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Objective: This study aimed to develop a machine learning (ML)-assisted model capable of 
accurately predicting the probability of biopsy Gleason grade group upgrading before mak-
ing treatment decisions.
Methods: We retrospectively collected data from prostate cancer (PCa) patients. Four ML- 
assisted models were developed from 16 clinical features using logistic regression (LR), 
logistic regression optimized by least absolute shrinkage and selection operator (Lasso) 
regularization (Lasso-LR), random forest (RF), and support vector machine (SVM). The 
area under the curve (AUC) was applied to determine the model with the highest discrimina-
tion. Calibration plots and decision curve analysis (DCA) were performed to evaluate the 
calibration and clinical usefulness of each model.
Results: A total of 530 PCa patients were included in this study. The Lasso-LR model 
showed good discrimination with an AUC, accuracy, sensitivity, specificity, positive pre-
dictive value (PPV), and negative predictive value (NPV) of 0.776, 0.712, 0.679, 0.745, 
0.730, and 0.695, respectively, followed by SVM (AUC=0.740, 95% confidence interval [CI] 
=0.690–0.790), LR (AUC=0.725, 95% CI=0.674–0.776) and RF (AUC=0.666, 95% 
CI=0.618–0.714). Validation of the model showed that the Lasso-LR model had the best 
discriminative power (AUC=0.735, 95% CI=0.656–0.813), followed by SVM (AUC=0.723, 
95% CI=0.644–0.802), LR (AUC=0.697, 95% CI=0.615–0.778) and RF (AUC=0.607, 95% 
CI=0.531–0.684) in the testing dataset. Both the Lasso-LR and SVM models were well- 
calibrated. DCA plots demonstrated that the predictive models except RF were clinically 
useful.
Conclusion: The Lasso-LR model had good discrimination in the prediction of patients at 
high risk of harboring incorrect Gleason grade group assignment, and the use of this model 
may be greatly beneficial to urologists in treatment planning, patient selection, and the 
decision-making process for PCa patients.
Keywords: prostate cancer, biopsy cores, Gleason grade group, upgrading, machine learning

Background
Despite first being introduced in 1966, the Gleason score (GS) remains the most 
widely used grading system for prostate cancer (PCa).1 The GS grading system was 
updated in 2005 and 2014 and a new five-tier grade group (GG) system was proposed 
and developed: GG 1 (GS≤6), GG 2 (GS3+4=7), GG 3 (GS 4+3=7), GG 4 (GS 8), and 
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GG 5 (GS 9 and 10).2,3 Appropriate clinical management for 
PCa patients depends on accurate risk stratification, which is 
mainly reliant on the pretreatment prostate-specific antigen 
(PSA) level, Gleason grade group (GG) of positive biopsy 
cores, and tumor stage. However, up to 56% of high-grade 
patients at initial biopsy tend to be overestimated, compared 
with prostatectomy specimens due to the sampling error of 
biopsy and the multifocal nature of PCa.3,4 In addition, some 
low risk patients who embark on active surveillance (AS) 
will be upgraded to higher grade at RP so they are not 
suitable candidates for AS.5,6 The discordance between 
initial biopsy GG and radical prostatectomy (RP) GG can 
potentially impact over- and under-treatment.7 Therefore, 
for the management of PCa, it is of pivotal importance to 
identify PCa patients at a higher risk of upgrading at RP 
before making treatment-related decisions.

Machine learning (ML) is the semi-automated extrac-
tion of knowledge and insight from data.8 Developed 
within the fields of statistics, computer science and artifi-
cial intelligence, it allows the training of algorithms that 
can discover and identify complex patterns and relation-
ships faster than conventional statistical models that focus 
on only a handful of patient variables.8 Owing to the 
ability of ML algorithms to improve the accuracy of pre-
dicting diseases and subsequent outcomes over the use of 
traditional statistical models, they have been applied 
extensively in the field of clinical research.9,10 In the 
present study, we apply ML algorithms to the dataset, 
with the goal of identifying those patients at high risk of 
harboring upgrading at RP before making treatment deci-
sions, and to determine the best predictive models.

Additionally, there is still no consensus on how to 
choose a “case level” biopsy GG (GS) for patients regard-
ing the reporting of the “worst/highest” and “global/over-
all” GG (GS).7,11 Considering that the biopsy global GG is 
more likely be in line with RP GG, we selected global GG 
together with other preoperative clinical parameters to 
construct predictive models to calculate the probability of 
upgrading for each PCa patient.

