
R E V I E W

Physiological and Pathophysiological Roles of Ion 
Transporter-Mediated Metabolism in the Thyroid 
Gland and in Thyroid Cancer

This article was published in the following Dove Press journal: 
OncoTargets and Therapy

Hu Wang1 

Zhiyuan Ma1 

Xiaoming Cheng1 

Biguang Tuo2,3 

Xuemei Liu2,3 

Taolang Li1

1Department of Thyroid and Breast 
Surgery, Affiliated Hospital of Zunyi 
Medical University, Zunyi, People’s 
Republic of China; 2Department of 
Gastroenterology, Affiliated Hospital of 
Zunyi Medical University, Zunyi, People’s 
Republic of China; 3Digestive Disease 
Institute of Guizhou Province, Zunyi, 
People’s Republic of China 

Abstract: Thyroid cancer is the most common type of endocrine tumor and has shown an 
increasing annual incidence, especially among women. Patients with thyroid cancer have 
a good prognosis, with a high five-year survival rate; however, the recurrence rate and 
disease status of thyroid cancer remain a burden for patients, which compels us to further 
elucidate the pathogenesis of this disease. Recently, ion transporters have gradually become 
a hot topic in the field of thyroid gland biology and cancer research. Additionally, alterations 
in the metabolic state of tumor cells and protein molecules have gradually become the focus 
of scientific research. This review focuses on the progress in understanding the physiological 
and pathophysiological roles of ion transporter-mediated metabolism in both the thyroid 
gland and thyroid cancer. We also hope to shed light on new targets for the treatment and 
prognosis of thyroid cancer. 
Keywords: thyroid cancer, metabolism, ion transporters, physiology and pathophysiology, 
regulation factors

Introduction
Globally, the incidence of thyroid cancer (TC) is increasing annually according to 
the latest global statistics on the epidemiology of this malignancy published by the 
International Agency for Research on Cancer. TC ranks ninth among malignancies, 
killing more than 40,000 people annually, most of whom are women.1 Therefore, 
clarification of its etiology and pathogenesis is important for identifying effective 
therapeutic targets for early diagnosis and prevention.

It is well known an adequate energy supply is required for the growth and 
survival of cells, including tumor cells, which provides a good entry point for tumor 
research. The metabolic status of tumor cells has been studied for nearly a hundred 
years, and as research has progressed, researchers have found that metabolic 
reprogramming is ubiquitous among tumor cells.2–4 Healthy cells use carbohy-
drates, fats, amino acids, and other substances to produce energy in the form of 
adenosine triphosphate (ATP) as well as biomacromolecules to maintain normal cell 
function. This complex process involves glycolysis, oxidative phosphorylation 
(OXPHOS), gluconeogenesis, and the tricarboxylic acid (TCA) cycle and requires 
a stable internal environment and an adequate oxygen supply within the cell. For 
tumor cells, with their high metabolic needs and proliferative activities, the above 
processes are adjusted accordingly, which means they need rapid ATP production to 
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maintain their energy consumption and increased bio-
synthesis of macromolecules. Thus, the carbohydrate, 
lipid, protein, and nucleic acid requirements necessary 
for cell maintenance are increased. Decades ago, 
Professor Otto Warburg described a metabolic phenotype 
observed in cancer cells in which the cells relied on 
glycolysis rather than the OXPHOS pathway to produce 
ATP, even when oxygen concentrations were sufficient.2 

This phenomenon, later known as the “Warburg effect”, 
greatly aided subsequent studies of tumor metabolism and 
led to the accepted theory of aerobic glycolysis. Glycolysis 
pathways are less efficient at producing ATP than is 
OXPHOS, so as the demand for glucose in tumor cells 
increases, the glycolytic production of pyruvates and lac-
tates also increases. Furthermore, increased glucose con-
sumption by tumors has been confirmed to correlate with 
poor tumor prognosis.5 Glutamine is an amino acid that is 
essential for cell survival and is used as a precursor for the 
biosynthesis of proteins, nucleotides, and amino sugars; 
furthermore, its carbon skeleton structure can be used in 
the production process of the mitochondrial TCA cycle.6 

Studies have confirmed that in fast-growing tumors, cells 
are more likely to use glutamine for energy production.7–10 

Lactate produced by glycolysis in tumor cells also plays 
a very important role in tumor development. The levels of 
lactate from glycolysis in tumor cells and surrounding 
cells have been associated with tumor invasion and 
progression.11–14 In addition to the three molecules men-
tioned above, there are changes in the tumor microenvir-
onment, metabolism-related organelle functions and ions 
in the metabolic process of tumor cells. TC, as a rapidly 
growing solid tumor, unavoidably undergoes the above 
metabolic changes, and alterations such as these have an 
impact on the growth, proliferation, metastasis and treat-
ment resistance of TC.15

Ion transport proteins, which are widely distributed in 
cells, dominate the transport of cellular metabolites. 
Studies have reported that different ion transporters in 
various tumors play an essential role in tumor cell pro-
liferation, metastasis, invasion, and apoptosis.16–20 The 
sodium-iodide symporter and thyroid hormone (TH) 
transporter in the thyroid gland, which are responsible 
for iodine uptake and TH secretion, respectively, are 
critical proteins that are thought to play an important 
role in TC.21–23 The expression and activity of ion 
transporters associated with tumor metabolism, such as 
glucose metabolism-related glucose transporters, lactate 
metabolism-related monocarboxylate transporters, amino 

acid metabolism-related amino acid transporters, and 
L-type amino acid transporters, are also changed.24–28 

Several studies have confirmed that these ion transpor-
ters control the prognosis of patients with TC.

