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Abstract: Microcirculation is a particular organ of the cardiovascular system. The goal of 
this narrative review is a critical reappraisal of the present knowledge of microcirculation 
monitoring, mainly focused on the videomicroscopic evaluation of sublingual microcircula-
tion in critically ill patients. We discuss the technological developments in handheld video-
microscopy, which have resulted in adequate tools for the bedside monitoring of 
microcirculation. By means of these techniques, a large body of evidence has been acquired 
about the role of microcirculation in the pathophysiological mechanisms of shock, especially 
septic shock. We review the characteristics of sublingual microcirculation in septic shock, 
which mainly consist in a decrease in the perfused vascular density secondary to a reduction 
in the proportion of perfused vessels along with a high heterogeneity in perfusion. Even in 
patients with high cardiac output, red blood cell velocity is decreased. Thus, hyperdynamic 
flow is absent in the septic microcirculation. We also discuss the dissociation between 
microcirculation and systemic hemodynamics, particularly after shock resuscitation, and 
the different behavior among microvascular beds. In addition, we briefly comment the effects 
of some treatments on microcirculation. Despite the fact that sublingual microcirculation 
arises as a valuable goal for the resuscitation in critically ill patients, significant barriers 
remain present for its clinical application. Most of them are related to difficulties in video 
acquisition and analysis. We comprehensively analyzed these shortcomings. Unfortunately, 
a simpler approach, such as the central venous minus arterial PCO2 difference, is 
a misleading surrogate for sublingual microcirculation. As conclusion, the monitoring of 
sublingual microcirculation is an appealing method for monitoring critically ill patients. 
Nevertheless, the lack of controlled studies showing benefits in terms of outcome, as well 
as technical limitations for its clinical implementation, render this technique mainly as 
a research tool. 
Keywords: microcirculation, monitoring, sepsis, shock

Introduction
Microcirculation is the ultimate organ of the cardiovascular system. 
Microcirculation is a heterogenous and complex network, composed by arterioles, 
capillaries and venules that connect the arterial and venous system. Its main 
function resides in satisfying tissue metabolic demands, which is achieved by 
regulation of organ perfusion and distribution of oxygen flux. Oxygen exchange, 
carbon dioxide and protons removal, transport of hormones, nutrients, drugs and 
immune response, among other functions, occur at a microcirculatory level.

The regulation of blood flow takes places at three levels: central, regional 
and microcirculation. Each level has different determinants and regulatory 
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mechanisms.1 Importantly, blood flow directed to each 
tissue is carefully determined by local metabolic needs. 
Under normal conditions, the cardiovascular system is 
able to meet these demands by restricting oxygen deliv-
ery to regions with low metabolic rate while increasing 
blood flow to regions with high requirements. 
Redistribution of blood flow among tissues involves 
extrinsic and intrinsic factors. Extrinsic regulation is 
accomplished by neural (autonomic) and humoral (hor-
mones) mechanisms. For instances, α-adrenergic recep-
tor-mediated vasoconstriction is a main determinant of 
blood flow redistribution. On the other hand, blood flow 
within tissues is regulated by intrinsic mechanisms that 
includes metabolic and vascular control. Vasodilation in 
response to hypoxia or preservation of blood flow 
despite changes in perfusion pressure are good examples 
of these mechanisms, respectively.2

Since the main goal of shock resuscitation is the 
normalization of tissue perfusion and oxygenation, the 
classic approach based on the correction of blood pres-
sure and cardiac output might fail to correct tissue 
hypoxia and hypoperfusion. During the resuscitation of 
shock, two different responses have been described.3 

The first is characterized by hemodynamic coherence, 
which implies that the correction of systemic cardiovas-
cular variables results in a parallel improvement in 
tissue perfusion. Conversely, the other consists in the 
loss of the hemodynamic coherence. In this case, the 
normalization of systemic hemodynamics is unable to 
correct tissue perfusion and oxygenation. Septic shock is 
the paradigm of this form of dissociation. Even though 
any type of shock might evolve to this condition, as 
a consequence of persistent inflammatory response.4 

Consequently, microcirculatory shock can be defined as 
a situation in which microvascular flow is insufficient to 
maintain tissue oxygenation despite of normal(ized) sys-
temic hemodynamics.5 Therefore, the monitoring of 
microcirculation during resuscitation seems necessary 
to guarantee the restoration of tissue perfusion and oxy-
genation. This evaluation of the microcirculation might 
help to detect patients at higher risk of worse outcome, 
to guide therapy as a target of resuscitation, to monitor 
the response to therapy, and to unmask persistent shock 
in apparently well-resuscitated patients.6

This point-of-view review will be focused on the direct 
assessment of sublingual microcirculation, the most suita-
ble window, by means of videomicroscopy.