Methods
Patient Selection and Study Parameters
Patients who underwent radical prostatectomy at Tongji 
Hospital of Tongji Medical College, Huazhong University 
of Science and Technology between January 2015 and 
December 2019 were retrospectively enrolled in this 
study. This retrospective study was approved by the 

Ethics Committee of Tongji Hospital, Huazhong 
University of Science and Technology. The need for 
informed consent from all patients was waived due to its 
retrospective nature. All patient information was strictly 
confidential and our procedures were carried out according 
to the Declaration of Helsinki. The inclusion criteria were 
as follows: 1) multi-parametric magnetic resonance ima-
ging (mp-MRI) performed for all patients before surgery; 
2) standard systematic (12-core) transrectal ultrasonogra-
phy (TRUS)-guided biopsy prior to surgery performed for 
all patients; and 3) final pathological results of each patient 
including a detailed description of Gleason grade group. 
The following exclusion criteria were applied: 1) neoadju-
vant therapy prior to MRI examination; 2) patients with 
incomplete clinical data; and 3) MRI images of unsatis-
factory quality. The clinical parameters included patient 
age, total prostate-specific antigen (TPSA), prostate 
volume (PV=Height×Width×Length×0.52), PSA density 
(PSAD), %fPSA (free PSA/TPSA), maximum diameter 
of index lesion (D-max), the Prostate Imaging Reporting 
and Data System (PI-RADS) score, clinical and patholo-
gical T stage (T1-2, T3a, T3b and T4), apical involvement 
at MRI, global biopsy GG, number of positive cores, 
number of cores with clinically significant PCa (csPCa, 
defined as cores with GG≥2), maximum tumor length at 
biopsy core, percentage of tumor in total biopsy cores, and 
GG at RP. The MRI findings were re-reported and scored 
by the same dedicated radiologist on a five-point scale 
using the modified PI-RADS version 2 criteria.12 If multi-
ple tumor foci existed on the MRI, only the highest PI- 
RADS score of index lesions and the maximum diameter 
of the largest tumor were included in the analysis. GG of 
the biopsy specimen was assigned following the 2014 
International Society of Urological Pathology (ISUP) 
criteria.13 The global GG of the biopsy was defined as 
the most prevalent GG among all positive cores. The 
upgrades from biopsy to RP represented at least one 
grade difference in the GG.

Development, Validation, and 
Performance of ML-Based Models
The dataset was randomly split into two datasets: 70% for 
model training and 30% for model testing. For model train-
ing, data from the training set were used to approximate 
model parameters. Four ML algorithms were performed to 
build predictive models: logistic regression (LR), logistic 
regression optimized by least absolute shrinkage and 
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Table 1 Characteristics of Total Population, Training Dataset, and Testing Dataset

Overall (n=530) Training Dataset (n=371) Testing Dataset (n=159)

Age (years), median (IQR) 69 (63–75) 69 (63–75) 69 (62–73)
PV (mL), median (IQR) 37.5 (29.7–49.3) 37.1 (30.0–47.8) 38.2 (28.5–52.0)

D-max (cm), median (IQR) 1.9 (1.3–2.7) 1.9 (1.3–2.7) 1.8 (1.3–2.7)

TPSA (ng/mL), median (IQR) 21.0 (10.9–42.2) 20.9 (10.9–42.4) 21.4 (10.7–41.0)

%fPSA (fPSA/TPSA) (n, %)
≤0.16 423 (79.8) 293 (79.0) 130 (81.8)

>0.16 107 (20.2) 78 (21.0) 29 (18.2)

PSAD (n, %)

≤0.20 70 (13.2) 49 (13.2) 21 (13.2)

>0.20 460 (86.8) 322 (86.8) 138 (86.8)

Clinical T stage at MRI (n, %)

T1–2 307 (57.9) 218 (58.8) 89 (56.0)
T3a 75 (14.2) 50 (13.5) 25 (15.7)

T3b 140 (26.4) 100 (27.0) 40 (25.2)

T4 8 (1.5) 3 (0.7) 5 (3.1)

PI-RADS score (n, %)

1–2 24 (4.5) 20 (5.4) 4 (2.5)
3 67 (12.6) 47 (12.7) 20 (12.6)

