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Abstract: Nanomedicines (NMs) have played an increasing role in cancer therapy as 
carriers to efficiently deliver therapeutics into tumor cells. For this application, the uptake 
of NMs by tumor cells is usually a prerequisite to deliver the cargo to intracellular 
locations, which mainly relies on endocytosis. NMs can enter cells through a variety of 
endocytosis pathways. Different endocytosis pathways exhibit different intracellular traf-
ficking routes and diverse subcellular localizations. Therefore, a comprehensive under-
standing of endocytosis mechanisms is necessary for increasing cellular entry efficiency 
and to trace the fate of NMs after internalization. This review focuses on endocytosis 
pathways of NMs in tumor cells, mainly including clathrin- and caveolae-mediated 
endocytosis pathways, involving effector molecules, expression difference of those mole-
cules between normal and tumor cells, as well as the intracellular trafficking route of 
corresponding endocytosis vesicles. Then, the latest strategies for NMs to actively 
employ endocytosis are described, including improving tumor cellular uptake of NMs 
by receptor-mediated endocytosis, transporter-mediated endocytosis and enabling drug 
activity by changing intracellular routes. Finally, active targeting strategies towards 
intracellular organelles are also mentioned. This review will be helpful not only in 
explicating endocytosis and the trafficking process of NMs and elucidating anti-tumor 
mechanisms inside the cell but also in rendering new ideas for the design of highly 
efficacious and cancer-targeted NMs. 
Keywords: nanomedicine, endocytosis pathway, clathrin, caveolae, endosome, organelle 
targeting

Introduction
Nanomedicines (NMs) have played an increasing role in cancer therapy for the 
remarkable ability to increase therapeutic efficacy and decrease systematic 
toxicity.1–3 NMs, or nanoparticles, are nanosized drug particles, such as liposomes, 
micelles, polymeric NMs and polymeric-drug conjugates, delivering therapeutic 
entities in a controlled manner to a desired site. Large amounts of NMs for cancer 
therapy are undertaking research, some successful ones have come onto the market, 
such as doxorubicin (DOX) loaded liposome (DOXIL®), albumin-bound paclitaxel 
nanocomplex (nab-paclitaxel, Abraxane®) and liposomal irinotecan (Onivyde®).4 

Inherent in the broad research of NMs is the recognition that the nanosized features 
offer unique advantages for cancer therapy. In terms of drug delivery, NMs can not 
only increase drug concentration in the tumor tissue, but can also improve cellular 
uptake and realize organelle-specific delivery of the loaded drug by adopting 
various nanomedicine design strategies.5,6
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Tumor tissues are the primary accumulating target for 
NMs owing to pathophysiological differences of tumor 
from normal tissues. High permeability of blood vessels 
and impaired lymphatic drainage allows NMs ranging 
from 10 to 500 nm selectively leaking from vascular 
lumen and achieving higher accumulation in tumor com-
pared to normal tissue, known as the enhanced permeabil-
ity and retention (EPR) effect.7,8 Although recently, trans- 
endothelial pathway is raised up as a new mechanism to 
explain tumor accumulation of NMs,9 EPR effect is still 
a recognized approach allowing NMs to passively accu-
mulate in tumor tissues to improve the clinical benefit 
while decreasing adverse effects.10,11

However, targets of many anticancer agents are loca-
lized in subcellular compartments, drug-loaded NMs are 
expected to not only concentrate at tumor tissues, but also 
translocate through cell membranes and even target sub-
cellular organelles. Endocytosis is the primary way for 
NMs to gain cellular entry.2 Efficient cellular uptake of 
NMs is guarantee for effective intracellular drug delivery. 
Moreover, different endocytosis pathways lead to different 
intracellular trafficking fate and localization of NMs. 
Hence, comprehensive understanding of endocytosis path-
ways of NMs would be key to achieve efficient uptake and 
trace the fate of NMs after internalizing into tumor cells, 
thus to explicate the treatment efficacy and toxicological 
profile of the cargo transported inside the cells.

Moreover, the role of endocytosis is by no means 
limited to providing cellular entry pathway for NMs. 
With the advancement of nanotechnology, endocytosis 
can be exploited to achieve special delivery purposes of 
NMs. In some cases, endocytosis is exploited to selec-
tively control uptake. For example, by changing particle 
physicochemical properties, uptake by phagocytic cells 
can be limited and thus to avoid clearance of NMs by 
reticuloendothelial system (RES); by surface-modification 
with specific ligands, NMs can exhibit improved cellular 
uptake via receptor-mediated endocytosis and even tar-
geted delivery to specific subcellular organelles.12 

Increased target selectivity leads to improved potency 
towards tumor cells and/or decreased toxicity towards 
normal cells compared to the passively targeting modes. 
In other applications, endocytosis is exploited to enable 
drug activity.13 By encapsulating into nanocarriers, effec-
tive cellular endocytosis can be realized for those drugs 
that require intracellular delivery to take anti-tumor effect 
but are easily degraded inside the cell, such as oligonu-
cleotides and certain proteins.