Development of Clinical 
Videomicroscopy
For many years, the clinical approach to the direct intravital 
observation of microcirculation was restricted to the use of 
bulky capillary microscopes, which were mainly utilized on 
the nailfold capillary bed. The introduction of the orthogonal 
polarization spectral (OPS) imaging device was the first mean-
ingful step for the bedside evaluation of the microcirculation.7 

The technique consists of a handheld microscope (HVM) that 
emits polarized light in the wavelength of the spectrum absorp-
tion of the hemoglobin. The device has a light guide and 
a disposable sterile lens at the tip, which can be placed on the 
tissues (eg, sublingual or intestinal mucosa). Then, the flowing 
red blood cells (RBC) can be imaged as dark corpuscles flow-
ing through the microcirculation without the need of transillu-
mination or fluorescent dyes. This technique was properly 
validated by comparisons with the standard fluorescence 
microscopy.8,9 The second generation of HVM was the side-
stream dark field (SDF) imaging device.10 Compared to OPS, 
it allows a better capillary contrast and quality visualization. 
Moreover, SDF has been widely used in experimental and 
clinical scenarios. The latest generation of HVMs employs 
Incident Dark Field (IDF) illumination technique with higher 
resolution optic lens and autofocusing mechanism.11 The 
improved optical system and the lighter weight of IDF imaging 
allow a field of view, which is three times larger than the 
previous generation HVM devices, along with better image 
quality. Consequently, a study showed that up to 30% more 
sublingual capillaries could be identified by IDF compared to 
SDF.11 In contrast, an experimental study found that SDF and 
IDF have a similar capability to identify sublingual vascular 
densities during both baseline and low flow (shock) states.12 

Despite this controversy, IDF results in better contrast, sharp-
ness, and image quality.12,13 A new version of SDF has also 
demonstrated superior image acquisition when compared to its 
predecessor.14 A comparison between IDF and new SDF sys-
tem has not been performed yet.

Although there are technical differences among the 
different HVMs, adequate technologies are nowadays 
available for the bedside monitoring of microcirculation.

Proper Acquisition of 
Microcirculatory Videos
The first step in the monitoring of microcirculation by 
means of HVM is the acquisition of high-quality 
videos15 (Figure 1). For this purpose, six factors should 
be carefully taken into account:
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1) Illumination: It should be homogenous in the whole 
screen, avoiding excessive brightness or darkness. Vessels 
should be easily identifiable.

2) Duration: It should be enough to allow the charac-
terization of the type of flow in individual vessels, ie, 
intermittent flow. The ideal duration is 20 seconds.

3) Focus: Images should have adequate sharpness in 
order to allow RBC identification while vessels border and 
plasma gaps are visible.

4) Content: the presence of bubbles and saliva may 
partially hide the view of vessels. In addition, a high 
proportion of looped vessel structures warns about a non- 
representative territory.

5) Stability: The overall image movement should be 
limited to allow an adequate video stabilization that avoids 
motion blur and permits RBC velocities measurement.

6) Pressure: The application of excessive pressure with 
consequent compression artifacts is the most common and 
severe problem in video acquisition. It can result in the 
diagnosis of inexistent microcirculatory abnormalities. 
Such artifacts are suspected when flow is uneven, stopped, 
intermittent, slow, or bidirectional, in large microvessels. 
Progressive release of the pressure, followed by flow 
restoration confirms the artifacts. Videos with compression 
artifacts are not suitable for analysis.

A score of good (0), acceptable (1), or unacceptable 
(10) should be assigned for the six categories. Videos with 
a score of 10 in any category are not analyzable because 
they may produce false results.

