulmonary function tests (PFTs). The outputs of the model are the PFT values FEV1/FVC and %predFEV1. The FEV1/FVC ratio is the percentage of the total amount of air 
that can be exhaled from the lungs during the first second of forced exhalation. FEV1 is the amount of air that can be forcibly exhaled from the lungs in the first second of 
a forced exhalation, while %predFEV1 is the FEV1 expressed as percent predicted value.
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token at the final layer as the text representation vector. 
This representation forms the input to a regression layer 
that has the same design as in the BiLSTM model. For 
training, we fine-tuned the model for 20 epochs with 
learning rate 0.000005, optimized by AdamW with 
a warm-up percent of 20%.37 The dropout rate for hidden 
states within the transformer model and before the last 
linear layer is 0.3.

During training, for both models, we choose the ver
sion with the best performance on the development set and 
report their results on the test set accordingly. We used 
grid search over the validation set to find the hyperpara
meters mentioned above.

Statistical Analysis
All models are trained with five different random seeds in 
order to assess the variability of results with the proposed 
approach. We compared the Image and NLP models using 
AUC (area under the receiver operating characteristic 
curve), accuracy and R2, with AUC as the primary metric. 
For FEV1/FVC, AUC and accuracy are measured by set
ting a threshold, FEV1/FVC <0.7, as a positive label for 
COPD diagnosis. For %predFEV1, AUC is measured by 
setting a threshold, FEV1 <0.5 (GOLD stage severe to 
very severe), only for cases that are classified as having 
COPD in the ground-truth. We compared the AUCs from 
the Image and NLP models using DeLong’s method for 
comparing two correlated ROC curves (pROC package in 

R version 3.6.1) with P < 0.05 considered a statistically 
significant difference. Bland–Altman plots are also 
provided.

Results
Mean age, sex ratios, and initial PFT values are similar 
between the training, validation and test datasets (Table 1). 
For the 4436 unique subjects, 66% show normal PFT 
values (2921) and 34% show obstructive lung disease by 
PFT values (GOLD stages I–IV total: 1515). The distribu
tion of severity of disease by GOLD stages I–IV (mild to 
very severe) is 8%, 16%, 8% and 3%, respectively. Male/ 
female ratios are similar for spirometry with normal PFT 
values and obstructive lung disease, the overall study ratio 
is 46% male/54% female. The mean age of subjects with 
normal PFTs (54.4) is lower than the mean age of subjects 
with disease severity GOLD stage I–III (64.0, 60.7, 60.1) 
but similar to subjects with GOLD stage IV (55.4).

Table 1 shows that less than half (49.5%) of subjects 
with PFTs indicating obstructive lung disease (GOLD stages 
I–IV total: 1515) had a diagnosis code of COPD in the EMR 
(GOLD stages I–IV total: 750). Diagnosis codes for COPD 
are present at higher levels for more severe disease: for 
GOLD stages I–IV the percentage of COPD diagnosis 
codes is 28.5%, 48.6%, 66.6% and 70.5%, respectively.

All reported results, including the scatter plots, are 
generated using the test set.

Figure 4 Receiver operator characteristic (ROC) curves for the trained models using a FEV1/FVC threshold of 0.7 for ground-truth. COPD is defined as FEV1/FVC <0.7. 
The Image model is based on frontal and lateral chest radiographs. The Natural language processing (NLP) model is based on the associated radiologist text reports. The 
average for five models is shown in the darker color line and one and three standard deviations of the results are shown in the lighter color bands.
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Performance of the Image Model
Figure 4 shows the receiver operating characteristic (ROC) 
curve for the trained Image Model using an FEV1/FVC 
threshold of 0.7 for ground-truth with COPD defined as 
FEV1/FVC <0.7. The average for five models trained with 

different random seeds is shown in the darker color line 
and one standard deviation of the results is shown in the 
lighter color band. The Image Model trained on PFT data 
results in good prediction of COPD from two-view chest 
radiograph exams (AUC 0.814±0.005) where AUC is area 
under the ROC curve. Accuracy for COPD is 0.749±0.008 
and R2 FEV1/FVC is 0.415±0.016 (Table 2).