4 129 (24.3) 90 (24.3) 39 (24.5)

5 310 (58.6) 214 (57.6) 96 (60.4)

Apical involvement at MRI (n, %)

Yes 301 (56.8) 207 (55.8) 94 (59.1)
No 229 (43.2) 164 (44.2) 65 (40.9)

Biopsy grade group (n, %)
1 166 (31.3) 118 (31.8) 48 (30.2)

2 138 (26.0) 98 (26.4) 40 (25.2)

3 111 (20.9) 76 (20.5) 35 (22.0)
4 115 (21.8) 79 (21.3) 36 (22.6)

No. of positive biopsies, median (IQR) 5 (3–9) 5 (3–9) 6 (3–9)

Presence of cores with csPCa, (n, %)

Yes 433 (81.7) 301 (81.1) 132 (83.0)
No 97 (18.3) 70 (18.9) 27 (17.0)

Presence of cores with tumor length ≥0.6 cm, median (IQR)
Yes 402 (75.8) 290 (78.2) 112 (70.4)

No 128 (24.2) 81 (21.8) 47 (29.6)

Maximum tumor length in single core (cm), median (IQR) 0.9 (0.6–1.4) 0.9 (0.6–1.4) 0.9 (0.5–1.3)

Total tumor length of positive cores (cm), median (IQR) 2.7 (1.2–5.4) 2.8 (1.3–5.6) 2.7 (1.0–5.2)

Percentage of tumor in total biopsy cores (%), median (IQR) 18.7 (7.9–36.0) 17.3 (8.3–35.9) 21.3 (7.1–36.7)

Presence of upgrading at final pathology (n, %)
Yes 262 (49.4) 187 (50.4) 75 (47.2)

No 268 (50.6) 184 (49.6) 84 (52.8)

Abbreviations: IQR, interquartile range; PV, prostate volume; D-max, maximum diameter of the index lesion on MRI; TPSA, total prostate-specific antigen; fPSA, free 
prostate-specific antigen; PSAD, prostate-specific antigen density; MRI, magnetic resonance imaging; csPCa, clinically significantly prostate cancer; PI-RADS, the Prostate 
Imaging Reporting and Data System.
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selection operator (Lasso) regularization (Lasso-LR), ran-
dom forest classifier (RF), and support vector machine 
(SVM) integrated with recursive feature elimination (RFE).

Model evaluation was carried out by examining discri-
mination and calibration. The receiver operating character-
istic (ROC) curve analysis was used to evaluate the 
discrimination ability of predictive models in both the train-
ing dataset and testing dataset; the discrimination ability of 
each model was quantified by the area under the ROC curve 
(AUC). Moreover, discrimination metrics including accu-
racy, sensitivity, specificity, Youden index (YI), positive pre-
dictive value (PPV), and negative predictive value (NPV) 
were also applied to assess the discriminative power of pre-
dictive models. Comparisons between ROC Curves were 
performed using the method described by DeLong et al.14 

As logistic regression analysis was one of the most widely 
used statistical methods in binary data classification, we used 
the LR model as the reference in the pairwise comparison of 
AUC. Calibration plots were used to investigate the extent of 
over- or under-estimation of predicted probabilities relative 
to the observed probabilities. Decision curve analysis (DCA) 
was conducted to determine the clinical net benefit associated 
with the use of the predictive models at different threshold 
probabilities in the patient cohort.

Statistical analyses were performed using R software 
(Version 3.6.0; https://www.R-project.org) with the following 
packages: “rms“, “glmnet”, “caret”, “rpart”, “randomForest”, 
“gplots“, “e1071“, “kernlab”, “pROC”,and “MachineShop”. 
P<0.05 was considered statistically significant.

Results
Baseline Characteristics and Pathological 
Results
Table 1 lists patient characteristics and pathological results 
in the total population, training dataset and testing dataset. 