The difficulties associated with the video acquisition 
are not easy to overcome, even for researchers. This point 
is illustrated by a recent multicenter study, in which the 
investigators were previously trained in video 
acquisition.16 Yet the authors stated that the proficiency 
of the study team members was demonstrated before the 
beginning of the study, 20% of the time points lacked of 
images of suitable quality for analysis. Insufficient quality 
was mainly explained by pressure (40%) and content arti-
facts (30%).

Analysis of Microcirculatory Videos
A key issue for the application of videomicroscopy in the 
clinical scenario is the proper quantification of the micro-
vascular abnormalities. An objective and quantitative 
assessment is desirable in order to identify abnormalities 
and to monitor the response to therapeutic modalities. The 
evaluation should be focused on small vessels (<20 μm), 
albeit the patency of flow in larger microvessels (venules 
and arterioles) is required to rule out compression artifacts. 
The first approach to the clinical analysis of sublingual 
microcirculatory videos was the identification of the num-
ber of microvessels and the characteristics of blood flow, 
which was performed by eye.17 In this analysis, a grid 
consisting of three equidistant horizontal and three equidi-
stant vertical lines are drawn in the screen. Then, the total 
vascular density (TVD) is estimated as the number of 
vessels crossing these lines divided by the total length of 
the grid. Additionally, the proportion of perfused vessels 
(PPV) is calculated as the ratio between those with con-
tinuous flow ‒ normal or sluggish ‒ and the total number 
of vessels. Consequently, the perfused vascular density 
(PVD) is derived as the product of the TVD by the PPV. 
On the other hand, the features of microvascular perfusion 
have been evaluated as the microvascular flow index 
(MFI). For this purpose, the image is divided into four 
quadrants and the predominant type of flow (absent = 0, 
intermittent = 1, sluggish = 2, and normal = 3) is assessed 
in each quadrant. Then, the MFI is computed as the aver-
age of the predominant flow in each of the four 
quadrants.18 Another approach to the MFI determination 
is to average the type of flow of each individual vessel.19 

Yet this procedure is more cumbersome, the resultant MFI 
shows a better correlation with the actual red RBC 
velocity.

Microcirculatory heterogeneity is usually reported as 
the heterogeneity flow index, which is calculated as the 
difference between highest MFI minus the lowest site MFI 

Figure 1 High-quality image of the sublingual microcirculation obtained by means 
of incident dark field (IDF) videomicroscopy, with good contrast, adequate focus, 
and even illumination.
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divided by the mean MFI.20 Another assessment of hetero-
geneity is the coefficient of variation of RBC velocity.21

The first consensus conference about the evaluation of 
microcirculation stated that the ideal analysis report should 
include measurements of vessel density, perfusion indices, 
and heterogeneity.22 Measurements of density (TVD and 
PVD) and perfusion (MFI, PPV, and RBC velocity) refer 
to the diffusional and convective components of the micro-
vascular oxygen transport, respectively. The most compre-
hensive variable in the microcirculatory evaluation is PVD 
because it takes into account the diffusional (density) and 
the convective (presence of continuous flow) determinants 
of microcirculatory oxygenation.

The simplest approach to TVD is to count the number 
of microvessels present in the screen or crossing a -
gridline.17 An exact determination of the TVD can be 
accomplished by means of software analysis. Until now, 
the only validated software for the microcirculatory ana-
lysis is AVA 3.2.23 Actually, it does not allow an automatic 
analysis but a software-assisted analysis. Despite the fact 
that it is time-consuming, it gives a precise determination 
of TVD as length by surface (mm/mm2). A manual correc-
tion of background defects, which are misinterpreted as 
vessels, is possible. Besides, microvessels unrecognized 
by the software can be manually drawn. Then, the PVD 
can be calculated as the TVD multiplied by the PPV. In 
addition, RBC can be measured in individual microvessels 
by the use of space-time diagrams. This procedure is 
cumbersome and requires interactions with the operator. 
AVA software has been properly validated and should be 
considered the gold standard for comparisons with other 
methods.23

