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Abstract: Ischemic diseases, especially in the heart and the brain, have become a serious 
threat to human health. Growth factor and cell therapy are emerging as promising therapeutic 
strategies; however, their retention and sustainable functions in the injured tissue are limited. 
Self-assembling peptide (SAP)-based hydrogels, mimicking the extracellular matrix, are 
therefore introduced to encapsulate and controllably release cells, cell-derived exosomes or 
growth factors, thus promoting angiogenesis and tissue recovery after ischemia. We will 
summarize the classification, composition and structure of SAPs, and the influencing factors 
for SAP gelation. Moreover, we will describe the functionalized SAPs, and the combinatorial 
therapy of cells, exosomes or growth factors with functionalized SAPs for angiogenic 
process as well as its advantage in immunogenicity and injectability. Finally, an outlook on 
future directions and challenges is provided. 
Keywords: self-assembling peptide, hydrogel, angiogenesis, survival, retention

Introduction
Ischemic diseases in various tissues, such as heart, brain, limb and skin, have 
severely threatened the life quality and health conditions of human beings, and 
brought huge economic burdens worldwide. Therapeutic strategies focus on the 
acceleration of tissue repair by promoting new vessel formation, the process of 
which consists of stimulation of endothelial cells (ECs) by angiogenic factors; 
degradation of extracellular matrix (ECM) via extracellular proteinases such as 
matrix metalloproteinases (MMPs); capillary sprouting and EC migration via integ-
rins; and vessel maturation mediated by growth factors.1–3 Currently, stem cells and 
growth factors are proven to be effective in promoting angiogenesis and tissue 
recovery after ischemia despite the low retention rate.4,5 In addition, ECM plays an 
important role in the angiogenic process through sequestering growth factors and 
mediating signal transduction.6 It is imperative to replenish a huge amount of ECM 
that is seriously destructed in ischemia. Facing these obstacles, biomaterials are 
specifically designed to promote angiogenesis, mimicking the natural features of 
ECM on the one hand, and encapsulating and sustainably releasing the bioactive 
agents on the other.7,8

Hydrogels are widely used in the therapeutics of ischemic diseases experimen-
tally and clinically.7,9 Different hydrogelators can form hydrogels, including natural 
biological molecules (chitosan, hyaluronic acid, collagen, fibroin or acellular 
ECM), synthetic molecules (polyethylene glycol, polyacrylamide, polymethacryla-
mide) and supramolecular hydrogelators (self-assembling peptide, nucleobases or 
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monosaccharide).10,11 Self-assembling peptide (SAP) 
hydrogels, as a supramolecular hydrogelator, have 
attracted much attention for their bioactivity, biocompat-
ibility, biodegradability and tunable mechanical 
stability.12–14 SAPs, as a tailor-made material, can be 
designed with angiogenic bioactivity aiming to enhance 
neovascularization.15–17 More importantly, the structurally 
changeable properties of SAPs make them compatible to 
encapsulate cells, exosomes and growth factors.18–20 In 
our review, we summarize the classification, composition 
and structure, and the influencing factors for SAPs. 
Moreover, we will describe the functionalized SAPs, the 
combinatorial therapy of cells, exosomes or growth factors 
with functionalized SAPs and the advantage of using SAPs 
for angiogenic process as well as its advantage in immu-
nogenicity and injectability.

Self-Assembling Peptide Hydrogels
With building blocks including the natural amino acids 
and/or hydrophobic fatty acid chain, self-assembling 
peptides, as one of the supramolecular hydrogelators, 
can be self-organized into ordered nanofibers and 
further into well-ordered scaffolds in water. Since 
their discovery, diverse classes of short SAPs have 
been invented with a wide range of applications, 
including 3D tissue cell culture, reparative and regen-
erative medicine, tissue engineering and slow drug 
release.21 We will elaborate the physical features of 
SAPs, which lays the foundation of SAP bioactivity, 
biocompatibility and biodegradability.