The median patient age of the overall cohort was 69 
(interquartile range [IQR]=63–75) years. The median 
TPSA value was 21.0 (IQR=10.9–42.2) ng/mL. The med-
ian D-max on MRI was 1.9 (IQR=1.3–2.7) cm. Most 
patients had clinical stage T1–2 (57.9%, n=307) and PI- 
RADS score 5 (58.6%, n=310). Table 2 details the con-
cordance between the biopsy global GG and the final RP 
GG, and the corresponding downgrades and upgrades for 
GG 1–4. The most prevalent GGs assigned on biopsy were 
GG 1 (31.3%, n=166) and GG 2 (26.0%, n=138). Overall, 
262 patients (49.4%) experienced upgrading at final 
pathology. The overall incidence of biopsy GG 1 upgrad-
ing was 120 (72.3%) of 166 patients, of which most were 
to GG 2 (50.0%, n=83), followed by GG 3 (12.7%, n=21), 
GG 4 (6.6%, n=11), and GG 5 (3.0%, n=5). Biopsy GG 3 
(47.7%) and GG 4 (44.3%) showed the highest agreements 
when compared with RP GG. Patients with lower biopsy 
GG were more likely to harbor upgrading at RP.

ML-Assisted Models
In multivariable analysis, %fPSA (>0.16 vs ≤0.16) 
(OR=0.52; 95% CI=0.27–0.995; P=0.048), apical involve-
ment (No vs Yes) (OR=1.80; 95% CI=1.02–3.19; P=0.042) 
on MRI and biopsy GG 1 (P<0.001) were significantly 
associated with upgrading at RP (Table 3). According to 
their respective coefficients, the LR model was constructed 
using the following formula: Y=2.29 � 0.65� (%fPSA) �
0.59� (apical involvement) � 0.97� (biopsy GG) (where 
Y is the output value of predictive models).

Based on the results of Lasso analysis, those clinical 
features with coefficients >0.1 were selected as the para-
meters included in the construction of the Lasso-LR model. 
Finally, %fPSA, apical involvement, PI-RADS score, clin-
ical T stage, and biopsy GG were the selected features 
(Figure 1). The Lasso-LR was constructed by using the 
following formula: Y=1.81 � 0.41� (%fPSA) � 0.25�

Table 2 Global Grade Groups on Biopsy and Radical Prostatectomy and Change in Grade

Biopsy GS (GG) N GS (GG) at RP (N [% of GS/GG]) Change in Score (N [% of GS/GG])

6 3+4 4+3 8 9–10

(GG1) (GG2) (GG3) (GG4) (GG5) Upgrade No Change Downgrade

6 (GG1) 166 46 (27.7) 83 (50.0) 21 (12.7) 11 (6.6) 5 (3.0) 120 (72.3) 46 (27.7) –
3+4 (GG2) 138 5 (3.6) 58 (42.0) 43 (31.2) 17 (12.3) 15 (10.9) 75 (54.4) 58 (42.0) 5 (3.6)

4+3 (GG3) 111 6 (5.4) 19 (17.1) 53 (47.7) 20 (18.0) 13 (11.8) 33 (29.8) 53 (47.7) 25 (22.5)

8 (GG4) 115 1 (0.9) 8 (7.0) 21 (18.3) 51 (44.3) 34 (29.5) 34 (29.5) 51 (44.3) 30 (26.2)
Total 530 58 (10.9) 168 (31.7) 138 (26.0) 99 (18.7) 67 (12.7) 262 (49.4) 208 (39.2) 60 (11.3)

Abbreviations: GS, Gleason score; GG, Gleason grade group; RP, radical prostatectomy.
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(apical involvement) � 0.81� (biopsy GG)þ 0.15� (clin-
ical T stage)þ 0.11� (PI-RADS score) (where Y is the out-
put value of predictive model).

In the RFE-SVM analysis, 10 clinical parameters were 
selected as the final candidates for constructing the pre-
dictive model without impacting the prediction accuracy 
of the model, including biopsy GG, apical involvement, 
maximum tumor length in single core, %fPSA, PSAD, 
presence of core with tumor length >0.6 cm, presence of 
csPCa at core, PI-RADS score, D-max, and clinical 
T stage (Figure 2A). As depicted in Figure 2B, with the 
selected features being added to the SVM model one by 
one, the AUC value of model also increased little by little.

The process of feature selection by RF model and the 
importance of features are illustrated in Figure 3. Based on 
different combinations of clinical parameters, each tree in the 
forest votes for the major classification, and the final classifi-
cation of the RF model is derived from the majority of these 
votes (Figure 3A). The best number of trees and the best 
number of variables tried at each split were 131 and 4, respec-
tively. The out of bag (OOB) estimate of error rate was 
33.42%, suggesting that the generalization error was quite 
unsatisfactory.