TC undergoes extensive metabolic changes related to the 
growth, proliferation, metastasis, and invasion of tumor 
cells, and ion transporters mediate the transmission of sub-
stances required for metabolism; therefore, the regulation of 
metabolism by ion transporters is vital for tumor cell survi-
val. The main purpose of this review is to illuminate how 
some ion transporters in TC regulate metabolism and thus 
affect the development and progression of TC.

Sodium-Iodide Symporter (NIS) 
and Iodide Metabolism in TC
Physiological Role of NIS in the Thyroid 
Gland
NIS is an integral plasma membrane glycoprotein that is 
encoded by the SLC5A5 gene and is widely expressed in 
different organs in the human body.22 In the thyroid gland, 
NIS is expressed on the basolateral membrane of follicular 
cells and can absorb I–into the cells for the synthesis of THs and 
the maintenance of iodine homeostasis in humans.21 This I− 

uptake process is passive; after a Na+ concentration gradient is 
produced by the Na+/K+ ATPase, I− enters the cell together 
with two Na+ ions.29 Based on the iodine uptake function of the 
thyroid gland mediated by NIS, the application of radioiodide 
in the diagnosis and treatment of primary TC and its metastatic 
lesions has become an important clinical approach.30 In the 
healthy thyroid gland, the expression of NIS is mainly con-
trolled by thyroid-stimulating hormone (TSH), which can reg-
ulate the expression and distribution of NIS in thyroid 
follicular cells via cyclic adenosine 3ʹ,5ʹ-monophosphate 
(cAMP).21,31,32 Additionally, studies have demonstrated that 
adenosine monophosphate-activated protein kinase (AMPK) 
can regulate the expression of NIS in thyroid cells.33,34 

Organisms can control NIS expression via these methods to 
maintain metabolic iodine homeostasis in the human body. 
Based on these descriptions, we know that NIS is involved in 
the maintenance of iodine homeostasis in vivo and plays 
a certain role in the treatment of thyroid diseases. It is also 
regulated by various factors, which impact thyroid function.

Aberrant NIS Expression Regulates I− 

Metabolism at the Onset of TC
Radioactive iodine (RAI) has been used for decades to treat 
TC, especially micrometastases after thyroidectomy.35,36 The 
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basis for this treatment is that NIS is expressed on the 
membrane of the thyroid follicles and can transport 
131I into the nidus. However, several studies have demon-
strated that NIS in TC has abnormalities relative to that in 
normal thyroid cells, such as altered expression, different 
intracellular localization, and loss of function.21,22,36–41 

More than 20 years ago, Professor Sebastiano Filetti demon-
strated abnormalities in the function and expression of NIS in 
various TC samples and indicated that abnormal changes in 
NIS function would reduce iodine uptake.42 These changes 
in NIS interfere with the treatment of some TCs, which can 
lead to poor prognosis and relapse; moreover, abnormal 
iodine metabolism in TC also affects the process of tumor 
proliferation.43 Researchers have conducted relevant studies 
to identify the underlying mechanism and pointed out that 
these changes in NIS expression and function may be directly 
or indirectly related to mutations in tumor suppressor genes 
or oncogenes, activation of signaling pathways, modifica-
tions in the metabolic status, changes in the intracellular 
environment and other factors.33,34,44–49 It is obvious that 
the change in NIS iodine uptake is not caused by a single 
factor but by several interlaced factors, which finally leads to 
the alteration of the NIS functional state. Studies have eluci-
dated that the BRAF-V600E mutation and mutant RAS genes, 
which are the most commonly mutated genes in TC, cause 
the activation of signaling pathways such as the mitogen- 
activated protein kinases (MAPK), phosphatidylinositol 3 
kinase (PI3K)/protein kinase B (AKT), AMPK and mamma-
lian target of rapamycin (mTOR) pathways. These alterations 
affect the expression of NIS and change 
I metabolism.34,46,49,50 Previous studies have shown that 
the BRAF-V600E mutation can cause downregulation of 
NIS expression and is associated with the MAPK 
pathway.50 PI3K and its downstream molecule mTOR also 
exert an impact on the function of NIS and reduce I− 

absorption.33,51 Andrade’s group demonstrated that AMPK 
affects the uptake of iodine and glucose in rat thyroid cells, 
which ultimately display decreased iodine uptake, and 
further confirmed that AMPK is upregulated in TC.34,52–54 