Classification of Self-Assembled Peptides
Depending on different chemical or biological modifica-
tions, SAPs can be categorized into native peptides, pep-
tides with terminal acetylation (or formylation) and 
amidation, peptides modified with an alkyl chain, peptide 
derivatives containing an aromatic group (fluorene-based, 
naphthalene-based22 and pyrene-based23) and peptide deri-
vatives containing a photosensitive group. Chemical mod-
ification of peptides, such as terminal acetylation and 
amidation, or attaching an alkyl chain, could change the 
solubility and stability of SAPs. Self-complementary ionic 
peptides are peptides with N-terminal acetylation (or for-
mylation) and C-terminal amidation; peptide amphiphiles 
are hydrogels modified by an alkyl chain. Many native 
peptides consist of different numbers of amino acids, from 
dipeptide and tripeptide to hexadecapeptide. The length of 
the peptides is correlated with the strength of 

intermolecular interactions. Currently, the longest synthe-
sized peptide consists of 30 amino acids (CKQLEDKIE 
ELLSKAACKQLEDKIEELLSK).24 In our review, we 
focus on two classes of SAPs, peptide amphiphiles and 
self-complementary ionic peptides, which are broadly used 
in angiogenesis research.25

Peptide amphiphiles (PA) and self-complementary 
ionic peptides are the major classes of self-assembling 
peptides, sharing many similarities in their composition 
and structure.26 Peptide amphiphiles can be designed 
with four domains as shown in Figure 1. The first domain 
is a hydrophobic moiety, which is usually an unbranched 
alkyl group, such as palmitic acid. Occasionally, fluorenyl-
methoxycarbonyl (Fmoc) and 2-(naphthalen-2-yl) acetic 
acid are used as the alternative hydrophobic moiety. 
The second domain is the β-sheet-forming peptide 
sequence, which is the central part for nanostructure mor-
phology and can be adjusted to tune the mechanical prop-
erties and gelation kinetics. The third domain often 
consists of one to three charged amino acids to improve 
aqueous solubility of the PA hydrogel. The fourth domain 
typically introduces a bioactive signaling peptide, such as 
the cell-adhesive peptide arginine-glycine-aspartic acid- 
serine (RGDS). In some instances, PA hydrogels are 
absent of the third and fourth domains, conferring them 
enhanced gelling properties as pro-gelators. The four PA 
domains play different roles in the gelation process (Figure 
1). The first domain forms an internal hydrophobic core, 
while the fourth domain forms an external active group, 
with the second and third domains adjusting the stability 
of the hydrophobic core and the solubility of the peptide in 
aqueous solution, which is then extended to form a 3D 
nanofiber in water. Subsequently, the nanofibers become 
longer and interact with the H2O to form into hydrogel 
through the modification of salt, temperature, Gibbs free 
energy etc.

Self-complementary ionic peptides are another common 
type of self-assembling peptide, and consist of 50% charged 
residues.27 These peptides are periodic repeats of alternat-
ing ionic hydrophilic and hydrophobic amino acids, form-
ing a β-sheet with two distinct polar and non-polar surfaces. 
The polar surface of the β-sheet consists of both positive 
and negative amide acids, while the non-polar surface is 
composed of hydrophobic amide acids.28,29 The hydropho-
bic side forms a double sheet on the inside of the fiber to 
keep away from water, and the hydrophilic side faces out-
wards interacting with water molecules. For example, 
RADA16-I (Ac-RADARADARADARADA-NH2) can form 
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stable β-sheet structures in water and spontaneously assem-
ble into nanofiber scaffolds with the aid of hydrophobic 
interaction and hydrogen bonding (Figure 1). Short bioac-
tive signaling peptides can be added to the middle or the end 

of self-complementary ionic peptides to emphasize the 
application related with their respective bioactivities; thus 
synthesized peptides are called as multidomain peptides 
(MDP).30

Figure 1 Self-assembling of peptide amphiphiles and RADA16-I. Peptide amphiphiles, hydrophobic moiety including palmitic acid, Fmoc and 2-(naphthalen-2-yl) acetic acid 
can react with the N terminal of peptide to form the peptide amphiphiles. Peptide amphiphiles self-assemble into nanofibers and hydrogels through hydrophobic interaction 
and hydrogen bonding. Repeats of alternating ionic hydrophilic and hydrophobic amino acids are distributed in RADA-I. RADA-I self-assembles to form β-sheets and 
nanofibers, with the hydrophobic alanine sandwiched inside and hydrophilic residues on the outside. R, arginine; A, alanine; D, aspartate; R1, R2, R3, the side chains of 
arginine, alanine and aspartate.
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Ultrashort peptides (< 8 amino acids) are more appeal-
ing in biomedical applications owing to their easy synth-
esis, relatively low sensitivity to enzymatic digestion and 
high biocompatibility.25 Normally, hydrogen bonding, π–π, 
van der Waals, electrostatic and hydrophobic interactions 
are responsible for the self-assembly of ultrashort peptides 
and also long peptides (> 8 amino acids).25 Ultrashort 
peptides self-assemble into hydrogels depending on their 
amphiphilicity and/or self-complementarity. Heptapeptide, 
EDLIIKG and MNFGAFS, and its derived peptide, DLII 
and NFGAF, can form self-supportive translucent hydro-
gels with a clear secondary structure change from α-helix 
to β-sheet during the self-assembly process.31

