a Open Access Full Text Article

Parkinson's disease managing reversible neurodegeneration

Marty Hinz¹ Alvin Stein² Ted Cole³ Beth McDougall⁴ Mark Westaway⁵

¹Clinical Research, NeuroResearch Clinics, Inc., Cape Coral, FL, ²Stein Orthopedic Associates, Plantation, FL, ³Cole Center for Healing, Cincinnati, OH, ⁴CLEARCenter of Health, Mill Valley, CA, USA; ⁵Four Pillars Health, Brendale, QLD, Australia

Correspondence: Marty Hinz Clinical Research, NeuroResearch Clinics, Inc., 1008 Dolphin Drive, Cape Coral, Florida 33904, USA Tel +1 218 626 2220 Fax +1 218 626 1638 Email marty@hinzmd.com

submit your manuscript | www.dovepress.con **Dove**press

http://dx.doi.org/10.2147/NDT.S98367

Abstract: Traditionally, the Parkinson's disease (PD) syn, but course ha been classified as an irreversible progressive neurodegenerative disert. This per docur nts 29 PD and treatment-induced systemic depletion etiologies Ich cause and er cerbate the seven novel primary relative nutritional deficiencies a pointed th PD. These reversible relative erate irre rsible progressive neuronutritional deficiencies (RNDs) may facility and sly undocumented reversible degeneration, while other reversible RN may induce revi pseudo-neurodegeneration that is highly in vain sight she the symptoms are identical to the symptoms being experienced by the PD party. Documented herein is a novel nutritional approach for reversible proce s management which may slow or halt irreversible progressive neurodegenerative disease d correct reversible RNDs whose symptoms are identical to the patient's PD symptoms. Keywords: Parkinson's dise L-dopa arbidopa, B6, neurodegeneration

Introducti n

ocument a new Parkinson's disease (PD) treatment, but discusses This pes nol ctive a novel de effect management associated with the most effective PD lopa (L-3,4-dihydroxyphenylalanine). The following approach men ely addresses PD, L-dopa, and carbidopa-associated side effects and adverse defin hich interfere with achieving optimal L-dopa results. reactions.

PD is classified as a "progressive neurodegeneration" (PN) disease.^{1,2} With PD, irreble brain damage involving the post-synaptic substantia nigra dopamine neurons³ induces fine motor control dysfunction⁴ (herein referred to as "electrical damage").

A relative nutritional deficiency (RND) occurs when an optimal diet does not meet nutritional requirements.5-11 This paper demonstrates how the reversible PD symptoms induced by newly identified RNDs have been allowed to accumulate because of the disease process or traditional treatment. These symptoms have traditionally been exclusively attributed to irreversible PN. This novel approach breaks PN down into three subcategories: irreversible PN, reversible facilitated PN (FPN), and reversible pseudo-neurodegeneration (RPN).

PD electrical damage dysfunction is classically limited to the post-synaptic dopamine neurons.^{12,13} Electrical flow, regulating fine motor control, flows from the pre-synaptic neurons, across the synapse, then through the post-synaptic neurons. It is the novel primary hypothesis that if PD symptoms from post-synaptic neuron damage develop, then compromise at any point in the electrical event chain, to include outside the post-synaptic dopamine neuron focus, may exacerbate and mimic PD symptoms and/or disease progression.

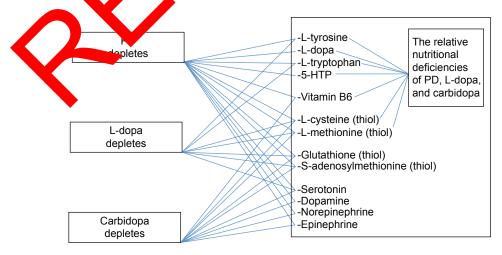
763

Veuropsychiatric Disease and Treatment downloaded from https://www.dovepress.com/ For personal use only In PD patients, reversible RNDs may induce PD symptoms which may be inappropriately managed when treated as PN.⁹⁻¹¹ Figure 1 illustrates 29 primary system depletions associated with PD and its treatment. Each depletion induces and represents a significant underlying RND which contributes to PD symptom exacerbation and/or overall irreversible disease collapse. The novel hypothesis is that if a dysfunction resulting from nutrient depletion exists, then one or more underlying RNDs is always present.

With regard to Figure 1, the 29 PD and treatment associated depletions are listed immediately below. The RNDs associated with each are discussed in the following sections prior to the "Materials and methods" section.

- 1. PD-associated dopamine depletion.^{12,13}
- 2. PD-associated norepinephrine depletion.^{14,15}
- 3. PD-associated epinephrine depletion.¹⁵
- 4. PD-associated glutathione depletion prior to symptom onset.^{16–18}
- 5. PD-associated S-adenosylmethionine depletion.¹⁹⁻²¹
- 6. PD-associated L-cysteine depletion.²²
- 7. PD is associated with glutathione depletion.^{16–18} Glutathione depletion may induce L-methionine depletion.²³
- 8. PD-associated vitamin B6 deficiency.²⁴
- 9. PD-associated serotonin depletion.^{25,26}
- 10. PD associated with 5-hydroxytryptophan depletion.²
- 11. PD-associated tyrosine depletion.²⁸
- 12. PD-associated L-dopa depletion.^{29–39}
- 13. PD associated with L-tryptophan depic
- 14. L-dopa-associated L-tyrosine derection.
- 15. L-dopa-associated L-tryptopheneople in poletion.³³
- 16. L-dopa-associated S-adenosylmethic ine depletion.³⁴⁻³⁶
- 17. L-dopa-associated L-r chionine deplet
- 18. L-dopa-associated cystein depletion.³

- 19. L-dopa-associated glutathione depletion.³⁷
- 20. L-dopa-associated serotonin depletion.^{33,34,38-40}
- 21. Carbidopa-associated vitamin B6 depletion.^{10,11,41,42}
- 22. Carbidopa associated serotonin depletion.^{43,44}
- 23. Carbidopa-associated dopamine depletion.43
- 24. Carbidopa-associated norepinephrine depletion.⁴¹
- 25. Carbidopa-associated epinephrine depletion.⁴¹
- 26. Carbidopa-associated vitamin B6 depletion.^{10,11,41,42} Vitamin B6 depletion may deplete glutathione.^{45,46}
- Carbidopa-associated vitamin B6 depletion.^{10,11,41,42}
 Vitamin B6 depletion may deplete of a thione.^{45,46} Glutathione depletion may deplete Studenosynapthionine.⁴⁷
- Carbidopa-associated vitame, B6 deplet in.^{10,11,41,42}
 Vitamin B6 depletion day deplete glute dione.^{45,46}
 Glutathione depletic may deplete Long anonine.⁴⁸
- Carbidopa-associated vitamin B6 depletion.^{10,11,41,42}
 Vitamin B6 depletion may deplete glutathione.^{45,46}
 Glutathic a spletion may leave L-cysteine.⁴⁸


As illustrated in course 1, patients with PD suffer from one or a RNDs inversing L-cysteine and methionine, vitation B6, serotonin precursors (L-tryptophan, 5-HTP), and opamine productors (L-tyrosine, L-dopa).

Drug utrient perspective

In the following definitions are required to understand this proach. L-dopa and 5-hydroxytryptophan (5-HTP) are defined as dopamine and serotonin nutrient amino acid pretrisors, respectively.

The following documented drug-nutrient reference point is required for optimal RND management:

A nutrient is any substance that facilitates normal system function. A drug is any substance that induces abnormal system function. A nutrient may become a drug. A drug

on.^{31,2}

Figure I The 29 primary RND-inducing depletions resulting from PD, L-dopa, and carbidopa.