Moreover, studies have shown that AMPK can downregulate 
NIS expression in TC.54,55 Therefore, we can see that the 
upregulation and activation of AMPK in TC can downregu-
late the expression of NIS and thus reduce the uptake of I−. 
Additionally, NIS expression is regulated by microRNAs. 
Studies have shown that microRNA-339-5p can regulate 
NIS expression at the RNA level in TC, thereby affecting 
iodine uptake.56 Last year, one study identified two key 
factors that interact with NIS, and blocking these factors 

allowed NIS to resume normal function in TC cells, thus 
improving the prognosis of patients.57 Furthermore, EI 
Mokh’s group demonstrated that by inhibiting NIS-related 
regulators (BRAF-V600E, MAPK, PI3K), iodine uptake 
levels in TC could be effectively promoted.58 To date, pre-
clinical and clinical studies on NIS as a therapeutic target 
have been conducted, some of which have been selected and 
are presented in Table 1. It can be concluded that NIS plays 
a significant role in TC; its aberrant expression in TC is 
caused by many factors and leads to abnormal iodine meta-
bolism, meaning that radioactive iodide ions cannot be effec-
tively taken up, thus affecting the prognosis of TC. 
Interestingly, abnormal iodide metabolism is associated 
with the proliferation of TC.

Glucose Transporters (GLUTs) and 
Energy Metabolism in TC
Physiological Role of GLUTs in the 
Thyroid Gland
The GLUT family comprises transmembrane proteins 
encoded by SLC2 genes, which are widely expressed on 
the plasma membrane of various eukaryotic cells, and the 
main function of these proteins is to mediate the transport 
of carbohydrates into cells.59 In the human body, 14 mem-
bers of the GLUT family are distributed on different 
cells.60 The main function of GLUTs in human cells is to 
absorb glucose from the extracellular environment and 
blood circulation into cells for energy metabolism.18 

Studies have confirmed that GLUTs regulate glucose 
uptake and energy metabolism in thyroid cells.61–65 

GLUT1, GLUT3, GLUT4, and GLUT10 are expressed in 
rat thyroid cells, with GLUT1 being the main metabolism- 
related subtype.61,62,65 Matsuzu’s team summarized pre-
vious studies and verified the expression of GLUTs in 
the thyroid gland; they also found that GLUT1 was of 
great significance to thyroid gland function.61 GLUT1 is 
encoded by the SLC2A1 gene and is expressed on the 
plasma membrane.59 However, due to technical limita-
tions, the only certainty is that GLUT1 is expressed on 
the plasma membrane, and any specific localization is 
unclear.61 The primary substrate for GLUT1 is glucose, 
but it is also involved in the transport of mannose, gluco-
samine, galactose, and reduced ascorbate.66 GLUT1 can 
transport glucose into thyroid cells, which is then con-
verted into ATP via biosynthesis processes such as glyco-
lysis and OXPHOS to provide energy for cell survival. 
GLUT1 expression in the thyroid gland is regulated by 
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TSH and AMPK.52,61 From the above observations, we 
can conclude that as a member of the GLUT family 
GLUT1 is necessary for the energy metabolism of the 
thyroid gland.

GLUT1 Regulates Metabolism at the 
Onset of TC
GLUT1 has been extensively studied. Researchers have 
found that GLUT1 expression is upregulated in many dif-
ferent types of tumor cells and is closely linked to tumor 
progression.67–69 Based on the “Warburg effect”, we know 
that tumor cells are significantly more dependent on ATP 
than are normal cells and that this dependence depends on 
activation of aerobic glycolysis.2–4,70,71 As a transporter 
directly related to the intracellular energy source, GLUT1 
is bound to be closely related to cellular metabolism. 
Studies have reported a substantial increase in GLUT1 
expression in TC cells.18,25,26 By analyzing the immunohis-
tochemical data of more than 500 patients with TC, Nahm 
et al25 found that GLUT1 expression was increased in TC 
and that its activity was enhanced in cells with increased 
glycolysis. They also noted that increased GLUT1 expres-
sion is associated with invasion and poor prognosis of TC.25 

TC, as a tumor with high proliferative and metabolic activ-
ity, has a high energy demand and rapidly consumes ATP, 
which mainly depends on the glucose transport function of 
GLUT1. Therefore, only increased expression and 
enhanced function of GLUT1 can meet the energy needs 
of TC. The study also confirmed that glucose uptake was 

significantly increased with upregulated GLUT1 expression 
in TC cells.72 At this point, we can conclude that when 
GLUT1 expression is upregulated, the amount of glucose 
entering the cells and the subsequent levels of substrates 
involved in aerobic glycolysis, OXPHOS and gluconeogen-
esis increase, which provides hospitable conditions for the 
growth and proliferation of tumor cells. The expression of 
GLUT1 in TC is regulated by many factors. Studies have 
demonstrated that the PI3K pathway can upregulate the 
expression of GLUT1 in RAS-mutated TC cells.73 The 
transcription factor hypoxia-inducible factor 1 α (HIF-1α), 
whose expression is induced in hypoxic tumor environ-
ments, has also been linked to GLUT1 expression in TC. 
Jóźwiak’s group demonstrated that in the TC cell lines FTC- 
133 and 8305c, HIF-1α can upregulate the expression of 
GLUT1 and promote glucose uptake of cancer cells.74 In 
addition, after applying siRNA to knockdown GLUT1 
expression in TC cells, they found that the cells’ ability to 
uptake glucose was reduced and that their ability to prolif-
erate was also diminished.74 HIF-1α is an important factor 
in the metabolic changes in tumor cells and can activate the 
glycolytic pathway and inhibit OXPHOS in 
mitochondria.75,76 Studies have shown that HIF-1α can 
activate many transporters associated with cellular aerobic 
glycolysis, including GLUT1, and enhance their expression 
in TC.24–26,77 There have been many well-executed experi-
ments on the regulation of GLUT1 expression in TC and 
other cancers. In addition to the two factors mentioned 
above, oncogenes and tumor suppressor factors such as 