Comparison Between ML-Based Models
Among these models, the Lasso-LR model had the highest 
AUC (0.776, 95% confidence interval [CI]=0.729–0.822), 
followed by SVM (AUC=0.740, 95% CI=0.690–0.790), LR 
(AUC=0.725, 95% CI=0.674–0.776) and RF (AUC=0.666, 
95% CI=0.618–0.714) (Figure 4A). Similarly, in the testing 
dataset, the Lasso-LR model had the highest AUC (0.735, 
95% CI=0.656–0.813), followed by SVM (AUC=0.723, 95% 
CI=0.644–0.802), LR (AUC=0.697, 95% CI=0.615–0.778), 
and RF (AUC=0.607, 95% CI=0.531–0.684) (Figure 4B). The 
Lasso-LR model illustrated an accuracy of 0.712, a sensitivity 
of 0.679, and a specificity of 0.745, indicating that this model 
correctly identified 67.9% of PCa patients who experienced 
upgrading at RP and 74.5% of PCa patients who did not 
experience upgrading at RP (Table 4). In addition, the Lasso- 
LR model had the highest YI (0.424) compared with other 
models. Due to the fact that the YI was calculated as 
a summation of the sensitivity and specificity minus 1, the 
highest YI indicated that both the sensitivity and specificity of 
the Lasso-LR model are reasonably good relative to other 
models. Pairwise comparison of ROC curves showed that 
the AUC of the Lasso-LR model was significantly higher 
than that of LR (P=0.002), while the AUCs of SVM and RF 

Table 3 Factors Associated with Upgrading on Multivariable 
Logistic Regression Analyses

Multivariable 
Analysis

P-value

OR (95% CI)

Age (years) 0.97 (0.94–1.001) 0.055

PV (mL) 1.004 (0.99–1.02) 0.527

D-max (cm) 0.92 (0.64–1.30) 0.628

TPSA (ng/mL) 1.00 (0.99–1.01) 0.892

%fPSA

≤0.16 1 (reference)

>0.16 0.52 (0.27–0.995) 0.048

PSAD

≤0.20 1 (reference)

>0.20 1.44 (0.63–3.29) 0.389

PI-RADS score

<3 1 (reference)

3 1.87 (0.53–6.53) 0.329

4 2.55 (0.76–8.50) 0.129

5 2.40 (0.69–8.30) 0.167

Apical involvement

Yes 1 (reference)

No 1.80 (1.02–3.19) 0.042

Clinical T stage at MRI

T1–2 1 (reference)

T3a 2.53 (1.07–5.99) 0.034

T3b 1.67 (0.73–3.79) 0.223

T4 4.41 (0.30–64.07) 0.277

No. of positive cores 1.03 (0.88–1.21) 0.676

Presence of csPCa at core

Yes 1 (reference)

No 0.57 (0.20–1.61) 0.285

Presence of core with tumor length 

>0.6 cm

Yes 1 (reference)

No 0.97 (0.40–2.34) 0.944

Maximum tumor length in single core 0.74 (0.29–1.91) 0.535

Total tumor length 1.12 (0.88–1.44) 0.364

Percentage of tumor in total biopsy 

cores

1.01 (0.97–1.06) 0.557

Biopsy grade group

1 1 (reference)

2 0.17 (0.06–0.44) < 0.001

3 0.04 (0.02–0.12) < 0.001

4 0.05 (0.02–0.13) < 0.001

Abbreviations: IQR, interquartile range; PV, prostate volume; D-max, maximum 
diameter of the index lesion on MRI; TPSA, total prostate-specific antigen; fPSA, 
free prostate-specific antigen; PSAD, prostate-specific antigen density; MRI, mag-
netic resonance imaging; csPCa, clinically significantly prostate cancer; PI-RADS, the 
Prostate Imaging Reporting and Data System.
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were not significantly different to that of LR (P>0.05) 
(Figure 4A).