Abbreviations: RND, relative nutritional deficiency; PD, Parkinson's disease; 5-HTP, 5-hydroxytryptophan; L-dopa, L-3,4-dihydroxyphenylalanine.

may not become a nutrient. When the nutrient 5-HTP is administered as a single agent, dopamine depletion may occur. If dopamine depletion is induced, 5-HTP is no longer functioning as a nutrient; it is a drug. When L-dopa is administered as a single agent, it may deplete serotonin, and would then be considered a drug, not a nutrient.¹¹

The following novel hypothesis is required to address the 29 PD RNDs which cause reversible FPN and RPN. If when administered properly drugs have side effects and nutrients have no side effects, then nutrients that display side effects are functioning as drugs.

Under the previous definitions, drugs are substances not normally found in the body which induce abnormal effects. If these abnormal effects are desirable, then the drug is administered. Undesirable effects are labeled side effects. When undesirable effects outweigh desirable ones, drugs may be discontinued. Normal body functions require nutrients. Properly administered L-dopa and other nutrients facilitate normal function without side effects. If L-dopa or 5-HTP administration induces side effects, then it is nutrient to drug conversion evidence.

Drugs cannot treat RNDs. In the USA L-dopa is concomitantly packaged with carbidopa as a drug and administered with side effect expectations.⁴⁷ In the USA, there is no single ingredient prescription L-dopa form without carbidopa available. When L-dopa a composition of while intolerable carbidopa side effect develop the non prescription nutritionally sourced L dopp four an manual *pruriens* (synonym for *Mucuna C chinchine vis*) is the only option.^{10,11} Ayurvedic medicine has prescribed of *pruriens* for 3,500 years.⁴⁸

Competitive i nibiti

Competitive inhibite since interaction between serotonin and dopamine using web their precursors in synthesis, transport and met bolism. In the endogenous state, where no or insufficient serotonin or dopamine precursors are ingested, competitive inhibition does not exist.^{5–11,49–56}

Synthesis

Aromatic-L-amino acid decarboxylase (AADC) metabolizes L-dopa to dopamine, 5-HTP to serotonin, histidine to histamine, and phenylalanine to phenylethylamine. Competitive inhibition may exist between the four precursors for metabolism by AADC. Administering L-dopa without balanced serotonin precursor concentrations may decrease AADC serotonin synthesis. This causes a L-dopa-induced serotonin precursor RND, Figur 2.^{5–11,49}

Transport

Organic Cation Transforters (OCT) can fort the centrally acting monoamine, serote in, dopanine, norepinephrine, reir preservors bidirectionally and epinephrice) and across cell mbranes. T to asports precursors into the cellular ructu, where AAC metabolism occurs. Newly synthesized central x acting monoamines are transported aracellularly by OCV to effect functional regulation. There a direct correlation between L-dopa administration and pamine contrations. Increasing only L-dopa and dopintrations induces competitive inhibition at the am asporter, an event that may exclude serotonin precursor transport leading to synthesis inhibition. Subsequent serotonin depletion represents a serotonin precursor RND.^{5-11,49-56}

Metabolism

The monoamine oxidase-A catalyzes centrally acting monoamine metabolism. Increasing dopamine concentrations with L-dopa enhances monoamine oxidase-A activity which may deplete serotonin, inducing a serotonin precursor RND.^{5–11,49–56}

Reversible PD phenomenon

The PD clinical course is typically described as irreversible PN. The following is based on 18 years of data collection

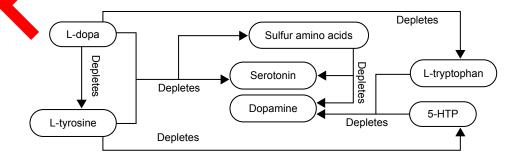


Figure 2 With competitive inhibition administering one precursor in excessive concentrations may induce depletion and one or more RNDs. Note: Copyright ©2014. Dove Medical Press. Reproduced from Hinz M, Stein A, Uncini T. Parkinson's disease: carbidopa, nausea, and dyskinesia. *Clin Pharmacol.* 2014;6:189–194.¹¹

Abbreviations: RND, relative nutritional deficiency; 5-HTP, 5-hydroxytryptophan; L-dopa, L-3,4-dihydroxyphenylalanine.

from several hundred medical clinics. This data was used to define reversible RNDs whose symptoms are identical to PD symptoms and/or facilitate irreversible PN.

The problems

This approach rests on the hypothesis that dysfunction resulting from inadequate nutrient concentrations, even when an optimal diet is consumed, results in a nutritional precursor RND. The RNDs associated with PD and its precursors include:

- "Total glutathione loss" which is known to occur before PD symptoms develop.^{16,57} This represents a novel glutathione precursor RND involving L-cysteine and/or L-methionine,⁵⁷ the normal dietary glutathione precursor source.
- PD-induced serotonin, dopamine, norepinephrine, and epinephrine depletion represents novel serotonin and dopamine precursor RNDs.⁵
- L-dopa-induced competitive inhibition depletes serotonin with an associated novel serotonin precursor RND.⁵
- Melanin steal, which has been documented and discussed in the "Other impacts" section, induces dopamine fluctuations that represent an L-dopa and L-tyrosine RND.⁵¹
- L-dopa induces a glutathione precursor RND.³⁶
 The most potentially devastating RND is caused by carbi-

dopa which irreversibly binds to and then deact ates v min using B6 (B6) and all B6-dependent enzymes induced B6 RND that may compromise function nvolving over 300 enzymes and proteins. Youn the B6-c endent enzyme AADC collapses, this day coopromise metabolism of L-dopa to dopamine S-HTP to set onin, histidine to histamine, and pher falanipe to phenylethylamine. Carbidopa-induced B depletion may compromise the nzym, histadi decarboxylase and two B6-dependent ze hist in to histamine inducing a AADC) which metabo Cost Carbidopa-induced B6 depleprofound a histam utathione. The B6-dependent enzymes tion can deple thetase and cystathione-gamma-lyase cystathione-betametabolize homocysteine to L-cysteine. L-cysteine is the rate limiting step in glutathione synthesis.^{10,11,43,58}

The primary PD RND

The primary PD RND involves the inability to obtain adequate dopamine precursors from the diet. Under normal conditions dietary L-tyrosine and L-dopa metabolism meet the synaptic dopamine requirements for optimal electrical transfer across the synapse which facilitates optimal fine motor control regulation. When PD symptoms are present, an optimal diet cannot facilitate dopamine synthesis at the levels required for adequate increase in post-synaptic electrical flow.⁵

Increased L-dopa intake may facilitate synaptic dopamine levels which enhance post-synaptic electricity flow. The subsequent decrease in PD symptoms is due to the dopamine-induced improvement in fine motor control regulation. Increasing synaptic dopamine levels is analogous to increasing the post-synaptic voltage which regulates fine motor control.¹⁰

An exception to the assumed "flore is been concept" was documented in 2014. In the competitive inhibition state, administering too much or too little b-dopa con display exactly the same PD synaptoms with repetual intensity. The previously docume red pill stop technique is required to determine optimal dosing.

AADC free stabolizes ¹ a to dopamine without regulation. With adequate AADC, biochemical feedba mited L-d will yield unlimited dopamine. ingesti the traditional PD treatment medical care standard, the Und a daily dosing value limiting factor is usually L-dopa-L-d induced side effects and/or tachyphylaxis. Typically, less such as dopamine agonists, are prescribed offective blay dealing with inevitable and escalating L-dopa fir de effects. This is a practice that ignores the primary PD ND, inadequate dopamine precursor intake, which is a eversible dietary deficiency. As discussed in the following section, this RND has RPN symptoms that are identical to irreversible PN.5,49

Facilitated irreversible progressive neurodegeneration

It is postulated that the primary PD etiology is lipophilic neurotoxin-induced post-synaptic dopamine neuron damage.^{56,59–66} The body's most powerful and abundant protection against lipophilic neurotoxins is glutathione.^{67,68} Total glutathione loss prior to PD symptom onset is documented.^{16,57,68} The hypothesis is, if glutathione depletion facilitates and potentiates lipophilic neurotoxin damage, then the first step in halting or slowing the irreversible PN is establishing glutathione at optimal levels. The medical care standard does not address the glutathione precursor RND. To the contrary, as discussed in the following section, many medical actions and inactions facilitate glutathione collapse which in turn may potentiate and accelerate FPN. FPN occurs when a reversible process, if left unchecked, enhances and/ or accelerates irreversible PN.