Based on the above, this review focuses on the follow-
ing three parts concerning endocytosis of NMs for cancer 
therapy:

(i) An overview on different endocytosis pathways. 
Latest reported molecules, intracellular trafficking 
routes and typical non-ligand NMs for cancer ther-
apy involved in different endocytosis pathways are 
focused on.

(ii) Strategies for designing efficient anti-tumor NMs 
by actively exploiting endocytosis.

(iii) Strategies for designing NMs capable of efficient 
subcellular targeting.

We hope this review can not only be helpful in expli-
cating endocytosis and the trafficking process of NMs as 
well as elucidating anti-tumor mechanisms inside the cell, 
but also render new ideas for the design of highly effica-
cious, multifunctional and cancer-targeted NMs, which is 
of clinical value.

Endocytosis Pathways
Endocytosis is an energy dependent process, by which 
cells internalize substances from their surroundings using 
vesicles generated from the plasma membrane. When NMs 
are in the extracellular environment, they enter cells 
through different endocytosis pathways following the fun-
damental steps (Figure 1). i) Binding and budding. NMs 
interact with the cell surface through non-specific interac-
tions such as electrostatic and hydrophobic interactions or 
via specific ligand-receptor driven interactions.14 

Subsequently, NMs are engulfed in the cell membrane to 
form invaginations, which is called budding. ii) Pinching 
off. The “buds” are pinched off to form different endocytic 
vesicles, following with infusing into early endosomes.15 

iii) Sorting and intracellular trafficking. Early endosomes 
act as a sorting machine and can carry the cargos to 
specific subcellular organelles, to recycling endosomes 
for apical recycle recycled, to basolateral compartment 
for releasing.16–18 Besides, early endosomes can mature 
to late endosomes (also called multivesicular body). NMs 
that failed to escape from the endosomes face degradation 
in the lysosome.16–18

According to the proteins involved, endocytosis path-
ways are generally classified into phagocytosis and 
pinocytosis.19 Pinocytosis is ubiquitous in almost any eukar-
yotic cell and is employed by NMs when entering into the 
tumor cell. Pinocytosis can be further sub-classified into 
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clathrin-mediated, caveolae-mediated, clathrin- and caveo-
lae-independent endocytosis and macropinocytosis. 
However, phagocytosis typically occurred in phagocytes.

In this part, the latest insight into various pinocytosis 
pathways will be discussed, as summarized in Table 1. 
We focus on critical molecules involved and their 
expression changes in the tumor cell, so as to elucidate 
functional differences of endocytosis pathways in 
a tumor. Apart from that, we also concentrate to exhibit 
intracellular trafficking routes after cellular entry through 
different endocytosis pathways. What’s more, examples 
of non-ligand NMs that have been shown to employ 
specific pathways will also be summarized. What must 
be emphasized is that trafficking pathway of the same 
kind of NMs may vary depending on multiple factors, 
including physicochemical characteristics of nanoparti-
cles, the peculiarities of the endocytic machinery in 
different cell types and so on. We are just trying to 
find some general rules here. As NMs are tended to 
clearance when engulfed via phagocytosis,20 resulting 
in loss of efficacy, so, lastly, strategies for NMs to 
evade phagocytosis will be reviewed.

Pinocytosis
Clathrin-Mediated Endocytosis (CME)
Clathrin-mediated endocytosis (CME) is a classical route 
in all known mammalian cells for cellular entry of cargoes 

involving nutrient uptake, signal pathways controlling and 
membrane recycling, which is marked by clathrin-coated 
vesicles (CCVs). Cellular engulfment of cargoes through 
CME is mediated by their specific transmembrane recep-
tors from the cell surface into CCVs.21,22 Transferrin 
receptor (TfR),23 low density lipoprotein receptor 
(LDLR)24 and epidermal growth factor receptor 
(EGFR),22 responsible for the cellular internalization of 
transferrin (Tf), low density lipoprotein (LDL) and epider-
mal growth factor respectively, are classic receptors 
involved in CME and some of which are reported to over- 
express in tumor cells. What’s more, these ligands can be 
used as markers of CME in the endocytic studies of NMs, 
as their trafficking relies mainly on this pathway.25

Molecules Participating in CME 
Formation of CCVs begins with recruitment of coated 
proteins on the cytosolic side of the plasma membrane, 
involving not only clathrin, but also adaptor protein 2 
(AP2) and accessory proteins such as AP180 and epsin.26 