A confusion matrix for the Image Model in Table 3 
shows the results of classification for different severities of 
disease (GOLD stages I–IV). The diagonal represents the 
line where all cases would be located if the model is 
perfect. The Image Model predicts normal PFTs for most 
actual normal cases (ground-truth from PFTs). There are 
596.0±18.0 predicted normal cases with misclassifications 
mostly of mild to moderate COPD (GOLD stage I: 24.2 
±6.9 cases and GOLD stage II: 80.4±14.0 cases), few 
misclassifications of severe disease (GOLD stage III: 
15.4±1.5) and no misclassifications of very severe disease 
(GOLD stage IV: 0±0.0). For mild to moderate COPD, 
most misclassifications result in the Image Model predict
ing normal instead of COPD: 55.0±4.3 cases for GOLD 
stage I and 80.2±11.4 for GOLD stage II. For severe and 
very severe COPD, most misclassifications by the Image 
Model still indicate COPD but one GOLD stage lower 

Table 2 Results for Chosen Metrics for All Trained Models

Metric Image Model NLP Model

AUC FEV1/FVC 0.814±0.005 0.704±0.010
Accuracy for COPD 0.749±0.008 0.669±0.016

R2 FEV1/FVC 0.415±0.016 0.185±0.013

Specificity FEV1/FVC 0.832±0.025 0.745±0.084
Sensitivity FEV1/FVC 0.630±0.040 0.563±0.082

AUC FEV1 0.837±0.003 0.770±0.007

R2 FEV1 0.512±0.004 0.348±0.013

Notes: Average results ± standard deviations are reported. The Image model is 
based on frontal and lateral chest radiographs. The NLP model is based on the 
associated radiologist text reports. FEV1 is the amount of air that can be forcibly 
exhaled from the lungs in the first second of a forced exhalation. FEV1/FVC is the 
percentage of total amount of air exhaled from the lungs during the first second of 
forced exhalation. Accuracy is determined for the COPD/Normal binary classifica
tion task. COPD is defined as FEV1/FVC ratio of <0.7. This threshold is used to 
define positive (COPD) and negative (normal) classes for calculating AUC, sensi
tivity, specificity and accuracy metrics. All reported results are generated using the 
test set. 
Abbreviations: NLP, natural language processing; AUC, area under receiver 
operator characteristics curve; COPD, chronic obstructive pulmonary disease; 
FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity.

Table 3 Test Set Evaluation: Confusion Matrices for the Image Model (Number of Chest Radiograph Cases by Predicted GOLD Stage) 
and the NLP Model (Number of Text Report Cases by Predicted GOLD Stage) for All PFT Exam/Chest Radiograph Exam Pairs from 
the Test Set, N=1224

GOLD Stage Predicted by the Image Model

Normal I II III IV

Ground-truth from PFT Normal 596±18.0 (83.2%) 24.2±6.9 (3.4%) 80.4±14.0 (11.2%) 15.4±1.5 (2.2%) 0±0 (0.0%)
I 55.0±4.3 (61.1%) 12.6±1.5 (14.0%) 21.2±1.9 (23.6%) 1.2±1.3 (1.3%) 0±0 (0.0%)
II 80.2±11.4 (43.1%) 14.6±1.8 (7.8%) 78.8±8.2 (42.4%) 12.4±2.7 (6.7%) 0±0 (0.0%)

III 48.2±4.5 (33.7%) 2.6±1.1 (1.8%) 48.6±3.1 (34.0%) 39.2±2.9 (27.4%) 4.4±1.5 (3.1%)

IV 4.4±2.1 (4.9%) 0.4±0.9 (0.4%) 11.4±4.0 (12.8%) 63±7.6 (70.8%) 9.8±3.7 (11.0%)