Although AVA software assisted analysis gives an 
exact assessment of microcirculation, it is time- 
consuming and requires off-line analysis performed by 
trained investigators. To target the microcirculation as an 
end-point for resuscitation, an automated real-time analy-
sis of videos is required. Recently, MicroTools, a new 
software, which enables automated quantification of capil-
lary density and red blood cell velocity in HVM has been 
developed.24 It was compared and validated against AVA 
3.2 software. Beyond the precise determination of TVD 
and PVD, it measures RBC velocity in every microvessel. 
In this way, it might give a complete depiction of micro-
vascular perfusion. Even though this software constitutes 
a milestone development in microvascular analysis, we 
have some concerns about the published results. In the 
validation study, 53 images taken in experimental septic 

shock and controls pigs were analyzed by the two meth-
ods. Although good correlations were observed for TVD, 
PVD and PPV between both methods, there was 
a considerable lack of agreement with the results obtained 
with AVA 3.2 software. Accordingly, 95% limits of agree-
ment between both methods were wide: 13.2 and 
12.3 mm/mm2 for TVD and PVD, respectively; 0.34 for 
the PPV, and 329 μm/s for RBC velocity. As stated by 
Bland and Altman, these values are not clinically accep-
table and cannot be considered interchangeable.25 In addi-
tion, values of RBC velocity were quite lower than those 
previously reported in clinical and experimental 
research.23,26–28 In 53 HVM image sequences, 2116 ves-
sels were detected by the algorithm, 1922 of which were 
classified as capillaries. These findings imply that there 
was an average of 36 capillaries per video. These figures 
are quite lower than the usual number of about 200 per 
video identified by AVA 3.2 software in IDF images, in 
both sheep and humans (unpublished data). A potential 
advantage of the automatic software is the measurement 
of RBC velocity in every capillary. According to the pre-
vious discussion, however, MicroTools measured velocity 
in only 36 vessels per video, which is higher than what it 
is usually performed with AVA software (20/video), but 
not extremely different. Therefore, we believe that further 
validation of this software is required before considering it 
as interchangeable with the gold standard.

Another approach to the quantification of the micro-
vascular disorder is real-time point-of-care (POC) assess-
ment, which means that a rapid evaluation is performed by 
eye, during or immediately after the video acquisition. The 
aforementioned task force stated that POC evaluation at 
the bedside shows good agreement with off-line analysis. 
In our opinion, however, the supporting evidence is weak. 
In a study comparing POC and offline determination of 
MFI, 95% limits of agreement for the simultaneous mea-
surements were unacceptable wide.29 The lack of inter-
changeability was further confirmed by different 
studies.18,30,31 Other recent studies claim the advantages 
of POC analysis but they have conceptual mistakes, such 
as considering that 25% is the limit of normality for 
unperfused vessels, which actually is a severe alteration. 
Another study used an MFI greater than 2.5, a PCD greater 
than 10.3 mm/mm2, and a PPV greater than 0.64 as cutoff 
points to define the microcirculation as good.32 The main 
weakness of POC assessment is that considers as normal 
what actually are moderate-to-severe alterations. Although 
these approaches might identify gross abnormalities, they 
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probably fail to detect minor or subtle alterations, which 
are more commonly present in most of the critically ill 
patients. They could also fail to recognize changes from 
basal measurements. Accordingly, a recent study showed 
that a POC evaluation failed to notice microcirculatory 
abnormalities, which were identified by the off-line 
analysis.33 Therefore, its usefulness is quite limited.

Microvascular Alterations in Critical 
Conditions
To better characterize microvascular abnormalities, 
a consensus on the assessment of sublingual microcircula-
tion in critically ill patients presented a classification that 
defines the four most common microcirculatory alterations 
previously described in various clinical scenarios.6 This 
classification comprises:

Type 1: complete stagnated capillaries (circulatory 
arrest and excessive use of vasopressors).

Type 2: reduction in number of capillaries with con-
tinuous flow (hemodilution).

Type 3: stopped flow vessels next to vessels with 
flowing cells (sepsis, hemorrhage, and hemodilution).

Type 4: hyperdynamic capillary flow (hemodilution, 
sepsis).