Glutathione depletion

With regard to Figure 3, L-cysteine is the rate-limiting step in glutathione synthesis.⁷⁰ Under normal conditions the glutathione precursor L-cysteine and/or its precursor L-methionine are obtained from the diet in adequate amounts to facilitate optimal glutathione synthesis.

Inadequate glutathione levels can be caused by one or two conditions; The first is an L-cysteine RND, Figure 3. The second is vitamin B6 RND. The B6-dependent enzymes cystathionine-beta-synthase (4.2.1.22) and cystathionine-gamma-lyase (4.4.1.1) metabolize homocysteine to L-cysteine, Figure 3. A B6 RND may profoundly inhibit glutathione synthesis.^{45,46}

To properly manage glutathione depletion from carbidopa or other sources, glutathione precursor status and/ or B6 status must be addressed. Under the current PD medical care standard, nothing is done. The hypothesis is, if common PD treatment approaches deplete glutathione, then each facilitates the neurotoxin-induced electrical damage which leads to irreversible PN. The novel hypothesis is if glutathione depletion facilitates irreversible PN, then administering carbidopa may facilitate irreversible PD symptom progression and collapse.

With regard to PD patients, 89% take carbidopa.71,72 Carbidopa's only indication is L-dopa-induced nausea management.⁴⁶ It has no PD efficacy. Carbidopa has one mechanism: it causes a drug-induced B6 RND through irreversible binding to both B6 and the B6 active site found on all B6-dependent enzymes. This includes the B6-dependent enzyme AADC that catalyzes the L-dopa to dopamine reaction and the 5-HTP to serotopic poction. The two B6 enzymes illustrated in Figure 3 taboliz omocysteine to L-cysteine.^{10,11,41,42} If carbidop is not induc g a B6 RND state its clinical effects y 1 not be berved upplementing B6 may hinder, rever or cancel care s one benefit, its L-dopa anti-nausea fect

Referring to Figure 2, glutatione depletion may be induced by a dopa administration which can deplete the glutathione sulfit amino acid (thiol) precursor S-adenosylmetatione, Figure 1^{24,35,73}

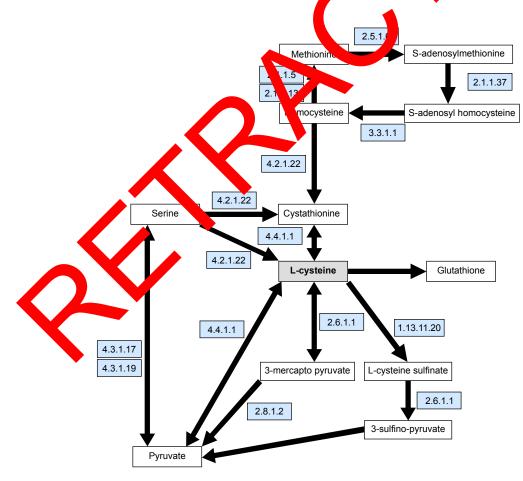


Figure 3 Thiol metabolism.

Notes: Glutathione precursors obtained from the diet are L-methionine and L-cysteine. The enzymes cystathione-beta-synthetase (4.2.1.22) and cystathione-gamma-lyase (4.4.1.1) are vitamin B6-dependent enzymes. Data from Schulz et al⁵⁷ and <u>http://www.genome.jp/kegg-bin/show_pathway?hsa00260</u>.⁶⁹

Dovepress

With regard to the 29 depletion etiologies and seven primary RNDs illustrated in Figure 1, the medical care standard only addresses the dopamine precursor RND by incorporating L-dopa in a manner that accelerates other depletions while inducing RNDs and converts it to a drug with side effects, Figure 2.^{10,11}

To prevent facilitated irreversible PN, carbidopa needs to be stopped while B6 and glutathione precursors need to be properly administered.

L-dopa may also deplete L-tyrosine, L-tryptophan, all thiols, and serotonin.³³⁻⁴⁰ Significant depletion induces an RND.⁵

Reversible pseudo-neurodegeneration

In the endogenous state there is an inverse relationship between central dopamine concentrations and PD symptom severity.⁴⁷ Dopamine synthesis requires L-dopa and AADC.^{5,49} When B6 activates AADC it becomes the enzyme's active site.^{41,42} The novel hypothesis is, if the post-synaptic electrical damage or compromise is no longer progressing, then dopamine precursor RND and/or B6 RND exacerbations will be responsible for the worsening PD symptoms due to inadequate dopamine concentrations. This novel RPN induced by L-dopa RND and B6 RND symptoms has been hiding in pla sight for years with symptoms identical to PD symptoms In 1941, Baker documented that B6 administration rielded significant PD symptom relief in some patient Dop nine collapse secondary to dopamine precursor ND ap B6 RND are RPN examples with symptons that Identical le PN. to PD symptoms induced by irreve

The hypothesis is, if RPN is induce by carbidopa and carbidopa is discontinued authout adequa. B6 administration, then RND components may be misuragnosed as irreversible PN.

d-bra parrier.⁷⁴ a equilibrium, periph-B6 crosses the bb Carbidopa-induced ceneral and central 56 repi ent one tral B6 dept fon has m known since 1978. With carbidopa esulting B6 depletion may lead to collapse administration heral B6-dependent enzymes including of central and per AADC which metabolizes L-dopa to dopamine. When L-dopa appears to stop working while carbidopa is administered, B6 driven AADC collapse needs to be considered as the etiology, not L-dopa tachyphylaxis. This is a reversible event which may wrongly be interpreted as irreversible PN.41

Other impacts

Carbidopa's irreversible binding to B6 induces a double assault on B6-dependent enzyme integrity. It irreversibly

binds to and then depletes the free B6 required to activate the enzyme. It irreversibly binds to the active site then irreversibly deactivates all B6-dependent enzymes.^{10,11}

Carbidopa's molecular weight is 244.3.⁴⁷ Pyridoxal-5'phosphate molecular weight is 247.140.⁷⁴ One carbidopa molecule binds with one pyridoxal-5'-phosphate molecule. Administering carbidopa 100 mg has the potential to irreversibly deactivate B6 101.16 mg in the free and B6-dependent enzyme bound forms. A patient taking carbidopa 100 mg per day while ingesting the 2 mg B6 per day United States Recommended Dietary Allowance (USDDA) for 5 years will have a potential 181,925 mg Brudeficit.

L-dopa was introduced in 19. From its in roduction until 1976 there was a year to-year lecrease in the PD mortality rate. B6 depletion is documented crease death rates from heart failure, property artery disease, colorectal cancer, stroke, per pheral v cular di ase, and atherosclerosis. Literaty m 2014 lin. d he increasing PD death red B6-depletion. Carbidopa, whose rate to carbidopa-in mechanism f action **N**²6 depletion, was introduced in PD mortality increased over 328% between 1976 197 $011.^{11}$ and

r to 197 an era with no carbidopa administration, irrev dyskinesias were not reported. In 2014, ors documented that irreversible dyskinesias are the aused by carbidopa, not L-dopa. The mechanism of action s a carbidopa-induced B6 RND which compromises the wo B6-dependent enzymes, histidine decarboxylase and AADC, which metabolize histidine to histamine. B6 depletion may induce profound carbidopa-induced antihistamine dyskinesias which have been wrongly described as L-dopainduced dyskinesias in the past. Managing these dyskinesias requires stopping carbidopa and administering adequate B6. If adequate B6 is not administered the dyskinesias may be perceived as permanent and irreversible.¹¹

L-dopa enhances melanin steal. Melanin precursor metabolism is catalyzed by tyrosinase which preferentially metabolizes L-tyrosine and L-dopa to dopaquinone at dopamine synthesis expense. In the competitive inhibition state, unstable melanin synthesis is induced by L-dopa which causes an L-tyrosine RND. It was documented that dopamine fluctuations have a direct correlation with PD clinical symptom fluctuations and on/off effect.⁵¹