GOLD Stage Predicted by the NLP Model

Normal I II III IV

Ground-truth from PFT Normal 533.4±59.9 (74.5%) 15.8±22.9 (2.2%) 147.6±45.6 (20.6%) 19.2±6.5 (2.7%) 0±0 (0.0%)
I 64.2±7.9 (71.3%) 3.0±3.7 (3.3%) 22.2±5.1 (24.7%) 0.6±0.5 (0.7%) 0±0 (0.0%)

II 96.6±17.6 (51.9%) 2.6±2.9 (1.4%) 68.6±17.3 (36.9%) 18.2±5.0 (9.8%) 0±0 (0.0%)

III 53±14.2 (37.1%) 1.8±1.9 (1.3%) 52.8±11.4 (36.9%) 35.4±7.8 (24.8%) 0±0 (0.0%)
IV 8.4±2.9 (9.4%) 0±0 (0.0%) 35.6±9.0 (40.0%) 45±10.2 (50.6%) 0±0 (0.0%)

Notes: The Image model is based on frontal and lateral chest radiographs. The NLP model is based on the associated radiologist text reports. Reported total numbers differ 
from Table 1, because each subject may be associated with more than one PFT exam/chest radiograph report pair. Average results ± standard deviations (percentage of cases 
for each ground-truth label) are reported. COPD is defined as FEV1/FVC ratio of <0.7. Normal = FEV1/FVC ratio of ≥0.7. GOLD stages indicate the severity of airflow 
limitation in COPD. GOLD I (mild): FEV1≥80% predicted, GOLD II (moderate): 50%≤FEV1<80% predicted, GOLD III (severe): 30%≤FEV1<50% predicted, and GOLD IV 
(severe): FEV1<30% predicted. 
Abbreviations: NLP, natural language processing; COPD, chronic obstructive pulmonary disease; GOLD, Global Initiative for Chronic Obstructive Lung Disease; PFT, 
pulmonary function test.
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Figure 5 Receiver operator characteristic (ROC) curves for the trained models using a FEV1 threshold of 0.5 for ground-truth. COPD GOLD stage III or IV disease (severe 
to very severe airflow limitation) is defined as %predFEV1 < 50%. The Image model is based on frontal and lateral chest radiographs. The Natural language processing (NLP) 
model is based on the associated radiologist text reports. The average for five models is shown in the darker color line and one and three standard deviations of the results 
are shown in the lighter color bands.

Figure 6 Scatter plots showing the results of regression of the trained models on the test set. The Image model is based on frontal and lateral chest radiographs. The 
Natural language processing (NLP) model is based on the associated radiologist text reports. The blue dashed line represents the line where all points would be located if 
the model is perfect. The purple lines represent the threshold for COPD, defined as FEV1/FVC < 0.7.
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than the ground-truth stage. For actual GOLD stage III, the 
Image Model predicts 48.6±3.1 cases of GOLD stage II. 
For actual GOLD stage IV, the Image Model predicts 63.0 
±7.6 cases of GOLD stage III.

Figure 5 shows the ROC curve for the trained Image 
Model using a %predFEV1 threshold of 50% for ground- 
truth, only for cases classified as having COPD in the 
ground-truth. %predFEV1 <50% is GOLD stage III or 
IV (severe to very severe disease). This evaluates the 
Image model in the task of determining the severity of 
disease, assuming that we know the subject has COPD. 
The AUC is 0.837±0.003 for determination of severe dis
ease with R2 FEV1 0.512±0.004 (Table 2).

Figures 6 and 7 show scatter plots and Bland–Altman 
plots of the results of the Image Model for both output 
variables: FEV1/FVC and %predFEV1. When evaluating 
the training dataset only, the model had an R2 FEV1/FVC 
of 0.922±0.004 and an R2 FEV1 of 0.937±0.007, high
lighting a gap between testing scores and training scores. 
The choice of small CNN depth for the tested model is 
related to the pronounced overfitting of the model when 
using deeper architectures and validating on the validation 
dataset. More training data, in theory, could help in 

reducing the gap between training scores and validation/ 
test scores and allow the use of deeper architectures.