Multiple Factors Influence Gelation of the 
Self-Assembling Peptides
The gelation process of SAPs can be affected by two types 
of factors, including the basic chemical features of the 
peptides and the environmental factors. We summarize 
all the factors that influence the gelling ability, degradation 
rate and mechanical properties of SAPs (Table 1), provid-
ing an insight on designing personalized hydrogels. The 
basic chemical features of the peptides greatly depend on 
the peptide design itself. The composition and arrange-
ment of amino acids determine the hydrophobicity and 
solubility of the peptides. Peptides with high hydrophobi-
city could easily form nanofibers with superior mechanical 
strength.32 While high percentage of hydrophobic resi-
dues, alanine (Ala), valine (Val), isoleucine (Ile), leucine 
(Leu), tyrosine (Tyr), phenylalanine (Phe), tryptophan 
(Trp) decreases the solubility of the peptide, charged 
amine acids are therefore introduced at the end of the 
SAP to improve its solubility.33, Switching the position 
of I and L in the hydrophobic tail of an ultrashort peptide 
(changing LIVAGKC into ILVAGKC) resulted in a gel that 
demanded a higher peptide concentration for gelation and 
became less stiff.34 The length of the peptide is another 
determinant factor for gelation. The intermolecular inter-
actions and physical cross-linking are enhanced for elon-
gated peptides, especially for self-complementary ionic 
peptides.35 Conformational change or modification of 
amino acids and peptides is the most common way to 
increase the stability of the hydrogels. Natural L-amino 
acids could be replaced by synthetic D-amino acid coun-
terparts, and the resultant D-peptide-based hydrogels 
proved to be more stable in vivo since D-form peptide 
bonds resist natural L-enzyme degradation. Capping the 

N-terminal of SAPs by an acetyl or the C-terminal by an 
amide, or both ends, could also enhance the self- 
organization into hydrogels in water.36

Various environmental factors can stimulate the hydro-
gelation of the SAPs. The gelation process starts when 
Gibbs free energy turns negative under the stimulation of 
either physical or chemical methods. Modulating the ionic 
strength, changing the temperature and applying ultra-
sound are commonly used methods.12 Changing the ionic 
strength by adding polyvalent cations or polyvalent anions, 
such as Ca2+, Mg2+, or PO4

3-, can induce the gelation of 
SAPs.37,38 For example, addition of PO4

3− to the Ac- 
KKSLSLSLSLSLSLKK-NH2 solution increased the length 
of the nanofibers and the storage modulus.12 In another 
example, PELELELELELEP peptide, containing only 
negatively charged residues, formed hydrogels with an 
almost 10-fold increase of storage modulus in the presence 
of calcium ion.12, In addition, temperature obviously 
affects the structure and mechanical properties of hydro-
gels. It was reported that peptide nanofibers assemble 
faster and more strongly at 25°C than at 5°C.39 

Application of sonication is another way to stimulate gela-
tion. The disarranged nanofibers could be disrupted by 
sonication, and form arranged and longer nanofibers ener-
getically favorable and further gelate.40,41, A pH change 
could also stimulate the gelation by changing the protona-
tion/deprotonation of basic or acidic groups.30,42 The 
gelation of smart hydrogel, with the photo-reactive or 
enzyme-sensitive peptide introduced inside, could be sti-
mulated by treatment with photochemicals or 
enzymes.43,44 Thus, the designable and adjustable mechan-
ical properties make the self-assembling peptide a better 
alternative in tissue engineering and angiogenesis.

Self-Assembling Peptides in 
Angiogenesis
Angiogenesis is a complicated process involving several 
chronological steps. Angiogenic factors, MMPs and 
MMP-induced ECM degradation play important roles in 
EC migration and vessel maturation. Molecular manipula-
tion of SAPs could mimic the biological feature of ECM 
and facilitate these steps: integration of MMP-sensitive 
motifs increases the biodegradability of SAPs; employ-
ment of cell-adhesive ligands facilitates EC adhesion and 
migration; introduction of growth factor-mimicking pep-
tides initiates angiogenesis and accelerates vessel matura-
tion. Another well-established approach is the 

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 10260

Han et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


encapsulation of cells, cell-derived exosomes or growth 
factors by SAP hydrogels (Figure 2), which sustains the 
constant release of cell secretome in situ to promote 
angiogenesis.