Clathrin, a cytosolic trimeric protein, is the main unit of 
CCVs and the interaction among heavy chains of clathrin 
constructs the polygonal lattice structure of CCVs21 

(Figure 2A27 and B 28). AP2 acts as an interaction hub 
which links up the transmembrane receptors and their 
specific cargoes and binds them to clathrin. Moreover, 
cargo-specific adaptors are also involved to recruit 

Figure 1 Schematic graph of the endocytosis pathways of nanomedicines (NMs). NMs enter cells through different endocytosis pathways, including clathrin-mediated 
endocytosis (CME), caveolae-mediated endocytosis, clathrin- and caveolae-independent endocytosis (Arf6-, flotillin-, Cdc42- and RhoA-dependent endocytosis), macro-
pinocytosis and phagocytosis. In all the pathways, NMs following the fundamental steps. i) Binding and budding. NMs interact with cell surface through non-specific 
interactions and are subsequently engulfed in the cell membrane to form invaginations; ii) Pinching off. Membrane invaginations are pinched off to form different endocytic 
vesicles (clathrin-coated vesicles (CCVs), caveosomes, GPI-anchored protein-enriched early endosomal compartment (GEEC), macropinosome and phagosome). iii) Sorting 
and intracellular trafficking. Endocytic vesicles infuse into early endosomes, which act as a sorting machine and can carry the cargos to different destinations, such as 
lysosome, recycling endosome and subcellular organelles as illustrated in the graph.
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receptors to AP2. DAB2 (Disabled homologue 2) and 
Numb are two examples, which are in charge of LDLR 
and Notch, respectively. All the coated proteins function as 
an endocytic module, leading to cell membrane invagina-
tion and formation of a clathrin-coated pit. GTPase dyna-
min polymerizes at the neck of the coated pit and induces 
membrane scission and vesicle pinching-off. Meanwhile, 
actin polymerization, on one hand, takes place at the neck 
of the pit aiding in vesicle production,22 on the other hand 
offers pulling forces and defines the movement of the 
CCVs towards the interior of the cells.29 Different stages 
of CME is exhibited in Figure 2C.30 The size of CCVs is 
120 nm in an average diameter and the overall lifetime of 
an endocytic event is 60~120 s in mammalian cells.21

Intracellular Trafficking of CCVs 
When CCVs are internalized by CME, the clathrin coat is 
disassembled and recycled back to the cytoplasm for the 
next endocytosis cycle.21 As for the uncoated-vesicles 
encapsulating cargoes, they fuse with the endosomes 
where they are sorted either to the recycling endosomes 
to be transported back to the plasma membrane or to 
more mature endosomes and later to lysosomes or multi-
vesicular bodies, which finally lead to a trans-Golgi 
network.31,32

Expression Difference of CME Effector Molecules in 
Tumor 
Proteins involved in CME have been reported to be per-
turbed in cancers, which may result in fluctuation of CME. 
As with core components of CME (clathrin, AP2 and 
EPS15), few reports are about expression level change in 
tumor. However, fusions of gene coding for clathrin heavy 
chain and EPS15 are observed in blood cancer, such as 
lymphomas and leukemias.22 Meanwhile, somatic muta-
tion is found in several solid tumors, like breast, renal and 
lung cancers.33 Those mutations can lead to protein alter-
ing and missense of core components and finally CME 
defects, bringing negative effects on the entry of NMs 
though CME.

Expression level of some cargo-specific adaptors 
changes in several solid tumors. For example, DAB1 
and Numb are downregulated in ovarian, prostate, 
bladder, breast, colorectal and esophageal cancer.34 

Down expression of those protein may lead to retention 
of corresponding receptors on the cell membrane sur-
face, which will influence internalization of NMs 
active targeting to those receptors. However, recruit-
ment of TfR and EGFR directly relies on AP2,21 free 
from influence of expression change of the cargo- 
specific adaptors.

Table 1 Endocytosis Pathways for Nanomedicines in Tumor

Pathways Characters Role in Tumor

Clathrin-mediated 
endocytosis (CME)

1. Clathrin, AP2, cargo-specific adaptors, dynamin, 
actin are necessary.

2. Formation of CCVs, 120 nm in an average 

diameter.

1. Mainly in charge of receptor-mediated endocytosis.
2. Defects may be found in breast, renal and lung cancers and 

blood cancer like lymphomas and leukemias.

Caveolae-mediated 

endocytosis

1. Cav-1, cavin-1, dynamin and actin are necessary.

2. Formation of caveolae, 60–80 nm in diameter.

1. Abundant in vascular endothelial cells, which facilitates trans- 

vascular endothelial cells delivery of NMs in tumor tissues.