Table 1 Expression, Influence, Related MicroRNA, Clinical/Preclinical Trials of Ion Transporters in Thyroid Cancer

Named Transporter Gene 
Symbol

Influence in Thyroid Cancer Related Micro- 
RNA

Clinical/Preclinical Trials 
Inhibitor

NIS NIS SLC5A5 Prognosis relapse proliferation miRNA-339-5p ES-157 

NMS-87357 

P-32590158

GLUTs GLUT1 SLC2A1 Invision Prognosis Proliferation 

growth

miRNA-125b Metformin84,85

MCT1 SLC16A1 Invision proliferation miRNA-342-3p AZD3965111

MCTs MCT4 SLC16A3 Invision proliferation miRNA-145 AZ93112 

Bindarit113

MCT8 SLC16A2 Differentiation miRNA-375 TKI114

ASCTs ASCT2 SLC1A5 Proliferation Metastasis invasive miRNA-137 BenSer27

LATs LAT1 SLC7A5 Growth, proliferation prognosis miRNA-126 JPH203146,153

Abbreviations: ES-1, Eeyarestatin-1; TKI, tyrosine kinase inhibitor.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2020:13 12430

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Raf, Myc, Src, p53 and PTEN have also been proven to 
regulate GLUT1 expression in TC and promote glucose 
uptake.78–82 Moreover, there exists a regulatory 
microRNA that targets GLUT1. Zhang et al confirmed 
that microRNA-125b can reduce glucose uptake in TC 
cells by downregulating GLUT1 expression, thus affecting 
the development and progression of cancer.83 Due to these 
changes in TC, GLUT1 expression increases to compensate 
for the metabolic reprogramming so that enough glucose 
can be taken up to fulfill the needs of TC cells with high 
metabolism and elevated proliferative activities, and such 
changes in TC are associated with its growth, proliferation 
and progression. In summary, we can conclude that after the 
occurrence of TC, many factors in TC can promote GLUT1 
expression, which further regulates the uptake of glucose 
through its own changes in expression and then affects the 
energy metabolism of cells to confront the needs of TC cells 
to maintain their growth, proliferation and progression. 
GLUT1 has been used as an effective target for tumor 
therapy in many studies. In TC, a preclinical study by 
Shen et al confirmed that metformin could effectively 
reduce GLUT1 expression and thus inhibit the progression 
of TC.84 Other studies have identified GLUT1 as an impor-
tant therapeutic target in treating tumors, and these studies 
have been well summarized in an excellent review by 
Zambrano.85

Monocarboxylate Transporters 
(MCTs) and Metabolism in TC
Physiological Role of MCTs in the Thyroid 
Gland
The MCT family, encoded by the SLC16 gene, is a proton- 
linked membrane transport protein located in the cell 
membrane.86 It consists of 14 members; however, only 
MCT (1–4) are involved in monocarboxylate transport in 
human cells.86 Their main function is to transport intracel-
lular monocarboxylic acid substances, such as lactate, 
pyruvate and ketone bodies.86 These substances are neces-
sary for the energy metabolism and material synthesis of 
organelles. When the oxygen supply fails to meet the 
metabolic needs of the cell, the cell relies on glycolysis 
to produce energy, which increases the production of lac-
tate and pyruvate and consequently leading to the accu-
mulation of these products in the cell. MCTs can transport 
these redundant substances out of the cell or into other 
cells for further metabolism, thus maintaining cellular 
homeostasis. In healthy thyroid tissues, MCT (1–4) have 

not been precisely defined, but under pathological condi-
tions, MCT1 and MCT4 are clearly expressed in the thyr-
oid and are closely related to the energy metabolism of 
cells.25,87 MCT1, which is encoded by the SLC16A1 gene, 
is a bidirectional transporter located on the plasma mem-
brane whose main function is to transport lactate into the 
cell.16,88 The lactate that enters the cell can be reversibly 
converted to pyruvate by lactate dehydrogenase (LDH) or 
to other energy materials by gluconeogenesis.16 The fac-
tors that regulate MCT1 expression in normal tissues have 
not been clearly elucidated, but studies have found that it 
is associated with metabolism and AMPK.88 MCT4, 
encoded by SLC16A3, is also distributed across the plasma 
membrane.16 Compared with MCT1, MCT4 is mainly 
involved in glycolysis metabolism in cells and has 
a different functional structure.16,88 It has a low affinity 
for lactate, and its primary function is to transport intra-
cellular lactate out of the cell.89 Studies have reported that 
MCT4 expression is mainly regulated by cell metabolism 
and the hypoxic environment.90 In addition to these two 
transporters, MCT8, a member of the MCT family, is 
related to TH transport and is also distributed in the 
thyroid gland.91 MCT8 is encoded by the SLC16A2 gene 
and is widely distributed in the basolateral membrane of 
thyroid follicular epithelial cells.91 Its main function is to 
transport THs, especially 3.3′,5-triiodothyronine (T3).91 