Molecular Modification of Self-Assembling 
Peptides
A dominant feature of SAPs is the ability to append func-
tional domains, such as MMP-sensitive peptides, cell affi-
nity peptides and proangiogensis peptides, onto their 
termini without disrupting the assembly properties of the 
original peptide (Table 2). In this way, SAPs appended 
with functional domains can provide scaffolds mimicking 
the native ECM structure and enhancing specific cellular 
responses as well (Figure 2).

MMPs are multifunctional enzymes capable of cleav-
ing the ECM components including collagens, laminin, 
fibronectin and many others. The gelatinase MMP2 can 

recognize and cleave sequences at a defined motif with 
three prioritized amino acids, with the first amino acid 
hydrophobic, the second amino acid either hydrophobic 
or basic and a small residue (alanine, glycine or serine) at 
the third position.45 LRG in KSLSLSLRGSLSLSLKG, 
LIG in GTAGLIGQ and KLDLPVGLIGKLDL, and PVG 
in KLDLPVGLIGKLDL are in line with the requirement 
of the prioritized amino acid motif and are introduced in 
many cases as the MMP2-sensitive sequence. For instance, 
appending the MMP-sensitive sequence, like LIG or LRG, 
to the middle of SAPs can accelerate the degradation of 
hydrogels facilitating the cell migration.46

Cell-adhesive ligand Arg-Gly-Asp-Ser (RGDS) is 
identified as the key sequence in the ECM proteins 
including fibronectin, vitronectin and laminin. RGDS is 
sufficient and indispensable for cell membrane binding 
by interacting with membrane protein integrins.47 Cell 
affinity peptides containing the RGD motif conjugated 

Table 1 Summary of Influencing Factors for SAP Gelation

Influencing Factors Mechanisms References

Peptide-related factors

Peptide Hydrophobicity Peptide with high hydrophobicity is difficult to dissolve, but easier to gelate. (Banwell et al, 2009)32

Composition of Amino 

Acids

Peptides with high ratio of hydrophobic residues form hydrogels with better mechanical 

properties.

(Lutolf et al, 2003)33

Peptide Concentration Higher concentration benefits gelling. (Hauser and Zhang, 

201021; Du et al, 201512)

Peptide Length Longer peptide benefits gelling. (Fletcher et)35

Amino Acid Chirality D-peptide-based hydrogel is more stable than natural L-amino acid-based peptide. (Schutz et al, 2015)12

Peptides with Capped N- 
and C-Terminals

Peptides with capped N- and C-Terminals benefit gelling. (Solaro, 2010)36

Environment-related factors

Salt Salt changes the ionic strength, thus inducing noncovalent interactions among peptides. (Ozbas et al, 200438; Feng 

et al, 201237)

Temperature Heating and cooling achieve highly ordered hydrogel, especially entropy-driven assembled 

hydrogel.

Du et al, 201512

Sonication Ultrasound breaks self-locked intramolecular hydrogen bonds or π stacking, and 

interlocked structures between peptide and water molecule are formed.

(Yokoi et al, 200541; 

Pappas et al, 201540)

pH pH can affect protonation/deprotonation of basic or acidic groups in peptide. (Hutchinson etal, 201942; 

Lopez-Silva etal, 2019)30

Photochemical Photo affects the gelling ability inhibited by photo-reactive groups. (Collier et al, 2001)43

Enzyme Enzyme cleaves the enzyme-sensitive peptide to remove peptide-inhibited gelation and 

accelerates the degradation of SAP hydrogel.

(Lian et al, 2016)44
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with SAPs can strengthen the binding of peptides to 
endothelial cells, therefore enhancing capillary sprouting 
as ECM is degraded. For example, RGDS-modified 

hydrogels could greatly promote cell adhesion and 
survival.19 In addition, the functional motif 
PRGDSGYRGDS, containing two similar RGD motif 

Figure 2 Self-assembling peptides in angiogenesis. Hydrogels formed by pro-angiogenic SAPs, or combined with pro-angiogenic cells, exosomes and growth factors promote 
angiogenesis.

Table 2 Summary of Pro-Angiogenic Modifications in SAP Hydrogels

Peptide Sequences Pro-Angiogenic 

Modifications

Applications References

RADA16-I and RADA16-I -SVVYGLR (10:1) SVVYGLR Facilitate angiogenesis and neurogenesis at 

the brain injury site

(Wang et al, 2017)77

RADA16-II andRADA16-II-substance P (200:1) Substance P Promote angiogenesis (Im et al, 2018)63 