5-HTP versus carbidopa

Literature documents that 5-HTP administration for L-dopainduced nausea management is "superior" to carbidopa in several ways. L-dopa-induced nausea etiology is due to peripheral dopamine dominating serotonin and its precursors in competitive inhibition synthesis (AADC), metabolism, and transport.^{10,11}

5-HTP controls L-dopa-induced nausea by the same mechanism as carbidopa: AADC inhibition. Carbidopa inhibition is irreversible. AADC inhibition by 5-HTP is reversible. 5-HTP and L-dopa freely cross the blood–brain barrier and are metabolized by AADC to serotonin and dopamine respectively without biochemical feedback inhibition. With adequate AADC availability, administering 5-HTP will yield unlimited serotonin.^{5,8,10,11,49,51}

L-dopa taken alone, without concomitant 5-HTP administration, is prone to function as a drug with side effects and induces serotonin depletion. 5-HTP is highly effective in controlling L-dopa-induced nausea which removes the need for carbidopa.¹¹

5-HTP may facilitate L-dopa functioning as a nutrient without side effects as opposed to concomitant carbidopa administration where L-dopa is a drug. 5-HTP does not deplete B6, induce PD symptoms due to RPN or facilitate irreversible PN as carbidopa has the potential for.^{10,11}

Normally, L-tyrosine and L-tryptophan dietary intake provides optimal competitive inhibition balance between dopamine and serotonin precursors with no side e However, for proper balance, like force must balance ike force. L-tyrosine must be paired with L-transphan L-dopa must be paired with 5-HTP. nerall L-do and 5-HTP from the diet are available in sma unts Pairing increased L-dopa administrat. with dietary hibition mi L-tryptophan is a competitive atch which converts L-dopa from a numerit to drug with is accompanying side effects. *F* compensation this imbalance and the ensuing nave a, standard medical care administers another drug, carb, ppa, th all its inherent undesirable 5 8,10,11,4 consequence

5-HTP, D patient is not needlessly To reg p, with induced problems solely for L-dopaexpose to carb a control. Unlike carbidopa, 5-HTP does induced h th glutathione synthesis which facilitates not interfere irreversible PN. A does not irreversibly deplete B6 which compromises dopamine, norepinephrine, epinephrine, or histamine synthesis. 5-HTP does not interfere with serotonin precursor transport, reduce serotonin synthesis, nor does it have the potential to deactivate all free B6 and all B6-dependent enzymes. Furthermore, it has not been linked to the PD mortality rate. It does not induce irreversible dyskinesias, nor interfere with over 300 enzyme and protein functions.

Materials and methods

These nutrient studies were carried out in the USA. All nutrients studied were classified by the USA Food and Drug Administration as "Generally Recognized as Safe" and sold over-the-counter without a prescription. Institutional review board oversight required of drug studies was not required. This PD research using L-dopa without carbidopa started in 2002. In order to exactly replicate these results, the following disclosures are made.

Since there is no single ingredient prescription L-dopa without carbidopa available in the US to M Pruriens- sourced L-dopa was used.

The following products were obtain from CHK Nutrition, Inc., Duluth, Mr., USA. Wo L-do a sources were employed: D5 Mucroa 40% tanda. L-dopa 300 mg veggie caps and D. Lucur 40% standardized L-dopa powder. The following 5-h source were employed: 1) 99%+ pure 5-HT, 00 mg 5-H, r, capsule; 2) NeuroReplete, one capsule contains 37.5 mg 5-HTP, 375 mg L-tyrosine, g pyridox, phosphate, 125 mg ascorbic acid, 2.5 mg lysine, 27.5 mg calcium carbonate, 50 mcg folic acid; nd 3) Reple Extra, one capsule contains 75 mg 5-HTP, Img L-ty sine. The thiol precursors were obtained from Cysic, one capsule contains 750 mg L-cysteine, 67 mcg nium, 66.5 mcg folic acid. Supplemental L-tyrosine was obtained from TyrosineReplete, one capsule contains 500 mg L-tyrosine. CHK Nutrition sourced vitamin B6, one capsule contains 100 mg pyridoxal phosphate, was also employed.

Urine samples were collected after the patient had taken a static daily dosing value of amino acids for a minimum of 5 days. Urine samples were collected 6 hours prior to sleep cycle, and 4 pm was the most frequent time selected for this purpose. To create an environment with a pH less than 3.0 in order to stabilize serotonin and dopamine 6 N HCl was employed. Samples were processed by DBS Laboratories (Duluth, MN, USA) directed by a board certified hospitalbased laboratory medicine pathologist. Urinary dopamine and serotonin were assayed utilizing commercially produced RIA kits (3-CAT RIA IB88501 and IB89527; Immuno Bio Lab, Inc., Minneapolis, MN, USA).

If there was no carbidopa ingestion history, the PD patient was started on vitamin B6 100 mg three times a day. If the patient had a carbidopa ingestion history, B6 200 mg three times a day for thirty days was administered then decreased to 300 mg per day. If the patient was taking a carbidopa/L-dopa preparation and presented with head-bobbing dyskinesias or choreiform movements, the carbidopa preparation was discontinued and B6 400 mg three times a day was started

769

until dyskinesias ceased, at which point B6 was lowered to 100 mg three times a day.

Patients who were not taking carbidopa/L-dopa preparations at the treatment onset were initiated as follows. They were started on D5 Mucuna 40% two pills three times a day, NeuroReplete one pill twice a day, CysReplete two pills three times a day and vitamin B6 300 mg per day. The D5 Mucuna 40% pills were increased weekly in six pill increments until 24 pills per day (six pills four times a day) was established, depending on patient symptom relief. A change from D5 Mucuna 40% pills to D5 Mucuna 40% powder generally occurred when patients were taking 24 pills per day or sooner if the patient experienced issues with pill swallowing. If the daily dosing level reached 24 pills, eight pill per day incremental increases were implemented as needed to achieve symptom relief. Pill stops, under the protocol documented in 2014, were utilized at the caregiver's discretion and generally were introduced when the daily dosing value was between 24 and 42 pills.9

If the patient was taking any carbidopa/L-dopa preparation, those medications were stopped upon treatment initiation. Patients were then started on NeuroReplete one pill twice a day with CysReplete two pills three times a day along with B6 as previously discussed. The total daily L-dopa dops from the carbidopa/L-dopa preparation was calculated. The resulting value, multiplied by the factor 12.5, determined the 40% mucuna daily dosing value (in milligrams) while the carbidopa/L-dopa was discontinued. Pill stopwere in finited the following week.

v nausea in Patients were instructed to report lence or intestinal disturbance, no matter w sh L-dopa-induced nausea onset usually occurre by the time to patients were taking 24-300 mg D5 cuna pills per day. Nausea was controlled by first adjusing the NeuroReplete daily dosing was some or y uting was reported, value. If the naus d initiation the patient reported the D5 Mucur dose as lowe adjusted to achieve optimal comfort. T. Neuro ne 5-HTP and L-dopa as evidenced by balance betwe complete nausea plution. Until nausea has been brought under control, no funder upward D5 Mucuna 40% adjustments should be attempted.

If nausea was reported on the one pill twice a day NeuroReplete daily starting dose, the dose was decreased to one pill in the morning. If nausea persisted after 4 days, the NeuroReplete was increased to one pill three times a day. If after 4 days nausea was still present, the NeuroReplete was increased to two pills three times a day. Persistent nausea unresolved in 4 additional days required the NeuroReplete to be increased to four pills twice a day. If after 4 additional days nausea remained, the patient was placed on four NeuroReplete in the morning and noon with four Replete-Extra at 4 pm. Increases in D5 Mucuna 40% with pill stops were resumed once nausea was under control.