TH is synthesized in thyroid follicular epithelial cells and 
then transported by MCT8 to cells throughout the body to 
act on the corresponding cell receptors, thereby causing 
a series of biological reactions.92 In healthy thyroid cells, 
MCT8 expression is mainly regulated by cAMP and 
TSH.23 In summary, MCT1, MCT4 and MCT8 play 
a significant role in the energy metabolism of and transport 
of materials between cells.

MCTs Regulate Metabolism in the Onset 
of TC
MCT1 and MCT4 are essential in the metabolic process of 
TC cells. As noted above, most tumor cells rely on anae-
robic glycolysis to provide energy for their growth and 
survival; this process eventually produce a large amount of 
lactate, which plays an important role in cancer 
metabolism.93,94 During aerobic glycolysis in tumor cells, 
a large amount of pyruvate is produced when excessive 
glucose is consumed to produce ATP; then, pyruvate is 
converted to lactate via LDH. This process is reversible, 
which means that lactate can also be transformed into 
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pyruvate.3,95,96 In addition, there is another source of 
lactate in TC cells: the surrounding fibroblasts, immune 
cells, epithelial cells and so on constitute the tumor micro-
environment. Studies have shown that cancer-associated 
fibroblasts (CAFs), also called stromal fibroblasts, play an 
important role in tumor metabolism and clarified that these 
cells are definitely present in TC.97,98 CAFs can produce 
lactate via aerobic glycolysis and release lactate into the 
surrounding environment; then, tumor cells absorb this 
lactate and convert it into pyruvate to produce energy in 
mitochondria.13 This process, known as the “Reverse 
Warburg Effect”, allows CAFs to provide some lactate 
that is absorbed by highly metabolic tumor cells to further 
participate in the TCA cycle to produce energy. The trans-
portation of lactate is dependent on MCT1 and MCT4. 
Studies have confirmed that the expression levels of 
MCT1 and MCT4 are increased to varying degrees in 
different types of TC.89,99,100 Pioneering researchers con-
ducted an immunohistochemical analysis of orthotopic 
xenograft tumors and clinicopathological specimens and 
found that MCT1 was highly expressed relative to MCT4 
in anaplastic TC (ATC).87 Nahm et al conducted a similar 
experiment with the clinicopathological specimens of 566 
patients with TC and immunohistochemically analyzed the 
expression of proteins related to tumor glycolysis.25 They 
finally concluded that MCT4 expression increased, mainly 
in ATCs.25 Other researchers have found that MCT4 is 
associated with the invasion and proliferation of different 
tumors.99,101 Therefore, as a highly invasive and meta-
static tumor, the incidence of ATC may be associated 
with MCT4. Studies also stated that cellular hypoxia can 
induce upregulated MCT4 expression through the action 
of HIF-1α interacting with the promoter of MCT4 to adapt 
tumor cells to hypoxia, maintain intracellular acid-base 
balance and prevent intracellular lactic acid 
accumulation.90,102 Currently, studies on the regulation of 
microRNA-mediated MCT1/4 expression in TC are lack-
ing, but there relevant reports in other tumors. Studies 
have confirmed that microRNA-342-3p can target MCT1 
in breast cancer and then change the metabolic state of 
tumor cells.103 Regarding MCT4, studies have confirmed 
that microRNA-145 can act on MCT4 in hepatocellular 
carcinoma, thereby changing the homeostasis of tumor 
cells.104 The above two microRNAs can serve as potential 
therapeutic targets for further study in TC, a tumor with 
high levels of proliferation and metabolic characteristics. 
The expression of MCT1 and MCT4 in TC is increased 
through various factors and accelerates the transport of 