The calibration of ML-based models was evaluated gra-
phically by the formulation of calibration curves (Figure 5). 
The green line represented the fit of the model. Deviations 
from the 45° line indicated miscalibration. Part of the green 
line below the 45° line indicated that higher predicted 

probabilities might overestimate the true outcome, and part 
of the green line upon the 45° line indicated that lower 
predicted probabilities might under-predict the true probabil-
ity of upgrading. The SVM model was well-calibrated 
(Figure 5D), followed by Lasso-LR (Figure 5B), RF 
(Figure 5C), and LR (Figure 5A). Moreover, the boot-
strapped DCA also suggested higher net benefits of the 

Figure 1 Distribution of feature coefficients estimated by Lasso-LR analysis (A) and the optimal features are those with a coefficient >0.1 and produced best accuracy (B). 
Abbreviations: AUC, area under the ROC curve; PV, prostate volume; D-max, maximum diameter of the index lesion on MRI; TPSA, total prostate-specific antigen; fPSA, 
free prostate-specific antigen; PSAD, prostate-specific antigen density; MRI, magnetic resonance imaging; csPCa, clinically significantly prostate cancer; PI-RADS, the Prostate 
Imaging Reporting and Data System.

Figure 2 Results of feature selection, feature ranking, and model construction with RFE-SVM analysis. (A) Distribution of weight for features with RFE-SVM analysis. (B) 
Influence on AUC with incrementally adding ranked features in RFE-SVM. RFE-SVM classifier is trained by adding ranked feature one by one. The iteration repeated until the 
desired number of features was reached. 
Abbreviations: RFE, recursive feature elimination; SVM, support vector machine; AUC, area under the ROC curve; PV, prostate volume; D-max, maximum diameter of the 
index lesion on MRI; TPSA, total prostate-specific antigen; fPSA, free prostate-specific antigen; PSAD, prostate-specific antigen density; MRI, magnetic resonance imaging; 
csPCa, clinically significantly prostate cancer; PI-RADS, the Prostate Imaging Reporting and Data System.
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three predictive models with threshold probabilities between 
30% and 78% for LR, threshold probabilities between 50% 
and 75% for SVM and threshold probabilities between 30% 
and 90% for Lasso-LR (Figure 6).

Discussion
Accurate risk stratification, which mainly depends on PSA 
level, biopsy grade group, and stage classification, plays 

a pivotal role in guiding treatment management for PCa 
patients. However, it has been demonstrated that prostate 
biopsy often underestimates the cancer and incorrectly assigns 
National Comprehensive Cancer Network (NCCN) risk 
stratification.3,4 There are several reasons accounting for the 
discrepancies between the biopsy and RP grades: sampled 
cores and indications for biopsy, differences in biopsy techni-
ques, erroneous diagnostic interpretation, tumor heterogeneity, 

Figure 3 Results of model analysis with RF. (A) The detail distribution of classification trees. Orange leaf or node represents the upgrading class (1). Blue leaf or node 
represents the non-upgrading class (0). The number at the top of leaf or node is the class value, and whichever class occurs the most within the leaf or node will be selected 
as the class value (0 or 1). The value at the middle of leaf or node is the Gini score, which is a metric that quantifies the purity of the node or leaf. The value at the bottom of 
leaf or node represents the number of samples. (B) The importance of features ranked by mean decrease accuracy and mean decrease Gini. 
Abbreviations: PV, prostate volume; D-max, maximum diameter of the index lesion on MRI; TPSA, total prostate-specific antigen; fPSA, free prostate-specific antigen; 
PSAD, prostate-specific antigen density; MRI, magnetic resonance imaging; csPCa, clinically significantly prostate cancer; PI-RADS, the Prostate Imaging Reporting and Data 
System.

Figure 4 The ROC results of ML-based models in the training dataset (A) and testing dataset (B). 
Abbreviations: ROC, receiver operating characteristic curve; AUC, area under the ROC curve; LR, logistic regression, Lasso least absolute shrinkage and selection 
operator; SVM, support vector machine; RF, random forest.
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sampling error on biopsy, clinician interpretation of the biopsy 
GG (global vs highest/composite/overall score), and practice 
variations regarding biopsy grade assignment.7,16 The incor-
rect risk stratification may impact treatment planning, patient 
selection, and decision-making processes. Therefore, it is 
extremely important to identify risk factors associated with 
upgrading to avoid under-treatment, especially among those 
PCa patients who are considered appropriate candidates for 
AS. Unfortunately, there are currently no widely accepted 
predictive models to accurately predict the final individualized 
GG at RP and the discrimination ability of various models 
remains modest.17–20 ML has been previously used for pre-
dicting outcomes in other fields of medicine, including the 
identification of lung cancer based on routine blood indices 
and the in-hospital rupture of type A aortic dissection.21,22 

Given the excellent performance of machine learning algo-
rithms in classification, four machine learning algorithms were 
employed in our study to determine relevant risk factors; we 
then developed and validated four novel prediction models to 
identify those PCa patients at high risk of harboring upgrading 
at RP before making treatment decisions.