Results

Since 2002, through July 31, 2015, this research project has databased information on 1,207 PD patients treated with L-dopa without carbidopa. This section reports PD data N=388 obtained between August 1, 2014 and July 31, 2015.

Dyskinesias

Since 2002, and consistent with pre-19, eVerature, there have been no new of the Leopa-induced irreversible dyskinesias reported among the 1,20, PD patients taking L-dopa without exhibit opa.¹¹

Between August 2014 and July 31, 2015, 17 patients pa-induced ad bobbing dyskinesias presented with c2 for t atment. Their dyskinesias involved the upper shoulder eck muscles and all patients were taking a carbidopa/ and L-do, preparation. Sinemet[®] (Merck & Co. Whitehouse A) was the most frequently prescribed for-Station, I. he carbidopa/L-dopa preparation was stopped and m e protocol described in the materials and methods section vas started with 1,200 mg B6 per day until dyskinesias csolved, at which time the B6 was decreased to 300 mg per day. The time range reported to symptom resolution was 14 to 163 days with a 26-day mean and a 18.2-day standard deviation. In no cases were the dyskinesias refractory. One patient experienced dyskinesia abatement after 29 days of ingesting 1,200 mg B6 per day, then 6 days after stopping B6 300 mg per day experienced dyskinesia relapse. Permanent dyskinesia lysis was established in this patient with 1,200 mg B6 per day for 9 additional days.¹¹

L-dopa tachyphylaxis

Under competitive inhibition between serotonin and dopamine, too much or too little L-dopa may present as a PD relapse with identical symptoms. L-dopa tachyphylaxis has been documented to occur secondary to a B6 RND, dopamine precursor RND and/or a serotonin precursor RND. With symptom relapse pill stops were required to determine if the daily L-dopa dosing value was under dosed or overdosed.⁹

Under this approach, in all cases pill stops revealed that the waning symptom control resulted from overdose and less L-dopa was required. It was postulated that correcting the B6 deficiency facilitated dopamine synthesis and the decreased L-dopa daily dosing requirement. No true L-dopa tachyphylaxis has been observed with this nutritional approach.

Melanin steal-related RND

As previously documented, urinary dopamine greater than 40,000 μ g/gcr were interpreted as retrograde phase 1 dopamine fluctuations. This was attributed to melanin steal which was managed with L-tyrosine in 7,500 mg incremental additions. The daily L-tyrosine dosing requirement ranges up to 75,750 mg per day, Table 1. Generally, L-tyrosine was well tolerated only when adjusted under lab guidance. All on/off effect occurrences responded to L-tyrosine dosing optimization. No refractory on/off cases were reported.⁵¹

L-dopa-induced nausea

5-HTP was substituted for carbidopa. If nausea was experienced, no further increases in the D5 Mucuna 40% were performed until the NeuroReplete was established at the daily dosing value required for complete nausea relief. 5-HTP dosing parameters are found in Tables 1 and 2. With the 5-HTP administration there were no refractory L-dopa-in v. 1 nausea cases reported.

Discussion

The novel assertion is when nutrients disc ay side of the they are functioning as drugs. These side effects around just acute events experienced by the patient. They may be resent slow and insidious systemic dystanction and/or collapse which evolves over long time periods.

Under the usual customery medical approach, there is no consideration group to PLADs. When L-dopa is turned into a drug, side efforts and coming effort acy define the maximum improvement point. If RN containing to L-dopa precursors, serotor precursors thiols, and B6 depletion are induced and/or ignorate by standard medical care, then the current standard treatment methodology is facilitating irreversible PN and inducing reversible pseudo-neurodegeneration, which causes patient deterioration under the belief that a single etiology model, irreversible PN, is the cause of all clinical deterioration.^{10,11}

This novel amino acid approach avoids turning nutrients into drugs with side effects. This amino acid approach does not utilize one size fits all dosing. For optimal results, L-dopa, 5-HTP, L-tyrosine, L-cysteine, and B6 must be administered simultaneously at dosing values uniquely defined for each patient.^{5,8,10,11,49,51}

The relentless neurotoxin-induced PN is facilitated by glutathione collapse, a process that can be slowed or halted. The novel assertion is if glutathion collapse occurs long before the first clinical PD symptom appears, then the neurotoxin-induced damage prior symptoms a facilitated.

Other new assertion are, if arbidopal B6 depletion may compromise the two B6-dependencenzymes which metabolize homocyteine or L-cysteine, the rate limiting step in glutathone synchisis, there arbidopa administration may deplete blutathione a blaccilitate irreversible PN. If L-dopa administration depletes the glutathione precursor S-reaceyl-methion rec.^{34–36} then it is another novel asserion that L-dopa administration may deplete glutathione and acilitate irreversible PN.

If the PD ymptom breadth and severity is the reference point, a part is a novel assertion that carbidopa-induced B6 a lation is the most damaging component of standard PD treatment. It is not possible to address B6 depletion until carbidopa is completely discontinued. Reviewing carbidopa pharmacokinetics reveals that if enough B6 is administered to compensate for carbidopa depletion, then L-dopa-induced nausea control will no longer be observed.^{16,57,68}

With regard to PD, carbidopa-induced B6 depletion may collapse AADC function. This has the same novel effect on dopamine as decreasing L-dopa intake. Dopamine synthesis is decreased while PD symptoms increase.^{10,11}

Carbidopa irreversibly binds to and deactivates B6 and all B6-dependent enzymes.^{41,42} Literature documents that 5-HTP is a superior alternative to carbidopa without the deleterious side effects.¹¹ The novel hypothesis is, if when administered properly 5-HTP has no side effects, then there is no justifiable reason to not substitute 5-HTP for carbidopa. The current medical care standard not only fails to recognize

Table I	Dosing	parameters	reported	on l	last la	b sample	submitted
---------	--------	------------	----------	------	---------	----------	-----------

N=388	5-HTP (mg/day)	L-tyrosine (mg/day)	Mucuna pruriens 40% (mg/day)	L-dopa (mg/day)	
Range	37.5–900	375–75,750	600–52,500	240-21,000	
Mean	123.3	11,617.4	11,671	4,668	
Median	75	1,500	7,200	2,880	
Standard deviation	101.6	17,589.6	24,220.0	9,699.8	

	,	s faile i op ei te					
I	2	3	4	5	6	8	>8*
37.5	75	112.5	150	187.5	225	300	>300
N=50	N=176	N=41	N=53	N=6	N=20	N=32	N=10
12.9%	45.3%	10.6%	13.7%	1.5%	5.2%	8.2%	2.6%
	I 37.5 N=50	I 2 37.5 75 N=50 N=176	I 2 3 37.5 75 112.5 N=50 N=176 N=41	I 2 3 4 37.5 75 112.5 150 N=50 N=176 N=41 N=53	I 2 3 4 5 37.5 75 112.5 150 187.5 N=50 N=176 N=41 N=53 N=6	I 2 3 4 5 6 37.5 75 112.5 150 187.5 225 N=50 N=176 N=41 N=53 N=6 N=20	N=50 N=176 N=41 N=53 N=6 N=20 N=32

 Table 2 The NeuroReplete (5-HTP) daily dosing value reported with last lab sample submitted

Notes: Patient data, last sample submitted between August 1, 2014 and July 31, 2015. Based on L-dopa-induced nausea management. N=388. *Eight pills NeuroReplete contain 300 mg 5-HTP. Dosing higher than eight pills per day was done by adding RepleteExtra (four pills =300 mg 5-HTP). Abbreviations: 5-HTP, 5-hydroxytryptophan; L-dopa, L-3,4-dihydroxyphenylalanine.

the vast array of carbidopa-induced B6 deficiency issues, it is actively facilitating permanent electrical damage progression and inducing reversible PD symptom deterioration every day carbidopa is prescribed and taken. Carbidopa administration is the glutathione and nutritional optimization antithesis.^{10,11} It deactivates and prevents activating enzymes that are critical in metabolizing homocysteine to L-cysteine, the rate limiting step in glutathione synthesis.^{45,46} Carbidopa-induced B6 depletion may collapse AADC L-dopa and 5-HTP metabolism to dopamine and serotonin, respectively.^{5,10,11,49} Typically, the medical care standard treats PD with carbidopa/L-dopa then simply documents the progressive neurodegenerative course with no attention paid to the reversible components.