lactate and other energy substances to satisfy the energy 
requirements of the cells. In summary, MCT1 and MCT4 
play an essential role in the metabolism of TC because 
they regulate the uptake and release of metabolic com-
pounds to adjust to the changing metabolic needs of TC 
via changes in their expression levels, thus promoting the 
growth, proliferation and invasion of TC. MCT8 is 
a member of the MCT family, and its functional role in 
TC is quite different from that of MCT1 and MCT4. 
Bidziong et al demonstrated that MCT8 expression in TC 
tissues was significantly lower than that in healthy thyroid 
tissues; therefore, MCT8 could be regarded as a biomarker 
of TC differentiation.23 It is worth mentioning that, as 
a TH transporter, MCT8 (namely, downregulation of its 
expression) is of great significance in TC. Studies have 
confirmed that TH can promote the proliferation, metasta-
sis and development of TC through the MAPK and PI3K 
signaling pathways.105 Therefore, downregulation of 
MCT8 expression in TC can effectively reduce TH secre-
tion and thus lead to the accumulation of TH in TC tissue, 
which ultimately promotes the progression of TC. 
Currently, there are few studies on MCT8 in TC. Smith 
et al proved that pituitary tumor transforming gene- 
binding factor (PBF) could regulate the expression and 
function of MCT8 in TC.106 At the microRNA level, 
MCT8 has been shown to be a target of microRNA-375 
in TC.107 In summary, we have highlighted the role of 
MCTs in the development of TC and their regulatory 
factors in TC. Currently, there are many preclinical trials 
regarding them as tumor therapeutic targets; however, 
there have been few preclinical trials investigating MCTs 
as a druggable target in TC.108–110 Polanski et al demon-
strated that the inhibitor AZD3965 can block MCT1 func-
tion in small cell lung cancer, thereby stunting tumor 
development.111 This inhibitor is currently in clinical 
trials, and we believe that its effects on TC will be 
reported in the near future. For MCT4, AstraZeneca has 
developed AZ93, a specific inhibitor of MCT4, but it has 
not yet entered preclinical trials.112 Futagi et al confirmed 
that bindarit effectively inhibits MCT4 in human cells and 
could be used in antitumor research.113 MCT8 is regulated 
by TSH, but no direct inhibitor has been reported in TC. 
Krajewska summarized the study of MCT8 as 
a therapeutic target and found that tyrosine kinase inhibi-
tors can affect the transport function of MCT8.114 In 
summary, MCTs play an important role in TC and may 
be a potential therapeutic target, but further research is 
needed.

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2020:13 12432

Wang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


Neutral Amino Acid Transporters 
(ASCTs) and Energy Metabolism in 
TC
Physiological Role of ASCTs in the 
Thyroid Gland
ASCTs, encoded by the SLC1 gene, belong to the amino 
acid transporter family.115 In humans, the amino acid trans-
port family consists of seven members, five of which mostly 
transport glutamate and the other two mainly transport 
neutral amino acids.115 ASCTs, including ASCT1 and 
ASCT2, facilitate the transport of neutral amino acids; 
these proteins are encoded by SLC1A4 and SLC1A5, 
respectively.115 In the thyroid, we focused on the functional 
role of ASCT2. ASCT2 is located in the cell plasma mem-
brane and is widely expressed in various tissues of the 
human body.115,116 The name ASCT2 comes from its ability 
to transport alanine, serine, cysteine, and threonine.117,118 In 
fact, ASCT2 can transport glutamine as well as these neutral 
amino acids with high affinity.119 Glutamine is used as 
a precursor for the biosynthesis of many proteins, nucleo-
tides, and amino sugars, and its carbon skeleton structure 
can be used in the production process of the mitochondrial 
TCA cycle.6 When cells are in a proliferative state, all 
biosynthetic and metabolic requirements increase, and the 
requirements of glutamine also rise; these changes rely on 
the function of transporters, ASCT2 among them.120,121 

Glutamine is transported into cells by ASCT2 and then 
into mitochondria, where it is converted to glutamate by 
phosphate-dependent glutaminase. Furthermore, glutamate 
is converted into α-ketoglutarate (α-KG) for use in the TCA 
cycle of mitochondria and participates in energy 
metabolism.122 At present, studies on factors influencing 
the regulation of ASCT2 expression in normal tissues are 
not clear. Most of the studies are in tumors, which will be 
elaborated in the next section. In conclusion, ASCT2 plays 
an important role in the energy supply and material transfer 
of cells.

ASCT2 Regulates Metabolism in the 
Onset of TC
As previously mentioned, to meet the needs of growth and 
proliferation, tumor cells change their metabolic state, 
mainly producing energy by replacing OXPHOS with aero-
bic glycolysis, and some studies suggest that mitochondrial 
function in tumor cells is impaired.123 However, after much 
research and debate, researchers found that these claims are 

not rigorous. Researchers have found that in tumor cells, 
mitochondria still function normally.122,124,125 In addition 
to using glucose for energy, cancer cells also uptake fats, 
proteins, and amino acids to survive and proliferate, and 
mitochondria play an important role in the metabolism of 
these molecules. In a study on the metabolism of tumor 
cells, researchers discovered another important substance – 
glutamine.6 Studies have confirmed that in fast-growing 
tumors, tumor cells are more likely to use glutamine for 
energy production.9,10 Aerobic glycolysis cooperates with 
glutamine metabolism to maintain cell proliferation, while 
glutamine can also maintain mitochondrial function and 
participate in the synthesis of nonessential amino acids 
and nucleotides (purines and pyrimidines) in 
mitochondria.9,10 Some researchers have realized that 
these changes in energy metabolism in tumor cells cause 
the cells to produce an energy stress response, which is 
associated with tumor proliferation and metastasis.126 