RADA-I-GPRGDSGYRGDS or RADA- 

I-KLTWQELYQLKYKGI

PRGDSGYRGDS, 

KLTWQELYQLKYKGI

Improve angiogenesis in chicken embryo 

chorioallantoic membrane

(Liu et al, 2012)49

KKSLSLSLSLSLSLKK Highly vascularized after subcutaneous 

injection

Du et al, 201512

KSLSLSLRGSLSLSLKGRGDS or 

KSLSLSLRGSLSLSLKGKLTWQELYQLKYKGI

LRG, RGDS, 

KLTWQELYQLKYKGI

Promote tissue regeneration in ischemic 

tissue disease

(Kumar et al, 2015)16

KSLSLSLRGSLSLSLK–G–KLTWQELYQLKYKGI LRG, KLTWQELYQLKYKGI Promote recovery from traumatic brain injury (Ma et al, 2020)15

Abbreviations: SVVYGLR, high affinity for integrin α9β1 and α4β1; PRGDSGYRGDS, cell adhesion peptide; KLTWQELYQLKYKGI, pro-angiogenic sequence; LRG, MMP2- 
sensitive peptide.
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sequences PRGDS and YRGDS, has been shown to 
distinctly promote the survival, proliferation, migration 
and morphological differentiation of human umbilical 
vein endothelial cells (HUVECs).48,49

Pro-angiogenesis peptides, such as QHREDGS, 
SVVYGLR and KLTWQELYQLKYKGI, can also conju-
gate with SAPs, promoting growth and migration of ECs 
via transferring of pro-angiogenic signals. For example, 
the QHREDGS sequence, as the integrin-binding site in 
angiopoietin-1, could enhance EC survival, tube formation 
and cell barrier functionality.50,51 QHREDGS-RADA16-I 
hydrogel was reported to promote angiogenesis, thereby 
reducing scar size and restoring cardiac function after 
MI.50 Another reported sequence, SVVYGLR, derived 
from osteopontin, could also stimulate angiogenesis 
in vitro and in vivo.52 The SVVYGLR motif conjugated 
to the terminal of RADA16 increased the adhesion, migra-
tion and tube formation of ECs.53 Notably, VEGF- 
mimicking peptide KLTWQELYQLKYKGI-modified 
RADA16 scaffolds could increase HUVEC survival and 
attachment when compared to pure RADA16 and induce 
morphologies similar to Matrigel and collagen.49 GHRPS, 
belonging to the group of growth hormone-releasing pep-
tides, was also reported to activate pro-survival pathways 
such as PI-3K/AKT1, increase angiogenesis and reduce 
inflammation by inhibiting the NF-κB pathway.54 The 
last example discussed here is multidomain peptides. 
A single SAP could be functionalized with multiple pep-
tide domains, like C16-GTAGLIGQ-RGDS, KSLSLSLRG 
SLSLSLKGRGDS, or KSLSLSLRGSLSLSLKG-KLTW 
QELYQLKYKGI, conferring on them enhanced angio-
genic capabilities.8

Encapsulation of Cells and Exosomes by 
Self-Assembling Peptide Hydrogels
The crucial roles of various cell types in angiogenesis 
under different ischemic conditions are well established.8 

Endothelial progenitor cells (EPCs) improve local angio-
genesis through direct contribution to neovascularization 
and releasing paracrine factors.55,56 Mesenchymal stem 
cells (MSCs) can also improve neovascularization in 
a paracrine stimulation of angiogenesis and regulation of 
angiogenic molecules.57 Induced pluripotent stem cells 
(iPSCs) showed substantial beneficial effects on the angio-
genic process through differentiation into endothelial cells 
or mesenchymal stem cells. Exosomes, as important 
secretes vesicles, exhibited similar therapeutic effects 

compared to their derived cells.58–61 Importantly, the exo-
somes do not trigger immune responses in the host, avoid-
ing the risk of rejection in stem cell transplantation. 
However, both cells and exosomes only demonstrate mod-
erate angiogenesis in vivo due to the low retention rate in 
ischemic tissue and the high clearance rate caused by 
activated systemic immune response.4,5 Currently, SAP 
hydrogels have attracted much attention since they could 
encapsulate and protect the cells from a harsh microenvir-
onment, significantly improving the cell viability and the 
retention time in vivo, and ensuring the continuous and 
steady release of cells and their derivatives (Figure 2).