L-dopa is the most effective PD treatment; however, as typical long-term monotherapy administration depletes a thiols including glutathione.^{34–38} This depletion error bates and facilitates irreversible lipophilic neurotrain-in-iced electrical damage. Glutathione depletion is aversible

L-dopa metabolism to dopamine, a rough competitive inhibition, induces serotonin depleted that leads that serotonin precursor RND. As previously documented, under this balanced competitive inhibition based approach, in order for L-dopa to not be concerted ton drug it must be titrated with pill stops in the 66 bit 52 0.00 mg per day D5 Mucuna 40% daily dosing uppe in Combination with proper 5-HTP, L-tyrosine, a theol and 86 level 19

Controlling L-doe induced nausea with 5-HTP is higher priority than as the ang optimal symptom control. Under this approach, if at any point nausea is encountered, symptom optimization needs to be abandoned until nausea has fully resolved secondary to establishing the individualized optimal 5-HTP daily dosing value.⁹ This research notes the novel finding that as treatment progresses, if other issues related to serotonin and dopamine imbalance such as headache, anxiety, insomnia, etc, occur, 5-HTP may be secondarily titrated within 37.5 to 900 mg per day range.

Serotonin depletion is associated with PD,^{25,26} carbidopa administration which leads to B6-induced AADC collapse and from competitive inhibition induced by dopamine precursors.^{5,10,11,49} Reversible serotonin depletion symptoms have been wrongly attributed to irreversible PN. Previously documented were the observatione that seven serotonin depletion compromises dopamine relinical effects.⁴⁹

L-cysteine, the immediate glutatione prefursor and rate-limiting step in gly chione withe a one dose fits all approach.^{10,11,4} As r viously documented, the optimal adult L- steine vy dosir value is 4,500 mg per day in div doses.9,51,5. P e to toxicity of methyl ous system, selenium 400 µg per day mercury to central ne is adde If the leader PD post-synaptic damage cause rotoxins and glutathione is the most powerful protecis no nechanism, en administrating adequate glutathione tive precupers at proper levels will positively impact the clinical ourse. h ione is administered intravenously (IV), on lar equivalent basis, 11,414.25 mg per day needs to a p e administered. YouTube and other anecdotal sources docupent the extraordinary response some PD patients achieve ith IV glutathione administration.77,78 These results are short lived generally lasting 36 hours or less. The hypothesis is, if this IV glutathione response is observed, then it demonstrates severe glutathione precursor RND. Severe glutathione precursor RNDs caused by PD, L-dopa, and carbidopa only progress to the level noted on these YouTube videos when severe nutritional neglect has occurred. It is the novel assertion that glutathione precursor RND collapse on this scale should never happen. Ideally, proper nutritional glutatione precursor intervention should be started long before the first PD symptoms are observed.

Dopamine fluctuations that induce on/off effect are documented as being caused by melanin steal. Resolving existing or developing L-tyrosine driven RNDs can effectively address this issue. However, this should not be undertaken without proper laboratory assay guidance. Failure to do so may convert L-tyrosine into a drug with side effects.⁵¹

The observations discussed in this manuscript are based on 18 years first hand clinical patient experience. Optimal results with this nutritional approach cannot be achieved by self-treatment or while cared for by one who lacks a medical license and in-depth training in general PD care and this methodology. Even though this is a nutritionally based approach, achieving optimal outcomes is far more complex than any previous drug approach. It is not just following protocols but rather knowing, identifying, and understanding when the actions prescribed may create long-term nutritional harm to the patient. Negative consequences on other systems and side effects due to nutritional imbalance can convert the nutrient to a drug, and unwittingly accelerate PD symptom deterioration. It is incumbent upon the caregiver to recognize and properly manage these nutritional deficiencies in order to gain the optimal outcomes for their PD patients and not contribute to reversible and irreversible PN.

Conclusion

This paper does not discuss a new treatment approach. It discusses side effect management for the most effective known PD treatment, L-dopa. When nutrients to include L-dopa and 5-HTP are displaying side effects they have been converted to a drug.

Prior to this research project's documented results, the PD clinical course was referred to exclusively as irreversible PN. This paper outlines two reversible states: reversible FPN and RPN. Optimal results in PD treatment can be achieved until the reversible RND etiologies and collesses are properly addressed.

Removing carbidopa from treatment has th greate positive outcome impact. Carbidopa vers ibly bind with B6 and all B6-d pende nzymes can mine colla induce glutathione depletion, e, serotonin collapse, antihistamine-inc. ced & kinesias, and RNDs contributing to these Ilapses. In cn, B6 depletion induces secondary nction collapse involving over 300 enzyme and protein vster ... Carbidopa has been linked to the 328% inc mortal which started the year se in after its j roduc on.

When all RM resed to be managed simultaneously, the y must be given to managing B6 deficiency, highest pr annot be done effectively while the patient is something that taking carbidopa. As demonstrated by AB Baker in 1941, for some PD patients all that may be needed for adequate treatment may be ingesting proper B6 levels.24 L-dopa and AADC are both critical to establishing dopamine levels required for maximum PD improvement. L-dopa RNDs and AADC dysfunction induced by B6 depletion are equally powerful in compromising dopamine synthesis. While carbidopa does not cross the blood-brain barrier, B6 does. It has been known since 1978 that B6 depletion by peripheral carbidopa depletes central dopamine by compromising the B6 enzyme AADC,⁴¹

an event that induces PD reversible symptom deterioration and facilitates irreversible PN.

The central PD event is permanent substantia nigra postsynaptic dopamine neuron damage.3 When neurotoxins are the cause, the standard of care in medicine has traditionally ignored the associated glutathione collapse which may facilitate further neurotoxic damage. Medicine compounds the problem by continuing to prescribe treatment that facilitates neurotoxin-induced collapse. Administering thiols (glutathione) without serotonin and dopamine precursors induces a dopamine and serotonin collapse this represents a precursor RND.^{5,11} Documentation xists that tra-early in the disease course, prior to symptoms, glutathion precursors are in an RND state.^{16,57,68} The glaring tential the lintervention .ed. has never been embr

As a strategy to and winche side effects associated with improperly administered adopa, standard medical care delays starting Lancon until other large effective drugs fail. This ignores me dopathine precursor RNDs which only facilitates and the derates irredersible PN. On/off effect has puzzled idedicine for years; proper management with L-tyrosine under me melanin-scal model has been documented as a simple and scie laborator guided method to reverse this effect.⁵¹

Leonally, PD exacerbations were exclusively attribto substantia nigra post-synaptic neurons undergoing irreversible PN. This served as a single etiology to explain the source, magnitude, and clinical course. While it is known in the endogenous state that increasing synaptic dopamine concentrations has an inverse correlation with PD symptoms, carbidopa's B6 inactivation ability compromises L-dopa metabolism to dopamine by AADC thereby exacerbating PD symptoms. Thiol depletion and collapse induced by L-dopa facilitates post-synaptic damage progression which fuels a vicious cycle that increases the L-dopa dosing needs leading to increased thiol collapse.

The key to optimal long-term PD treatment results is to completely avoid carbidopa while administering thiols, L-tyrosine, L-dopa, 5-HTP and B6 in a manner where they continue to function as nutrients without inducing short-term or long-term problems or side effects. This stated goal may appear deceptively simple on the surface. Until this novel approach, there was no prior documentation claiming that L-dopa needed to be conceptualized as a nutrient which may be converted to a drug if it generates side effects, depletion, or dysfunction. When nutrient-associated side effects develop it is proof that one or more nutrients have been converted to a drug.