Performance of the NLP Model
Figure 4 shows the corresponding ROC curve for the trained 
NLP Model using an FEV1/FVC threshold of 0.7 for 
ground-truth with COPD defined as FEV1/FVC <0.7. The 
NLP Model trained on PFT data results in moderate predic
tion of COPD (AUC 0.704±0.010). Accuracy for COPD is 
0.669±0.016 and R2 FEV1/FVC is 0.185±0.013 with less 
predictive metrics compared to the Image Model (Table 2).

The confusion matrix for the NLP Model (Table 3) 
shows greater numbers of misclassified cases by GOLD 
stage severity that are at least two GOLD stages different 
from the ground-truth compared to the Image Model.

The corresponding ROC curve for the NLP Model in 
determining severe to very severe COPD in subjects with 
known COPD is shown in Figure 5. The AUC % 
predFEV1 is 0.770±0.007 and R2%predFEV1 is 0.348 
±0.013. NLP Model metrics are less predictive for obstruc
tive lung disease compared to the Imaging Model.

Scatter plots and Bland–Altman plots of the results of 
the NLP Model in Figures 6 and 7 show the predictions of 

Figure 7 Bland–Altman plots showing the error of the trained models on the test set as a function of the average between ground-truth and model predication. The blue 
dashed lines represent 1.96 standard deviations from the average for the error data points, while the green line represents the average error. These graphs are plotted using 
the library pyCompare (jaketmp/pyCompare v1.5.1; http://doi.org/10.5281/zenodo.4001461).
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the NLP model for both output variables: FEV1/FVC and 
%predFEV1.

One preliminary version of the NLP Model also eval
uated common keywords related to COPD in radiologist 
text reports, by frequency including “emphysema”, 
“hyperinflation”, “COPD”, ‘flattened diaphragms’, and 
“vascular pruning”, with frequency order determined by 
radiologist chest radiograph text report search (Nuance 
mPower by Montage, 2018.) The keywords did not 
improve the model and are not a part of the final results.

Comparison of the Image Model and the 
NLP Model
Differences between Image Model and NLP Model AUCs 
are statistically significant, P < 0.001, for prediction of 
obstructive lung disease (FEV1/FVC <0.7) and severe to 
very severe GOLD stage III–IV disease (%predFEV1 
<50%) using DeLong’s test for two correlated ROC 
curves. We also tested if the averages of the squared errors 
of the Image and NLP regression models are different, 
since regression is used directly instead of classification, 
with paired Wilcox test results P < 0.001 for both FEV1/ 
FVC and FEV1.

Figures 6 and 7 show that both models, to different 
extents, predict values towards the mean when compared 
with the ground-truth in the extremes of the range of 
values.

Discussion
The results of this investigation strongly support our 
hypothesis that a deep learning (DL) algorithm trained 
using chest radiograph images with annotations from near- 
concurrent physiologic measures of lung function shows 
greater accuracy for the prediction of COPD than NLP 
evaluation of the associated radiologist clinical text 
reports. Implications of our findings include:

Physiologic measures of pulmonary function can be 
used to train CNNs for identification of obstructive lung 
disease on imaging. Labeling datasets with physiologic 
parameters avoids the time-consuming labeling and inter
pretation tasks by the radiologist. More importantly, it 
eliminates the inherent bias and limitations in these radi
ologist labels. For example, radiologist labels of “emphy
sema” used in other labeling studies may be ambiguous, 
describing features of lucent lungs, which may be second
ary to either emphysema or air trapping from small air
ways disease. Physiologic parameters provide a gold 

standard, with less bias, and allow the algorithm to eval
uate for imaging features that may not be assessed by the 
radiologist. In the case of COPD, pulmonary function 
tests, specifically the FEV1/FVC ratio, define the presence 
and severity of COPD in the appropriate clinical setting 
per the World Health Organization.27 For those with air
flow obstruction, severity is determined by the % 
predFEV1. Radiographic imaging features of obstructive 
lung disease, including high lung volumes (hyperinflation), 
flattened hemi-diaphragms, increased retrosternal clear 
space, and upper lung predominant lucency and vascular 
pruning are low spatial resolution features that are not lost 
in the image downsizing required for inputs to the CNN 
(Figure 2).