Overall, up to 49.4% included patients were upgraded 
at RP, especially biopsy GG 1 patients, with the proportion 
of upgrading being 72.3%. Similarly, Altok et al23 reported 
that 70.9% of biopsy GG 1 patients in their study cohort 
were upgraded at RP, and most were upgraded to GG 2. 
These observations explain why some patients with GG 1 
disease at biopsy suffer metastases or die of prostate 
cancer and suggest that a substantial proportion of biopsy 
GG 1 patients who embark on active surveillance are not, 
in fact, suitable candidates.24 Given the known risk of 
underestimation in biopsy specimens, the prediction of 
GG upgrade plays a major role when considering indivi-
dualized therapy for PCa patients, especially AS.25 In our 
series, %fPSA (>0.16 vs ≤0.16), apical involvement at 

MRI (No vs Yes), and biopsy grade group (GG 4, GG 3, 
GG 2 vs GG 1) were independent factors in multivariable 
LR analysis. %fPSA, apical involvement at MRI, biopsy 
grade group, and clinical T stage at MRI were significantly 
associated with upgrading in Lasso-LR and SVM models. 
However, in a comparable study, Alshak et al15 demon-
strated that only the PI-RADS score was a significant 
predictor of upgrading. Besides, Gandaglia et al26 reported 
that preoperative PSA level, GG at MRI-targeted biopsy, 
and clinically significant PCa at systematic biopsy were 
independent risk factors of upgrading at RP. The differ-
ences in results between our study and the latter two 
studies might be due to the fact that the latter two studies 
did not include detailed core biopsy information, which 
has been successfully shown to contain huge potential 
predictive value.

In our study, imaging factors such as apical involvement 
at MRI and clinical T stage at MRI, were more important 
predictors than clinical parameters according to the results 
of ML-based feature ranking analyses, except for RF ana-
lysis. This implied that mp-MRI had great potential in 
predicting upgrading, irrespective of its important role in 
detecting csPCa and assigning accurate risk stratification 
for PCa patients. The routine mp-MRI examination for 
patients with suspected PCa before biopsy was indeed ben-
eficial and helpful.27 Among those biopsy-related variables, 
biopsy GG was always the strongest predictor. In the LR 
and Lasso-LR model, the number of positive cores, pre-
sence of csPCa at core, presence of a core with a tumor 
length >0.6 cm, maximum tumor length in a single core, 
total tumor length, and percentage of tumor in total biopsy 
cores demonstrated almost no value in the prediction of 
upgrading at RP, while the number of positive cores, total 
tumor length and percentage of tumor in total biopsy cores 
ranked ahead in the RF model. This is not in line with the 
findings of Pepe et al.28 As these features, including D-max, 
were reliable proxies of tumor volume, the size of tumor 
should not be considered relevant to the presence of 
upgrading.29 Nonetheless, Corcoran et al16 reported that 
tumor volume of PCa was a significant predictor of upgrad-
ing in multivariable analysis, and the measurement of sur-
rogate of tumor volume might predict those at greatest risk 
of Gleason score upgrade. One thing to be noted was that 
the patient cohort in the study of Corcoran et al16 did not 
include those patients with biopsy GG 3 and 4. %fPSA 
outperformed TPSA and PSAD in the prediction of upgrad-
ing in the LR, Lasso-LR, and SVM models. On the contrary, 
in the mean decrease accuracy and mean decrease Gini 

Table 4 Discrimination of Prediction Models

LR Lasso-LR SVM RF

Accuracy 0.679 0.712 0.701 0.666
Sensitivity 0.663 0.679 0.668 0.679

Specificity 0.696 0.745 0.734 0.652

YI 0.359 0.424 0.402 0.331
PPV 0.689 0.730 0.718 0.665

NPV 0.670 0.695 0.685 0.667

AUC 0.725 0.776 0.740 0.666

Abbreviations: LR, logistic regression Lasso least absolute shrinkage and selection 
operator; SVM, support vector machine; RF, random forest; YI, Youden index; PPV, 
positive predictive value; NPV, negative predictive value; AUC, area under the ROC 
curve.
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evaluation of RF models, TPSA and PSAD ranked higher 
than %fPSA. Apart from those variables included in our 
models, Ferro et al30–32 have successfully demonstrated that 
the serum total testosterone level and biomarkers including 
prostate cancer antigen 3, prostate health index, and sarco-
sine play an important role in predicting GG upgrading. 
Regrettably, our center has not yet launched these tests in 
the management of PCa.