We have some concerns about some statements of this 
classification. Obviously, cardiac arrest expectedly results 
in complete stopped microvessels. Even though excessive 
use of vasopressors might decrease perfused capillary 
density,34 the complete microvascular stagnation has only 
been reported as an anecdotal finding.35 In addition, the 
decrease in the proportion of capillaries with continuous 
flow is almost a ubiquitous characteristic in any clinical 
situation associated with microvascular disorders (sepsis, 
hemorrhage, cardiac failure, post-operatory, etc.). The type 
3, which is equivalent to heterogeneity, has also been 
described in many clinical and experimental 
situations.21,26 Finally, hyperdynamic microcirculation 
seems to be more a theoretical speculation than an actual 
condition. As a matter of fact, RBC velocity is low in 
either septic shock or hemodilution.36,37

In our opinion, the proposed classification could not 
contribute to a better differentiation of clinical entities. As 
the consensus pointed out, these types of alterations can 
occur at the same time, as an expression of different 
pathogenic mechanisms can occur, especially in complex 
disease states such as sepsis. Actually, the overlap among 
the different types of alterations develop not only in sepsis 

but also in other pathophysiologic conditions such as 
hemorrhagic shock, reperfusion injury and hemodilution.

Furthermore, another relevant microcirculatory compo-
nent is the glycocalyx, which can be also assessed by 
videomicroscopic techniques. This review, however, is 
focused on the variables discussed in the recent 
consensus.6

Sublingual Microcirculation in Sepsis
Characteristics of the Microcirculation in 
Septic Shock
Microcirculation can be affected in septic shock by several 
mechanisms. These include endothelial dysfunction, gly-
cocalyx degradation, capillary leak, loss of vascular reac-
tivity and autoregulation, and microthrombosis.38 In 
experimental studies, septic microcirculation is character-
ized by increased number of unperfused vessels, reduced 
PCD, and increased heterogeneity.39–41 Consequently, 
a functional shunting of oxygen from arterioles to venules 
might develop, decreasing oxygen extraction ratio (O2 

ER).42

A landmark study showed the presence of severe 
abnormalities of sublingual microcirculation in septic 
patients.17 The alterations consist in: 1) decrease in vas-
cular density; 2) reduction in PPV resulting from an 
increased number of vessels with stopped or intermittent 
flow; and 3) increase in heterogeneity. Further studies 
demonstrated that these disorders are more severe in non-
survivors than in survivors,21,29,43 improve over time only 
in survivors,44 and are independent predictors of mortality 
in septic patients.45 Therefore, sublingual microcirculation 
has relevant prognostic implications in sepsis.

We performed the first quantitative evaluation of sub-
lingual microcirculation by means of a software-assisted 
analysis, in normal volunteers and patients with septic 
shock.21 The study found that septic microcirculation is 
characterized by 1) decrease in PCD that entirely results 
from the reduction in the PPV, given that the TVD is 
preserved. 2) Increase in heterogeneity. 3) Decrease in 
RBC velocity (Figures 2 and 3). While PVD and hetero-
geneity were more affected in nonsurvivors than in survi-
vors, RBC velocity was similar in both. Thus, the 
compromise of diffusional oxygen availability variables, 
such as PCD and heterogeneity, are more associated to 
mortality than a pure convective parameter such as RBC 
velocity. Actually, the most striking difference between 
healthy volunteers and patients with septic shock, as well 
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as between survivors and nonsurvivors, was in heteroge-
neity flow index. In another study, such difference in the 
heterogeneity flow index was not found.16 Yet, there was 
a nonsignificant trend to increased heterogeneity in non-
survivors, which was about 50% higher than in survivors. 
Discrepancies between the studies might be related to the 
approach for the characterization of microvascular flow. In 
the quoted study, MFI and heterogeneity were determined 
by quadrant analysis, instead of vessel by vessels, as we 
did.21

During the early resuscitation of septic shock, micro-
circulation can be correlated with systemic cardiovascular 
variables.29,46 Thereafter, the microcirculation is fre-
quently dissociated from systemic hemodynamics.17,21,44 

Consequently, microvascular perfusion cannot be pre-
dicted by systemic hemodynamics. In nonsurvivors from 
septic shock, however, severe microvascular abnormalities 
go along with lactic acidosis, tachycardia, and high doses 
of norepinephrine.21,43

The presence of hyperdynamic flow in the septic 
microcirculation is controversial. The increase in RBC 

velocity might decrease tissue O2ER. A mathematical 
model stated that a short RBC capillary transit time 
might not allow the complete unload of O2.47 The exis-
tence of hyperdynamic flow has been supposed, but never 
clearly shown. An experimental study described an 
increased proportion of fast-to normal-flow capillaries 
but the number capillaries with high flow were unchanged. 
Consequently, this finding was explained by the reduction 
in the number of capillaries with normal flow.40 In con-
trast, RBC velocities were low in other experimental 
studies.27,48,49