Among the SAPs for cell encapsulation, the most 
widely studied are self-complementary ionic peptides 
RADA16-I and RADA16-II (Table 3). RADA16-I hydro-
gel-encapsulated microvascular cells promoted angiogen-
esis in spinal cord injury by reducing inflammation and 
glial scar formation.17 Combinatorial therapy with adi-
pose-derived stem cells (ADSCs) and RADA16-II hydro-
gel demonstrated a three-fold increase in survival and 
retention of transplanted cells, a 54.25 ± 4.42% increase 
in the ejection fraction, and more established vascular 
networks than did administration of ADSC alone.62 

Moreover, RADA16 is easily functionalized using biolo-
gically active epitopes. The functionalized RADA16 scaf-
folds encapsulating BMSCs demonstrated beneficial 
effects in both myocardial infarction and skin 
defect.50,53,63 For instance, BMSCs encapsulated in 
QHREDGS-modified RADA16-I hydrogel effectively 
reduced cell apoptosis and improved cardiac function in 
the post-MI heart by activating the miR-21-related signal-
ing pathway.50

Peptide amphiphile hydrogels are also used to encap-
sulate and protect transplanted cells (Table 3). Notably, 
mESCs-derived cardiomyocytes encapsulated in C16- 
GTAGLIGQ-RGDS demonstrated approximately 3-fold 
higher engraftment in hearts, and sustained better cardiac 
function after MI for 12 weeks (Figure 3).64 C16- 
GTAGLIGQ-RGDS hydrogel could also protect hiPSC- 
derived ECs under oxidative stress and improve structural 
neovascularization for up to 10 months (Figure 3).19 In 
addition, C16-GTAGLIGQ-RGDS hydrogel was also 
reported to induce the osteogenic differentiation of 
engrafted hMSCs (Figure 3).65 As a carrier, PA hydrogels 
have also been used to deliver exosomes. NapFF and PA- 
GHRPS hydrogels were able to effectively deliver exo-
somes and sustain the stable release of exosomes, thus 
promoting angiogenesis in MI hearts.66
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Table 3 Summary of Cell, Exosomes and Growth Factors Encapsulated by SAP Hydrogels

Peptide Sequences Pro- 
Angiogenic 
Modification

Pro- 
Angiogenic 
Factors

Application References

Cells encapsulated in hydrogel

RADA16-I Microvascular 

cells

Promote repair of spinal cord injury (Tran et al, 2020)17

RADA16-I and QHREDGS- 

modified RADA16-I (1:1)

QHREDGS Rat BMSCs Improve angiogenesis and cardiac function after MI (Cai et al, 2019)50

RADA16-I -SVVYGLR SVVYGLR Rat BMSCs Promote angiogenesis and cardiac repair after MI (Gao et al, 2017)53

RADA16-II ADSCs Promote angiogenesis and preserve cardiac function in 

MI

(Kim et al, 201762

RADA16-II and RADA16-II- 
substance P (200:1)

Substance P Human dermal 
fibroblasts

Promote angiogenesis and recovery of skin defect (Im et al, 2018)63

C16-GTAGLIGQ-RGDS LIG, RGDS CMs from 

mESCs

Promote cardiac repair (Ban et al, 2014)64

C16-GTAGLIGQ-RGDS LIG, RGDS hPSC-CDH5+ 

cells

Promote vascular regeneration in hindlimb ischemia (Lee et al, 2017)19

Exosomes encapsulated in hydrogel

Ac-KLDLPVGLIGKLDL- 

CONH2

LIG Exosomes 

from mouse 

BMSCs

Decrease chronic renal fibrosis in I/R mice (Zhou et al, 

2019)20

NapFF and C16-GTAGLIGQ 

-GG-GHRPS

LIG, GHRPS Exosomes 

from human 
UMSCs

Promote cardiac repair after MI (Han et al, 2019)66

Proteins/Peptides encapsulated in hydrogel

Attaching the LRKKLGKA 

to RADA16-I

LRKKLGKA VEGF Improve cardiac function after MI (Guo et al, 2012)18

RADA16-I-GGQQLK or 

RADA16-I-GGLRKKLGKA

LRK VEGF and HGF Promote angiogenesis in minimally invasive surgery, 

ischemic tissue disorders and chronic wound healing

(Huang et al, 

2019)69

M-RADA16-II (H2N- 

RARADADARARADADA- 
OH)