For the performance of ML-based models, the Lasso-LR 
model showed the best discriminative power with an AUC 
of 0.776 (95% CI=0.729–0.822), followed by SVM 
(AUC=0.740; 95% CI=0.690–0.790), LR (AUC=0.725, 

95% CI=0.674–0.776), and RF (AUC=0.666; 95% 
CI=0.618–0.714). The nomogram developed by He et al33 

achieved an AUC of 0.753 in the prediction of upgrading, 
which was higher than that of LR but lower than Lasso-LR 
in the present study. Also, Moussa et al34 constructed 
a nomogram for predicting the possibility of upgrading, 
with a concordance index of 0.68. Additionally, all of the 
ML-based models except for RF outperformed the predic-
tive models constructed by Kulkarni et al35 and Athanazio 
et al7, with AUC values of 0.71 and 0.699 in the respective 
studies. Of note, in a study consisting of 2,982 PCa patients 
treated with RP, the model for predicting upgrading based 

Figure 5 Calibration plots of LR (A), Lasso-LR (B), RF (C), and SVM (D). 
Abbreviations: LR, logistic regression, Lasso least absolute shrinkage and selection operator; SVM, support vector machine; RF, random forest.
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on LR analysis showed a predictive accuracy of 0.804; in 
contrast, in our study, the Lasso-LR model presented the 
best predictive accuracy of 0.712.19 Despite the better pre-
dictive accuracy of the model in the study of Chun et al,19 it 
was still difficult to determine the model with best perfor-
mance when compared with our ML-based models as there 
was no other discrimination metrics such as AUC, sensitiv-
ity, specificity, PPV, and NPV in their study. It should be 
noted that the good performance of our ML-based models 
might be related to the inclusion of mp-MRI information 
and detailed biopsy information.

Limitations
Despite several strengths, our study has certain limitations. 
First, the data on PCa patients who underwent RP enrolled in 
our study cohort were retrospectively collected at a single 
institution, which may have resulted in selection bias. 
Second, the case-level highest Gleason grade group was 
more commonly assigned to patients undergoing systematic 
TRUS-guided biopsy in our country; hence, we should also 
construct predictive models to identify risk factors associated 
with upgrading using a comparison between the highest 
biopsy GG and final RP samples. Moreover, we did not 
include the radiomic features of PCa in the construction of 
prediction models. Considering that the radiomic features 
play an important role in the detection of PCa, the inclusion 
of radiomic features may significantly improve the perfor-
mance of models.

Conclusions
In summary, we developed four ML-based models to help 
clinicians identify the individualized risk of upgrading for 
PCa patients after prostate needle biopsy. The Lasso-LR 
model had the best discriminative power according to the 
results of pairwise comparisons. We believe that our 
research findings can make a significant difference in the 
process of treatment decision-making by more accurately 
identifying patients at high risk of harboring upgrading at 
RP. Of course, further validation in multiple institutions 
with a large sample size is warranted.

Abbreviations
AS, Active surveillance; AUC, Area under the ROC curve; CI, 
Confidence interval; csPCa, Clinically significantly prostate 
cancer; D-max, Maximum diameter of the index lesion on 
MRI; fPSA, Free prostate-specific antigen; GG, Gleason 
grade group; IQR, Interquartile range; Lasso, least absolute 
shrinkage and selection operator; LR, Logistic regression; ML, 
Machine learning; mp-MRI, Multi-parametric MRI; 
MRI, Magnetic resonance imaging; NCCN, National 
Comprehensive Cancer Network; NPV, Negative predictive 
value; OOB, Out of bag; PCa, Prostate cancer; PI-RADS, 
The Prostate Imaging Reporting and Data System; PPV, 
Positive predictive value; PSA, Prostate-specific antigen; 
PSAD, Prostate-specific antigen density; PV, Prostate volume; 
RF, Random forest; RFE, recursive feature elimination; SVM, 
Super vector machine; TPSA, Total prostate-specific antigen; 
TRUS, Transrectal ultrasonography; YI, Youden index.
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