We studied the RBC velocity by means of space-time 
diagrams, in healthy volunteers and patients with septic 
shock. Surprisingly, RBC velocities in sublingual capil-
laries were quite similar in patients with either normody-
namic or hyperdynamic septic shock. In both situations, 
there was a shift of the histogram of RBC velocity to 
lower values, compared to healthy volunteers36 (Figure 
4). Even after a fluid challenge that improved cardiac 
index from 2.6 ± 0.5 to 3.3 ± 1.0 L/min/m2, RBC velocity 
increased from 912±270 to 1064±200 μm/s but remained 
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lower than 1331±90 μm/s, which are the values found in 
healthy volunteers.50

In contrast to septic shock, hyperdynamic capillaries 
were found during cardiac surgery and in clinically stable 
cirrhotic patients, especially in those with high MELD 
scores.51,52 Both conditions can be associated with distri-
butive alterations in cardiac output.

Heterogeneity Among Different 
Microvascular Beds
Beyond the presence of microvascular heterogeneity 
within the sublingual microcirculation, a further question 
is if this microvascular bed reflects other territories, such 
as the gut mucosa. Otherwise, intestinal hypoperfusion 
might develop despite the preservation of sublingual 
microcirculation. Villi hypoperfusion has been associated 
with barrier dysfunction, with subsequent translocation of 
bacteria and their products to the systemic circulation, 
which is putative mechanism of multiple organ failure.53 

Sublingual and gut microcirculation behaved differently in 

some experimental situations. In a model of sheep endo-
toxemia, ileal villi microcirculation persisted hypoperfused 
albeit the normalization of sublingual perfusion.41 In 
another study, fluid resuscitation improved both territories, 
but villi PVD remained hypoperfused.54 In contrast, in 
a model of cholangitis, abnormalities were similar in 
both microvascular beds.27 The findings of the latter 
study might be explained by a reduction in the PPV to 
about 0.30, which is an extreme and uncommon alteration. 
Accordingly, a more homogeneous disorder might have 
affected both territories. In patients with abdominal sepsis, 
sublingual and intestinal stoma MFIs had a poor correla-
tion during the first postoperative day.55 We also noticed in 
patients with abdominal sepsis, a similar dissociation 
between sublingual and intestinal microcirculation at base-
line and after a fluid challenge.50 Intravascular volume 
expansion improved the sublingual microcirculation but 
the intestinal villi persisted ischemic. Furthermore, the 
intestinal microvascular indices were more severely com-
promised in nonsurvivors than in survivors, but sublingual 
variables were similar. Nonetheless, these results do not 
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Figure 4 Histograms of capillary red blood cell (RBC) velocities. (A) Healthy volunteers. (B) Patients with normodynamic septic shock. (C) Patients with hyperdynamic 
septic shock. Reproduced with permission of the Americal Thoracic Society. Copyright © 2016 American Thoracic Society. All rights reserved. Edul VS, Ince C, Vazquez AR, 
et al. Similar Microcirculatory Alterations in Patients with Normodynamic and Hyperdynamic Septic Shock. Ann Am Thorac Soc. 2016;13(2):240–247).36 Annals of the 
American Thoracic Society is an official journal of the American Thoracic Society.
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challenge the established value of sublingual microcircula-
tion as a prognostic index in septic patients, but simply 
reflect that, in these surgical patients, the local ischemia in 
the villi is probably more relevant than the state of perfu-
sion in other vascular beds. Accordingly, isolated villi 
ischemia might affect the outcome in the absence of 
microvascular disorders in other territories because of the 
putative role of that vascular bed in the development of 
multiorgan failure.53 Nevertheless, the most sensitive 
microvascular bed seems the kidney. In experimental mod-
els of hemorrhagic and septic shock, renal peritubular 
capillaries are more severely disrupted than sublingual 
and villi microcirculation.56,57