Above, we stated the importance of glutamine in the energy 
metabolism of tumor cells. After glutamine enters the cell, it 
is first catalyzed by glutaminase to produce glutamate, 
which is transported into the mitochondria and then con-
verted into α-KG, alanine, aspartate and other substances by 
metabolism-related enzymes to participate in intracellular 
metabolic functions.127 Therefore, ASCT2, as a transporter 
of glutamine, occupies a significant position in the regula-
tion of cancer metabolism. Kim’s group used immunohis-
tochemistry to stain for glutamine metabolism-related 
proteins in a TMA comprising 557 TC samples and found 
that ASCT2 was expressed in all TC tissues; however, the 
expression level was dissimilar in different types of TC 
samples.27 They analyzed the statistical correlations 
between these staining results and eventually discovered 
that the expression of glutamine metabolism-related pro-
teins was highest in ATC and BRAF-V600E-mutated papil-
lary TC (PTC) and that ASCT2 expression was higher in 
medullary TC (MTC) than in other types of TC.27 Several 
studies have reported that proteins involved in glutamine 
metabolism, such as ASCT2, are associated with tumor 
aggressiveness.128,129 Among the subtypes of TC, PTC 
with the BRAF-V600E mutation and MTC are both highly 
invasive and prone to metastatic behavior.36,44,130,131 

Therefore, ASCT2 may be associated with the invasive 
characteristics and poor prognosis of TC. ASCT2 expres-
sion in TC is affected by a variety of factors, among which 
include gene mutations that cause changes in signaling 
pathways involved in ASCT2 expression. In TC, in addition 
to the common BRAF and RAS gene mutations, MYC gene 
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mutations also exist, which mainly occur in MTC.132,133 

MYC can stimulate ASCT2 expression and promote the 
utilization of glutamine.134 In addition, ASCT2 is regulated 
by microRNA-137.135 In summary, we can conclude that 
TC, as a tumor with high metabolic needs, has increased 
energy demands, so utilizing glutamine as a source of 
energy is necessary, and that ASCT2, as a transporter of 
glutamine into cells, cannot be neglected. Abnormal expres-
sion of ASCT2 regulates glutamine metabolism to meet the 
energy metabolism needs of TC and is related to tumor 
growth, proliferation, metastasis, invasion, and poor prog-
nosis. Researchers have demonstrated that ASCT2 can be 
a therapeutic target for tumors and that blocking ASCT2 
can prevent tumor growth and progression.136 Wang et al 
demonstrated that BenSer, an inhibitor of ASCT2, can sig-
nificantly attenuate tumor proliferation in malignant 
melanoma.27 However, this needs to be further verified 
in TC.

L-Type Amino Acid Transporters 
(LATs) and Energy Metabolism in 
TC
Physiological Role of LATs in the Thyroid 
Gland
The SLC7 solute carrier family consists of two subfami-
lies: LATs and cationic amino acid transporters (CATs).137 

The LAT subfamily comprises four members, LAT1-4, 
which are widely distributed on the plasma membrane of 
various specific cells in the human body, and their key 
function is to participate in the transport of essential amino 
acids (EAAs) throughout the human body.138 Furthermore, 
due to differences in their function and structure, the four 
members of the LATs are divided into two groups. LAT1 
and LAT2, which have a high affinity for EAAs, must 
combine with the 4F2 antigen heavy chain (4F2hc) to 
constitute a heterodimer.139,140 However, LAT3 and 
LAT4 do not need to form a heterodimer; they can directly 
participate in EAA transport, but with low affinity.141,142 

Amino acids provide a nitrogen source for the synthesis of 
nucleotides, amino sugars and proteins in cells; mean-
while, the carbon skeleton of amino acids can be used 
for OXPHOS to produce ATP, which is also involved in 
lipid synthesis in cells.143 Therefore, as carriers of human 
amino acids, LATs play a very important role in human 
metabolism. Of the four members of the LAT family, 
LAT1, which is encoded by the SLC7A5 gene, has been 
the most extensively studied, so it has existing research 

value in thyroid physiology and pathology. In polarized 
epithelial cells, LAT1 is mainly localized to the basolateral 
membrane.137,144 On the cell membrane, LAT1 and 4F2hc 
constitute a heterodimer that transports EAAs, such as 
leucine and phenylalanine, and at the same time participate 
in the exchange of EAAs and glutamine in a Na+- 
independent manner.139,145 Through this transport function 
of LAT1, cells can meet their growth and proliferation 
needs. Unfortunately, however, the expression of LAT1 
protein was not detected in healthy thyroid tissue, but it 
was clearly expressed in pathological tissue.146 The reg-
ulatory factors of LAT1 expression in healthy tissues have 
not been elaborated in detail, as most are regulatory stu-
dies in pathological conditions, which will be elaborated in 
the next part. In summary, LAT1 plays a specific role in 
human metabolism, and abnormalities in its expression can 
cause changes in human cell metabolism, which can be 
used in tumor research.