This paper documents the superiority of the individual patient tailored treatment approach which comprehensively addresses the multisystem nutritional collapses that contribute to irreversible PN and RPN. The paper focuses on the shortcomings of the current medical care standard.

Disclosure

MH discloses his relationship with DBS Laboratory services and NeuroResearch Clinics, Inc. The other authors report no conflicts of interest in this work.

References

- Neurodegenerative diseases. Mayo Clinic 2015. Available from: http:// www.mayo.edu/research/labs/neurodegenerative-diseases/overview. Accessed October 8, 2015.
- Suremeier J, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. *Neuroscience*. 2011;198:221–231.
- Phani S, Loike JD, Przedborski S. Neurodegeneration and inflammation in Parkinson's disease. *Parkinsonism Relat Disord*. 2012; 18(Suppl 1):S207–S209.
- Yu N-Y, Chang S-H. Comparisons of fine motor control functions in subjects with Parkinson's disease and essential tremor. *Int J Med Health Biomed Bioeng Pharm Eng.* 2013;7(10):343–346.
- Hinz M, Stein A, Uncini T. Relative nutritional deficiencies. Int J Gen Med. 2012;5:413–430.
- Hinz M, Stein A, Uncini T. Monoamine depletion by reuptake inhibitors. Drug Healthc Patient Saf. 2011;3:69–77.
- 7. Hinz M, Stein A, Uncini T. The discrediting of the monoamine hypothesis. *Int J Gen Med.* 2012;5:135–142.
- Hinz M, Stein A, Uncini T. 5-HTP efficacy and contraindication Neuropsychiatr Dis Treat. 2012;8:323–328.
- Hinz M, Stein A, Uncini T. Management of L-dopa overdose in th competitive inhibition state. *Drug Healthc Patient Saf.* 2014;6:93–99.
- 10. Hinz M, Stein A, Uncini T. The Parkinson's diserver are rate: carbidopa and vitamin B6. *Clin Pharmacol.* 2014;6: 51–169.
- 11. Hinz M, Stein A, Uncini T. Parkinson's disease arbidopart and and dyskinesia. *Clin Pharmacol.* 2014;6:189(194).
- 12. Gröger A, Kolb R, Schäfer R, Klose U. Dote nine reduce to of the substantia nigra of Parkinson's disease patient confirmed in vie magnetic resonance spectroscopic imaging. *Pues One* 014;9(1):1–6.
- Venkateshappa C, Harish G, Mythri RB, Mahayan A, Bharath MM, Shankar SK. Increased oxidation aamage and decrease antioxidant function in aging human substance a nigra compared to striatem: implications for Parkinson's Disease agurochemices. 2012;37:358–369.
- Charlton CG, Crowell B J. String a dopamin depletion, tremors, and hypokenesia following the inversal, ipin don of S-adenosylmethionine. *Mol Charl Neuropathol.* 35:27–69–284.
- Eldrup E, Logensen JJacobsen S, Jakkenberg H, Christensen NJ. CSF and p. ma core of the conference properties of the comparison of the conference of the conferen
- Zeevalk GD, Manzin Z, Sonsalla PK, Bernard LP. Characterization of intracellular elevation of glutathione (GSH) with glutathione monoethyl ester and GSH in brain and neuronal cultures: relevance to Parkinson's disease. *Exp Neurol.* 2007;203:512–520.
- Schulz JB, Lindenau J, Seyfried J, Dichgans J. Glutathione, oxidative stress, and neurodegeneration. *Eur J Biochem.* 2000;267:4909–4911.
- Martin HL, Teismann P. Glutathione a review of its role and significance in Parkinson's disease. *FASEB J*. 2009;23:3263–3272.
- Newman PE. Alzheimer's disease revisited. *Med Hypothesis*. 2000;54(5): 774–776.
- Corrales F, Ochoa P, Rivas C, Martin-Lomas M, Mato JM, Pajares MA. Inhibition of glutathione synthesis in the liver leads to S-adenosyl-L-methionine synthetase reduction. *Hepatology*. 1991;14:528–533.
- 774 submit your manuscript | www.dovepress.com

- Cheng H, Gomes-Trolin C, Aquilonius SM, et al; Levels of L-methionine S-adenosyltranferase activity in erythrocytes and concentrations of S-adenosylmethionine and S-adenosylhomocysteine in whole blood of patients with Parkinson's disease. *Exp Neurol.* 1997;145(2):580–585.
- 22. Baek M, Choy JH, Choi SJ. Montmorillonite intercalated with glutathione for antioxidant delivery: synthesis, characterization, and bioavailability evaluation. *Int J Pharm*. 2012;425(1–2):29–34.
- Lertratanangkoon K, Orkiszewski RS, Scimeca JM. Methyl-donor deficiency due to chemically induced glutathione depletion. *Cancer Res.* 1996;56:995–1005.
- 24. Baker AB. Treatment of paralysis agitans with vitamin B6 (pyridoxine hydrochloride). *JAMA*. 1941;116(22):2484–2487.
- Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y. Reduction of cortical dopamine, noradrenaline, serotonin and their metabolites in Parkinson's disease. *Brain Res.* 1983;275(2):221–328.
- Halliday GM, Blumbergs PC, Cotton RC plessing WW, Geffen LB. Loss of brainstem serotonin- and sub- nice P-contain g neurons in Parkinson's disease. *Brain Res.* 1990, 20(1):104–107.
- Jenner P, Sheehy M, Marsden D. No. trenaline art 5-hydroxytryptamine modulation of braid dopamine hyption; applications for the treatment of Parkinson 8 disease *J Cline Leanacol.* 1983;15: 2778–289S.
- Pan T, Li X, Jankow J. The preciation between Parkinson's disease and melanoma. *J Cancer.* 2, 1:128;27–1–2260.
- 29. Stansley BJ 4 and boto BK. L-do, and brain serotonin system dysfunction. **1**, *cics*. 20, **3**:75–88.
- 30. Miguelez C, Morera-Lorreras T, Torrecilla M, Ruiz-Ortega JA, Usera-L. Atteraction between the 5-HT system and the basal ganglia: fractional implication and therapeutic perspective in Parkinson's sease. *Front Neval Circuits.* 2014;8:1–9.
- Indner B, Leblhuer F, Fuchs D. Increased neopterin production and try uphan degretation in advanced Parkinson's disease. *J Neural Trans.* 199(2):181–189.
 - Jemeth H, Toldi J, Vécsei L. Kynurenines, Parkinson's disease and undegenerative disorders: preclinical and clinical studies. *J Neural Transm*. 2006;(70 Suppl):285–304.
- 33. Karobath M, Díaz JL, Huttunen MO. The effect of L-dopa on concentrations of tryptophan, tyrosine, and serotonin in rat brain. *Euro J Pharmacol.* 1971;14:393–396.
- Charlton CG, Crowell B Jr. Parkinson's disease-like effects of S-adenosyl-L-methionine: effects of L-dopa. *Pharmacol Biochem Behav.* 1992;43(2):423–431.
- Liu XX, Wilson K, Charlton CG. Effects of L-dopa treatment on methylation in mouse brain: implications for the side effects of L-dopa. *Life Sci.* 2000;66(23):2277–2288.
- Muller T, Woitalla D, Hauptmann B, Fowler B, Kuhn W. Decrease of methionine and S-adenosylmethionine and increase of homocysteine in treated patients with Parkinson's disease. *Neurosci Lett.* 2001; 308(1):54–56.
- 37. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson's disease: possible mechanisms of formation involving reactive oxygen species. *J Neurochem.* 1998;71:2112–2122.
- Borah A, Mohanakumar KP. Long-Term L-DOPA treatment causes indiscriminate increase in dopamine levels at the cost of serotonin synthesis in discrete brain regions of rats. *Cell Mol Neurobiol*. 2007;27: 985–996.
- Wuerthele SM, Moore KE. Studies of the mechanism of L-dopa-induced depletion of 5-hydroxytryptamine in the mouse brain. *Life Sci.* 1977;20: 1675–1680.
- Ritvo ER, Yuwiler A, Geller E, et al; Effects of L-dopa in autism. J Autism Dev Disord. 1971;1(2):190–205.
- Airoldi L, Watkins CJ, Wiggins JF, Wurtman RJ. Effect of pyridoxine on the depletion of tissue pyridoxal phosphate by carbidopa. *Metabolism*. 1978;27(7):771–779.
- 42. Daidone F, Montioli R, Paiardini A, et al; Identification by virtual screening and in vitro testing of human DOPA decarboxylase inhibitors. *PLoS One.* 2012;7(2):1–15.