An Image Model CNN for prediction of COPD can add 
information to augment the radiologist report. The Image 
Model demonstrates better prediction for COPD compared 
to the NLP Model from radiologist text reports, suggesting 
that the DL Image Model can be used to augment the 
radiologist text reports by generating a prediction of 
COPD, when present. There are multiple reasons why 
radiologist reports may not include text indicating 
COPD. Exams are ordered for other indications (eg, 
“rule out pneumonia”) and COPD features, particularly if 
not severe, may not be recognized or assessed. Chest 
radiographs are a high-volume modality with often narrow 
indication, eg, “trauma”, and clinical service demands may 
require short, very directed reports. It is also possible that 
radiologists may not recognize airflow obstruction in many 
instances.

Deep learning can be used to consider routine chest 
radiographs a “screening opportunity” for obstructive lung 
disease. Our results show that a DL Image Model, while 
not perfect, improves detection of obstructive lung disease 
compared to current practice. By generating a numeric 
metric of disease (predicted FEV1/FVC), the routine 
chest radiograph can be considered a screening opportu
nity for COPD. Results can be used to direct patients to 
medical care of COPD, lung cancer screening (for those 
meeting age and smoking history criteria) or smoking 
cessation programs.

Our observations on the performance of PFT annota
tion for the CNN Image Model compare favorably to other 
relevant studies using deep learning. Radiologist-labels for 
“emphysema” are used in these studies to develop net
works with reported AUC values of 0.815, 0.829, and 
0.926 for the detection of emphysema.4 Our findings of 
significant under-diagnosis of COPD, with less than 50% 
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of the subjects with COPD by spirometry (PFTs) having 
a COPD diagnosis code in the EMR in our study popula
tion, are similar to other studies.10

The limitations of this study include the study size, 
single-institution cohort, and time difference between the 
chest radiographs/text reports and the PFT exam (up to 
180 days). Our study uses pre-bronchodilator PFTs to 
enrich the number of cases for training which does not 
distinguish between obstructive lung disease from COPD 
(emphysema or bronchitis) and that from asthma. 
Furthermore, our FEV1/FVC <0.7 threshold does not 
exclude patients with “mixed” lung disease—those with 
both obstructive and restrictive lung disease, eg, COPD 
and pulmonary fibrosis. The selection of the maximum 
180-day date difference was made to increase the number 
of cases in the study. Although this time difference intro
duces the possibility of an acute illness, eg acute exacer
bation or pneumonia, that is present on one modality but 
not the other, we found slightly improved DL Image 
Model performance with 180-day date difference than 
with 2-day and 10-day date differences because of the 
added number of training cases (not shown). Large, 
diverse multi-institutional cohorts will be required to eval
uate the generalizability of the CNN Image Model.

Conclusion
In summary, our study findings show improved prediction 
of COPD for a CNN Image Model trained with physiolo
gic data (PFTs) compared to NLP Model evaluation of 
radiologist text reports trained with PFTs. This comparison 
of models, to our knowledge, is a novel approach for 
assessing the identification of obstructive lung disease on 
chest radiographs. Our study conclusions using deep learn
ing to numerically predict airflow obstruction on routine 
chest radiographs support the goal of better detection of 
disease. Results suggest that a CNN model trained on 
physiologic lung function data can be used to augment 
the clinical radiologist report for improved identification 
of COPD, an under-diagnosed disease and risk factor for 
lung cancer.
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