Microcirculatory Response to 
Resuscitation
Different therapeutic modalities might correct microcircula-
tory alterations. Since a detailed review of them exceeds the 
scope of this review, we only summarize the effects of 
routinely used treatments such as fluids, vasopressors and 
inotropes. In spite of these results, a recent sub-analysis of 
a large multicenter randomized controlled study showed 
that the characteristics of sublingual microcirculation were 
similar in the three arms of early resuscitation of septic 
shock, albeit the use of fluids, vasopressors and inotropes 
was different.16 Given that blood pressure, lactate and mea-
sures of outcome did not differ among the groups, an 
explanation for these results might be that the final effects 
of the resuscitation strategies on systemic hemodynamics 
and microcirculation had also been similar. Unfortunately, 
well-designed controlled trials aimed at improving micro-
circulation are lacking.

Fluids
Fluids are the first approach in the resuscitation of septic 
shock. The effects of fluids on the microcirculation depend 
on several factors.58 Fluids can improve convective micro-
vascular flow because of the increases in cardiac output and 
blood pressure. Nevertheless, an excess in intravascular 
volume expansion can reduce diffusional microvascular oxy-
gen transport because of the development of tissue edema. 
This might decrease the PVD and the area for gas exchange, 
and increase the diffusional distance. Additionally, a lower 
viscosity might reduce capillary flow and hematocrit.59

Regarding the type of fluid, many experimental studies 
demonstrated positive effects of starches on the 
microcirculation.60,61 In addition, a small-randomized con-
trolled study showed better effects than saline solution on 

sublingual microcirculation.62 The untoward effects of 
starches, however, preclude their utilization in critically 
ill patients.63

Another important issue is the selection of patients who 
might benefit from volume administration. The timing of 
solution administration is a key factor. In sepsis, the early 
administration (<24 h) improve sublingual microcirculation 
but the delayed indication (>48 h) is ineffective.64 Patients 
with septic shock and fluid responsiveness improve the sub-
lingual microcirculation in response to fluid challenge. These 
changes correlated with variations in cardiac output.65

The effects of fluid resuscitation also depend on the 
basal state of microcirculation. In patients with an MFI 
<2.6, there were improvements in microcirculation and 
compromised organ perfusion.66 In contrast, no benefits 
arose with MFI ≥2.6. We showed that the effects of fluid 
challenge on sublingual microcirculation depend on both 
the microcirculatory status at baseline and the amount of 
the increase in cardiac output.50 Indeed, fluid bolus would 
cause higher improvement in microcirculation when car-
diac output markedly increases and in patients with a basal 
microcirculation severely compromised. Accordingly, the 
evaluation of microcirculation, before the intravascular 
volume expansion, might predict a useful intervention.58

Vasopressors
The aim of vasopressors is to reach a perfusion pressure 
above the lower limit of autoregulation that allows tissue 
perfusion, while avoiding excessive vasoconstriction. In 
patients with septic shock, increases in mean arterial pres-
sure (MAP) from 60 to 90 mm Hg by means of norepi-
nephrine improved systemic oxygen delivery and skin 
perfusion increased without detrimental effects on the 
sublingual microcirculation. The authors concluded sys-
temic hemodynamics and oxygen transport could be 
improved without deterioration of the previous microcir-
culatory alterations.67 A more detailed analysis shows that 
when MAP increased from 70 to 90 mm Hg, there were 
falls in the MFI, the PPV and the PCD of about 10%. In 
patients with septic shock, we showed that the increase in 
MAP from 65 to 75, and then to 85 mm Hg was associated 
with a linear trend to a reduced PCD.34 The key result, 
however, was that the highly variable effects were strongly 
dependent on the basal state of the microcirculation. If 
PCD was preserved at a MAP of 65 mm Hg, elevations 
in MAP decreased the PCD, likely because of excessive 
vasoconstriction. On the other hand, the increase in MAP, 
in patients with an altered basal PCD, improved the 
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microcirculation (Figure 5). The correlation between the 
microcirculatory variables at baseline and their changes 
after the MAP increase was confirmed in another study.68 

The clinical implication is that the optimal MAP might be 
selected according to microcirculatory status.