- Lado-Abeal J, Graña M, Rey C, Cabezas-Cerrato J. L-5-hydroxytryptophan does not stimulate LH secretion directly from the pituitary in patients with gonadotrophin releasing hormone deficiency. *Clin Endocrinol* (*Oxf*). 1998;49(2):203–207.
- 44. Bartlett MG. Biochemistry of the water soluble vitamins: a lecture for first year pharmacy students. *Am J Pharm Educ*. 2003;67(2): Article 64.
- Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal-5'-phosphate. J Biol Chem. 1994;269(41): 25283–25288.
- 46. Bruinenberg PG, De Roo G, Limsowtin G. Purification and characterization of cystathionine g-lyase from lactococcus lactis subsp. cremoris SK11: possible role in flavor compound formation during cheese maturation. *Appl Environ Microbiol*. 1997;63(2):561–566.
- Sinemet prescribing information. Merck website. Available from: https:// www.merck.com/product/usa/pi_circulars/s/sinemet/sinemet_pi.pdf. Accessed October 8, 2015.
- Katzenchlager R, Evans A, Manson A, et al; Mucuna Pruriens in Parkinson's disease: a double blind clinical and pharmacologic study. *J Neurol Neurosurg Psychiatr.* 2004;75:1672–1677.
- Hinz M, Stein A, Uncini T. APRESS: apical regulatory super system, serotonin and dopamine interaction. *Neuropsychiatr Dis Treat*. 2011;7: 457–463.
- Hinz M, Stein A, Uncini T. Validity of monoamine assay sales under the "spot baseline urinary neurotransmitter testing marketing model". *Int J Nephrol Renovasc Dis.* 2011;4:101–113.
- Hinz M, Stein A, Cole T. Parkinson's disease-associated melanin steal. Neuropsychiatr Dis Treat. 2014;10:2331–2337.
- Hinz M, Stein A, Uncini T. Amino acid management of Parkinson's disease: a case study. *Int J Gen Med.* 2011;4:165–174.
- Hinz M, Stein A, Uncini T. Urinary neurotransmitters testing: considerations of spot baseline norepinephrine and epinephrine. *Open Access J Urol.* 2011;3;19–24.
- Hinz M, Stein A, Neff R, Weinberg R, Uncini T. Treatment of a prittodeficit hyperactivity disorder with monoamine amino acid precessors and organic cation transporter assay interpretation. *Neuropsychiat*, 20 *Treat*, 2011;7:31–38.
- Stein A, Hinz M, Uncini T. Amino acid-respective Crope's diseas a case study. Clin Exp Gastroenterol. 2010, 71–177
- Hinz M, Stein A, Uncini T. The dual-gap tumes and rotation of renal monoamine transport. *Neuropsychiatr Diverent*. 2010, 97–392.
- Schulz JB, Lindenau J, Seyfried J, Jagans J. Glutanone, oxidative stress and neurodegeneration. *J. J Biogen.* 2000;267, 904–4911.
- Kegg cysteine methionic metabolism mosapiens. Available from: http://www.geng.c.jp/kegg-bin/show_athway?org_name=h sa&mapno=00270& apscale= tshow_description=hide. Accessed October 9, 2015.
- 59. Blum D, Torch S, La, even N, et al; Meecular pathways involved in the neurotector prof 6-0. DA, doptoine and MPTP: contribution to the approact theory in Parka and asease. *Progr Neurobiol*. 2001;65: 135-12.
- Curthen, Flee and Correct Robison RJ, Crookston MJ, Smith KR, Hanson Cherken Methamphetamine/amphetamine abuse and risk of Parkinson's bisease in Utah: a population-based assessment. *Drug Alcohol Depene* 2015;146:30–38.

Neuropsychiatric Disease and Treatment

Publish your work in this journal

Neuropsychiatric Disease and Treatment is an international, peerreviewed journal of clinical therapeutics and pharmacology focusing on concise rapid reporting of clinical or pre-clinical studies on a range of neuropsychiatric and neurological disorders. This journal is indexed on PubMed Central, the 'PsycINFO' database and CAS, and is the official journal of The International Neuropsychiatric Association (INA). The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors.

Submit your manuscript here: http://www.dovepress.com/neuropsychiatric-disease-and-treatment-journal

- Bove J, Perier C. Neurotoxin-based models of Parkinson's disease. *Neuroscience*. 2012;211:51–76.
- Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson's disease. *J Biomed Biotechnol*. 2012; 2012:1–10. Article ID 845618.
- Tieu K. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med. 2011;1:a009316.
- Perier C, Vila M. Mitochondrial biology and Parkinson's disease. Cold Spring Harb Perspect Med. 2012;4:a009332.
- Bezard E, Yue Z, Kirik D, Spillantini MG. Animal models of Parkinson's disease: limits and relevance to neuroprotection studies. *Mov Disord*. 2013;28(1):61–70.
- Kanthasamy A, Jin H, Anantharam V, et al; Emerging neurotoxic mechanisms in environmental factors-induced neurodegeneration. *Neurotoxicology*. 2012;33(4):833–837
- Menegon A, Board PG, Blackburn C, Meller SD, Le Couteur DG. Parkinson's disease, pesticides, et a glutathione ensferase polymorphisms. *Lancet.* 1998;352(9137). 14–1346.
- Gunjima K, Tomiyama P. Takakawa K, et al; Jo-dihydroxybenzalacetone protects against Parkinson disearch elated neurotoxin 6-OHDA through Ale orf2/glutratione particle. J Cell Biochem. 2014; 115:151–160.
- 69. Kegg glycine perine, we dne metabo sm-homosapiens. Available from: http://www.genok.pip/kegp_un/show_pathway?hsa00260. Accesser.co.uber 9, 2015.
- Bada, o A, K. M., Forreste, T., Heird WC, Jahoor F. Cysteine supplementation a proves the erythrocyte glutathione synthesis rate area. dren with seven elematous malnutrition. *Am J Clin Nutr.* 2002; 76:646–652.

- son R, Crowell B, Hill B, Doonquah K, Charlton C. The effects of L-dopa on the activity of methionine adenosyltransferase: relevance to L-dopa therapy and tolerance. *Neurochem Res.* 1993;18(3): 325–330.
- Giardina G, Montioli R, Gianni S, et al; Open conformation of human DOPA decarboxylase reveals the mechanism of PLP addition to Group II decarboxylases. *PNAS*. 2011;108(51):20514–20519.
- Pubchem, pyridoxal phosphate. Available from: http://pubchem.ncbi. nlm.nih.gov/compound/1051#section=Top. Accessed October 11, 2015.
- Goyer RA. Toxic and essential metal interactions. Annu Rev Nutr. 1997; 17:37–50.
- Park ST, Lim KT, Chung YT, Kim SU. Methylmercury-induced neurotoxicity in cerebral neuron culture is blocked by antioxidants and NMDA receptor antagonists. *Neurotoxicology*. 1996;17(1):37–45.
- YouTube, Dr David Perlmutter, MD FACN Glutathione Therapy for Parkinson's Part 2. Available from: https://www.youtube.com/ watch?v=YYvd5-xN-CM. Accessed October 11, 2015.
- YouTube, Parkinson's- Glutathione Therapy Dr. David Perlmutter, MD FACN. – Protandim prescribed. Available from: https://www. youtube.com/watch?v=KWuOezgVHdI. Accessed October 11, 2015.

Dovepress