Notch ligand 

Jagged-1 
mimics

Improve cardiac function after MI (Boopathy et al, 

2015)67

KSLSLSLRGSLSLSLKGRGDS LRG, RGDS TGFβ1, FGF2, 
VEGF

Promote regeneration of endodontics (Galler et al, 
2012)68

Notes: In this Table, green color labels bioactive peptides, and red color labels MMP2-sensitive peptides. 
Abbreviations: RADA16-I, AcN-RADARADARADARADA-CONH2; RADA16-II, AcN-RARADADARARADADA-CONH2, C16, palmitic acid; QHREDGS, prosurvival 
peptide; SVVYGLR, high affinity for integrin; Substance P, an 11-amino acid neuropeptide extensively found in nervous systems, RPKPQQFFGLM; RGDS, high cell adhesion 
peptide; LRG and LIG, MMP2-sensitive peptide; LRKKLGKA, heparin-binding; LRK, affinity to proteoglycan heparan sulfate; Notch ligand Jagged-1 mimic, H2N- 
CDDYYYGFGCNKFCRPR-OH; GHRPS, prosurvival peptide; BMSCs, bone marrow-derived mesenchymal stem cell; ADSC, adipose-derived stromal cells; UMSCs, umbilical 
cord mesenchymal stem cell; CMs, cardiomyocytes; mESCs, mouse embryonic stem cells; hPSC-CDH5+ cells, human pluripotent stem cell-derived endothelial cells with 
CDH5+ expression; EV, extracellular vesicle; TGFβ1, transforming growth factor beta 1; FGF2, basic fibroblast growth factor; VEGF, vascular endothelial growth factor; MI, 
myocardial infarction; HI, ischemic hindlimbs.
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Encapsulation of Growth Factors by 
Self-Assembling Peptide Hydrogels
The loss of extracellular matrix and growth factors in an 
ischemic region makes the adjacent cells lose cell–cell 
contact and changes the microenvironment. A SAP hydro-
gel could act as a scaffold for stable release of growth 
factors. Owing to their tunable physical properties, hydro-
gels can provide spatial and temporal control over the 
release of various growth factors, such as VEGF, 
VEGF165, VEGF121, FGF, HGF, HIF and PDGF 
(Figure 2). VEGF and HGF delivered by functionalized 
RADA16-I, RADA16-II or KSLSLSLRGSLSLSLKGR 
GDS could enhance angiogenesis and functional recovery 
in ischemic diseases (Table 3).67–69 For example, 
a LRKKLGKA-conjugated RADA16 hydrogel provided 
the constant release of VEGF for up to one month, thus 
greatly improving cardiac function after MI.18 

Interestingly, the SAP hydrogel with two sequences of 
RADA16-GGQQLK (QLK) and RADA16-GGLRK 
KLGKA (LRK) can be crosslinked and strengthened by 
transglutaminase to prolong the degradation rate of VEGF 
and HGF.69 An ultrashort peptide, naphthyl group-linked 
Phe–Phe dipeptide (NapFF), being introduced with RGD 
domain and followed by encapsulation with VEGF, greatly 
improved cell adhesion and cell growth and triggered 
angiogenesis in vivo when subcutaneously injected in 
mice.70 It was also reported that when insulin-like growth 
factor-I (IGF-1)-derived peptide, GYGSSSRRAPQT, was 
introduced into the ultrashort peptide NapFF, the β-sheet 

structure of the combined peptide efficiently activated the 
IGF-1 downstream pathway and significantly promoted 
angiogenesis.71

Advantages and Application of SAP 
Hydrogels in Angiogenesis
Self-assembling peptides possess designable immuno-
genicity and minimally invasive injectability, which 
make SAP-based hydrogel a better candidate in biome-
dical application. Amino acid composition, peptide 
modification as well as surface charge are the most 
important factors for the immunogenicity of SAPs. Self- 
assembling peptide OVA-Q11 caused strong T-cell- 
dependent antibody responses in mice. However, when 
OVA-Q11 was conjugated to non-antigenic peptides 
RGD, the immune responses were substantially 
decreased. Another study also showed that a peptide 
amphiphile hydrogel induced no inflammation or auto-
immune response after modification with IKVAV in 
mice spinal cord injury.72,73 Change of surface charge 
provides a strategy to switch off potentially problematic 
immunogenicity into nonimmunological application.74 

For instance, negative surface charge of fibrillized SAP 
completely abolished T-cell responses in mice. Anionic 
aspartic acid and glutamic acid-based SAP surface 
provokes a low inflammatory response, cationic lysine- 
based SAP surface elicits a mild inflammatory response, 
while cationic arginine-based SAP surface provokes 
a stronger inflammatory response.29 The immunogeni-
city of self-assembling peptide hydrogel is adjustable 
according to different applications such as vaccine adju-
vant and angiogenesis. Naphthalene peptide Nap-GFFY 
has been used as the adjuvant to induce CD8+ T-cell 
response. Moreover, Nap-GDFDFDY, formed by D-type 
amino acids, is able to induce a stronger CD8+ T-cell 
response compared with.75 Nap-GFFpY-OMe (naphthy-
lacetic acid-modified phosphorylated tetra-peptide of 
GFFpY with C-terminal methyl ester group) has been 
used to co-assemble with HIV DNA molecules and 
enhance both humoral and cellular immune response 
against HIV.76 When D-tetrapeptide (GDFDFDY)-based 
supramolecular hydrogelators are linked with different 
hydrophobic domains, such as flurbiprofen (Fbp), car-
profen (Car), naproxen (Npx), Fbp- and Car-gels, they 
exhibit excellent tumor elimination properties in both 
protective and therapeutic immune assays.77