Inotropes
The increase in cardiac output elicited by inotropes might 
go together with increases in microvascular perfusion. In 
spite of this, an observational study found that an infusion 
of 5 μg/kg/min of dobutamine improves the PPV from 
58% to 75%, regardless of the changes in cardiac output 
or MAP.69 In contrast, we found that increasing doses of 
dobutamine do not increase microvascular in patients with 
septic shock.70 These conflicting responses to dobutamine 
might be explained again to the different microvascular 
states at baseline, in each study. In our study, patients with 
more severe alterations (PCD ≤12 mm/mm2) improved 
their microcirculatory, similarly to the aforementioned 
study.69 Accordingly, in this subgroup of patients, the 
PPV increased from 0.57 to 0.72. Therefore, in the pre-
sence of severe derangements in sublingual perfusion, 
dobutamine has beneficial effects on sublingual microcir-
culation. Besides, a small study showed that dobutamine 
has a nonsignificant trend to improve sublingual PPV, from 
0.75 to 0.79 (p = 0.09), albeit worsens tissue muscular 
oxygenation and hepatic perfusion.71

Is Venoarterial PCO2 a Surrogate 
for Sublingual Microcirculation?
Some years ago, an observational study, in patients with 
septic shock, showed that central venous minus arterial 
PCO2 (Pcv-aCO2) correlated with sublingual microcircu-
lation, but not with cardiac output.72 The authors sug-
gested that Pcv-aCO2 might reflect microvascular 
perfusion. Even though the supporting evidence is 
weak, there is a widespread concept that Pcv-aCO2 can 
be used as a surrogate for microcirculation assessment.73 

These conclusions, however, overlook basic physiologi-
cal principles.

As clearly shown by a systematic review and large 
studies in septic patients, Pcv-aCO2 highly depends on 
cardiac output.74,75 Pcv-aCO2, however, is also determined 
by CO2 production and CO2 dissociation curve. These 
factors explain why the relationship between cardiac out-
put and Pcv-aCO2 is not straightforward. When venous O2 

saturation increases by improved flow, changes in CO2 

pressure and content can differ because of Haldane effect. 
For example, dobutamine-induced increases in cardiac 
output do not decrease Pcv-aCO2 as a probable result of 
simultaneous increases in venous oxygen saturation.76 

Besides, for a same Cv-aCO2, metabolic acidosis can also 
increase venoarterial PCO2. In the absence of hemody-
namic changes, a decrease of only 3 mEq/l in base excess 
increases venoarterial PCO2 by 50%.77 Anemia also 
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affects CO2 transport. Hemodilution induces opposite 
effects on CO2 pressure and content difference. The for-
mer increases and the latter decreases.78

Unlike Pcv-aCO2, tissue-arterial PCO2 actually reflects 
microcirculatory perfusion.41,79 Experimental and clinical 
studies support this point of view. In endotoxic shock, 
venoarterial, and tissue minus arterial Pcv-aCO2 increase 
as an expression of low cardiac output, mesenteric flow, 
and villi microcirculatory perfusion.41 Fluid resuscitation 
normalizes cardiac output and mesenteric flow but fails to 
restore villi perfusion. Accordingly, systemic and mesen-
teric venoarterial PCO2 return to normal but mucosal 
minus arterial PCO2 remains elevated as an expression of 
microvascular villi hypoperfusion. In septic patients, sub-
lingual microcirculatory alterations are similar regardless 
the normo- or hyperdynamic pattern.36 In contrast, Pcv-a 

CO2 is higher in normodynamic than in hyperdynamic 
septic shock.

Concisely, Pcv-aCO2 primarily reflects cardiac output 
but also depends on factors that modify the dissociation of 
CO2 from hemoglobin and CO2 production. Its use as 
a surrogate for microcirculatory perfusion is misleading.

Conclusions
Despite the fact that the monitoring of sublingual micro-
circulation seems an attractive variable for the monitoring 
of critically ill patients as a prognostic tool and an aim for 
the resuscitation, significant barriers remain present. Now, 
these are mainly related to video acquisition and analysis. 
Hopefully, improvements in automatic analysis will con-
tribute to overcome these limitations. Then, optimal cut- 
offs of microvascular variables should be established as 
goals of treatment. Finally, randomized controlled trials, 
aimed at showing that a microcirculation-target resuscita-
tion improves the outcome, could give enough evidence to 
support its clinical implementation. In the meantime, the 
monitoring of sublingual microcirculation mainly remains 
as a research tool.
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