LAT1 Regulates Metabolism in the Onset 
of TC
Tumor cells are characterized by high proliferation and meta-
bolism, which depend on the consumption of nutrients such as 
glucose, glutamine and EAAs. By consuming these nutrients, 
cells can synthesize proteins and produce ATP.11,147,148 More 
than 60 years ago, after conducting experiments with HeLa 
cells, Harry Eagle discovered that EAAs are needed for cell 
proliferation.149 Studies have reported a higher uptake of 
EAAs in a variety of tumors than that in healthy tissue, 
suggesting that EAAs are necessary for cell 
proliferation.143,150,151 Of the eight EAAs needed by the 
human body, leucine is worth mentioning because it is an 
effective activator of mechanistic target of rapamycin kinase 
complex 1 (mTORC1), and this signaling pathway can pro-
mote the growth, proliferation and apoptosis resistance of 
tumor cells.152 In addition, leucine is an allosteric agent 
of glutamate dehydrogenase, which can regulate the activity 
of glutamate dehydrogenase in mitochondria and thus affect 
glutamate metabolism.147 Therefore, as a transporter of EAAs 
(including leucine), LAT1 plays an important role in the 
metabolic regulation of amino acids in tumor cells. Professor 
Enomoto proved through experiments that LAT1 and 4F2hc 
are overexpressed in ATC tissues and were expressed in ATC 
cell lines (8505C, OCUT-2, and OCUT-6); moreover, these 
two proteins are closely related to the growth and proliferation 
of tumor cells.146 Furthermore, the experiment verified that 
the uptake of EAAs decreased and that the mTOR signaling 
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pathway was stalled after inhibition with LAT1.146 Other 
researchers conducted similar experiments in ATC, PTC and 
their cell lines (8505c, LNCaP, SW1736, Hth104, KTC1 and 

TPC-1) and observed that LAT1 was overexpressed in both of 
these tumor tissues. These studies concluded that this growth 
was related to the growth, proliferation and prognosis of tumor 

Figure 1 Ion transporters and the metabolic situation in normal thyroid cells (A) and cancer cells (B). Figure (A) shows that normal thyroid cells rely on GLUT1 transport 
of glucose to provide energy through glycolysis and oxidative phosphorylation, NIS is involved in intracellular iodide metabolism, and MCT8 is involved in the transportion of 
TH. The expression of MCT1/4, ASCT2, and LAT1 has not been elucidated. Figure (B) shows the upregulation of GLUT1, ASCT2, LAT1 and MCT1/4 in thyroid cancer, 
which regulates the metabolism of tumor cells to meet their growth and proliferation needs through the transport of corresponding metabolic substrates. The 
downregulated expression of NIS leads to the decreased function of iodine intake, affects the treatment of radioactive iodine, and promotes the poor prognosis of the 
tumor. The downregulation of MCT8 expression affects the transport of TH, thus affecting the progression of thyroid cancer.
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cells.153 At the same time, they also confirmed that inhibition 
of LAT1 would affect the mTORC1 pathway.153 From these 
studies, we can see that LAT1 plays a role in the amino acid 
metabolism of TC. The regulatory factors of LAT1 expression 
have not been thoroughly studied in TC, but some other tumor 
studies have shown that the expression of LAT1 is affected by 
many factors. Studies have shown that LAT1 expression is 
regulated by vascular endothelial growth factor and that this 
process is related to the hypoxic environment of tumor 
cells.154–156 Studies have also shown that the overexpression 
of LAT1 is related to the amplification of the MYC gene.157 In 
addition, one study confirmed that LAT1 expression was 
related to the Ras-MEK-ERK signaling pathway in a mouse 
thyroid tumor model.153 Furthermore, studies have confirmed 
that LAT1 is the target of microRNA-126.158,159 In summary, 
we can conclude that LAT1 plays an important role in the 
amino acid metabolism of TC. Various factors in TC caused 
alterations in LAT1 expression, and LAT1 transported more 
leucine through these changes to meet the metabolic needs of 
TC, thus promoting the development of TC. The existence of 
LAT1 is also associated with the prognosis of TC. At present, 
there are relevant studies on LAT1 as a therapeutic target in 
TC. Hafliger et al demonstrated that JPH203, an inhibitor of 
LAT1, could effectively block LAT1 function and thus inhibit 
TC proliferation in a mouse model.153 Furthermore, Enomoto 
et al demonstrated that JPH203 could inhibit the progression 
of TC via LAT1.146

Conclusions and Perspectives
The prevalence of TC is increasing every year. Although the 
prognosis may be acceptable, it (along with the recurrence 
rate) of TC with a high degree of malignancy still cannot be 
ignored. Alterations in intracellular metabolic status and 
associated ion transporters are markers of tumorigenesis. 
However, the relationship among TC, cell metabolism, and 
ion transporters has not been thoroughly elucidated. We 
attempted to clarify the physiological and pathophysiological 
connections (Figure 1). In this paper, the status of NIS in TC 
related to the treatment of TC and its relationship with 
metabolism are described, providing both a reference for 
the treatment of patients resistant to radiotherapy and pro-
found ideas for TC researchers. We also discussed GLUT1, 
MCT1/4/8, ASCT2, and LAT1 plasma membrane transpor-
ters and their association with energy metabolism in TC 
while also confirming their association with TC and metabo-
lism in previous studies. In TC, these ion transporters can 
regulate the metabolism of corresponding substances through 
both their own function and expression changes to meet the 

needs of TC cells. Although many studies have investigated 
the abovementioned ion transporters, few effective drugs 
have been applied in clinical practice, and the incidence of 
TC and prognosis of patients have not been significantly 
improved. This paper summarizes the metabolism-related 
ion transporters, their regulatory factors, and relevant precli-
nical and clinical trials in TC (Table 1) with the goal of 
providing hope for TC patients and researchers with in- 
depth research directions.
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