Figure 3 Hydrogels improved the engraftment of hMSCs, ECs or CMs and 
enhanced their therapeutic effects in ischemia. 
Abbreviations: C16, palmitic acid; hMSCs, human mesenchymal stem cells; ECs, 
endothelial cells; mESCs, mouse embryonic stem cells; CMs, cardiomyocytes.
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A better understanding of the chemical and physical 
properties of SAPs is imperative for developing the deliv-
ery method of hydrogels. Hydrogen bonding and hydro-
phobic interactions are the main driving forces for SAP 
gelation. Peptides can easily associate and disassociate 
based on temperature and pH. Therefore peptide fibers 
are able to easily break and re-form.12 This equilibrium 
allows the preformed hydrogels to shear thin and shear 
recover readily, such that preformed hydrogels can be 
injected by application of shear stress (during injection) 
and quickly self-heal after removal of shear. Besides, 
some injectable liquid SAPs can form into hydrogels 
upon stimulation by salt ions in the physiological micro-
environment of the target tissue. Interestingly, smart 
hydrogel has been designed to adapt to complex repair 
processes. For instance, adding aniline into ultrashort 
peptide Fmoc-FF can make the hydrogel conductive,78 

which supports cardiomyocyte organization into 
a spontaneously contracting system.78 A multiphase tran-
sitioning peptide hydrogel, with the sequence of Ac- 

VKVKVKGKVDPPTKXEVKVKV−NH2 (X stands for 
photocaged MNI-glutamic acid), was reported to have 
been injected into the lumen of vessels to facilitate sutur-
ing. The multiphase transitioning peptide forms solid gel 
in a syringe and can be delivered to the lumen of col-
lapsed vessels to distend the vessel by shear-thin force, 
and the space between two vessels to approximate the 
vessel ends. After exposing the small vessel to light, the 
hydrogel network in the lumen will be disrupted, leading 
to gel-sol phase transition, gel removal and blood flow 
resumption.79 In a word, the injectability of SAP hydro-
gels makes them the superior therapeutic scaffolds with 
minimal invasiveness and applicable in a variety of clin-
ical applications.8,12,16,80

Currently, many peptide-based hydrogels such as 
Puramatrix (RADA16-I) are commercially available and 
used for 3D cell culture to support stem cells in the repair 
of tissue injury.81 Some hydrogels have been proved in pre-
clinical use; for example, direct myocardial injection of 1% 
SAP (AcN-RARADADARARADADA-CNH2) with PDGF- 
BB decreased infarct size after ischemia/reperfusion through 
activating Akt phosphorylation in cardiomyocytes.82 

Moreover, some hydrogels are in clinical trial. For instance, 
P11-4 (Ac-QQRFEWEFEQQ-NH2), a synthetic α-peptide that 
can be self-assembled into β-sheet amyloids with a hydrogel 
appearance at low pH, is being used in biomimetic miner-
alization, enamel regeneration and oral care agent.83

Summary and Perspective
In conclusion, SAPs hold great promise owing to their 
bioactivity, biocompatibility and biodegradability. Their 
tunable physical properties make them injectable, func-
tional and compatible for encapsulation and controlled 
release of cells, exosomes and growth factors. Smart hydro-
gel, which is responsive to the in vivo environment through 
internal or external stimuli, might represent a future direc-
tion. Besides, it is promising to design a complex scaffold 
system that is suitable for heterogeneous cell populations, 
and able to dynamically change the composition and phy-
sical properties. Furthermore, a molecularly sophisticated 
SAP hydrogel has been developed to direct migration of 
stem cells to damaged areas, but the desired homing and 
in situ assembly still need to be explored. Overall, self- 
assembling peptide-based hydrogel has a bright future to 
serve as an effective treatment for a broad range of ischemic 
diseases. Since the research on the self-assembling peptide 
hydrogel in angiogenesis is in its infancy, many challenges 
need to be overcome. The main challenges are how to match 
the mechanical properties of hydrogel to the natural ECM, 
and how to precisely control degradation speed of the 
hydrogel and release speed of the internal molecules or 
cells. There is still a long way to transform the self- 
assembling peptide-based hydrogels into clinical 
applications.
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