2. Upregulated in advanced-stage tumors.
3. Uniformly distributed on the surface of epithelial cancer cell 

while absent at the apical side of confluent normal epithelial 

cells, which is benefit of NMs cellular entry in tumor cell.

Macropinocytosis 1. Clathrin-, caveolae- and dynamin-independent 
transient endocytosis.

2. Formation of macropinosome in a diameter of 
0.5–10 µm.

1. Often serve as a non-specific entry form in accompany with 

clathrin- and caveolae-mediated endocytosis.

Clathrin- and 
caveolae- 

independent 

endocytosis

1. Sub-classified as Arf6-, flotillin-, Cdc42- and RhoA- 

dependent endocytosis. Dynamin dependence is 
controversial.

2. Endocytosis vesicles is 90 nm in an average 

diameter.

1. NMs entering cells via these pathways are not commonly 

reported. DNA-PAMAM polyplexes can achieve efficient gene 
delivery through flotillin-dependent endocytosis.
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NMs Employing CME 
CME engages the majority of the receptor mediated cel-
lular uptake of NMs,12,35 which will be discussed in detail 
later in the Receptor-Mediated Active Targeting of NMs to 
Tumor Cells. Besides, the following non-ligand NMs can 
also employ CME.
Positively Charged NMs. NMs with positive surface 
charge are reported to enter cells with relatively higher 
efficiency due to negative charges on the cell surface and 
prefer CME for cellular uptake.31,36 Cationic liposomes 
based on 1,2-dioleoyl-3-trimethylammonium-propane 
(DOTAP) for gene delivery,37 cationic silica-based nano-
materials (SNTs),38 cationic chitosan NMs39 are shown to 
utilize CME for cellular entry.

What’s more, surface modification with cationic poly-
mer is explored to design positively charged NMs that 
employ CME. Modification of NMs with cationic poly-
mer poly-L-lysine (PLL) is a typical example, showing 
significant enhancements of the cellular uptake and more 
rapidly internalized via CME.40 Peifeng Liu41 studied 
the cellular uptake mechanism of PLL modified poly- 
(lactide-co-glycolide acid) (PLGA) based nanoparticle 

PEAL on three hepatoma cells: HepG2, Huh7 and 
PLC. Results indicated that CME was the main uptake 
pathways of PEAL in HepG2, Huh7 and PLC cells. 
What’s more, macropinocytosis was also found as an 
uptake pathway of PEAL in HepG2 cells, but not in 
Huh7 and PLC, exhibiting cellular difference. These 
facts indicated that nanomedicine surface modification 
and cell type could influence cellular internalization 
routes.

Although positively charged NMs exhibit higher cellu-
lar uptake efficiency, they also elicit cytotoxic effects, 
which can be attributed to plasma membrane depolariza-
tion caused by cationic nanoparticles.42,43 Furthermore, 
intracellular accumulation of positively charged NMs 
may result in damage of membrane-organized organelles 
and ultimately leading to cell death.44 Consequently, sur-
face charge should be considered carefully when designing 
NMs to decrease unwanted side effects.
NMs Based on Diolylphosphatidylcholine (DOPC).
Diolylphosphatidylcholine (DOPC) is a conventional com-
position of liposome with a neutral charge, which is widely 
used in gene delivery.37,45 NMs composed of DOPC are also 

Figure 2 Molecular structures and process related to clathrin-mediated endocytosis. (A) Schematic diagram of clathrin molecular (left) and clathrin-coated lattice (right). 
Reproduced from Smith CJ et al. Clathrin coats at 21 Å resolution: a cellular assembly designed to recycle multiple membrane receptors. EMBO J (1998) 17: 4943–495. 
Copyright 1998 John Wiley and Sons.27 (B) Clathrin-coated lattice captured by electron microscope (scale bar = 100 nm). Modified with permission of Rockefeller 
University Press, from Heuser JE, Anderson RGW. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. Journal of Cell 
Biology, 1989; 108(2): 389–400, Copyright 1989; permission conveyed through Copyright Clearance Centre Inc.28 (C) Electron microscope graph showing different stages of 
clathrin-mediated endocytosis of Transferrin modified colloidal gold granules. Modified with permission of Rockefeller University Press, from Harding C, Heuser J, Stahl 
P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. Journal of Cell Biology, Aug 1983; 97(2): 329–339, Copyright 
1983; permission conveyed through Copyright Clearance Centre Inc.30 (scale bar = 100 nm).
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reported to enter tumor cells through CME. Keita Un46 

verified that a DOPC based liposome underwent CME for 
the entry of HeLa and HT-29 cells and could be transported 
to endoplasmic reticulum (ER) and Golgi apparatus (GA) 
after escaping from the endosome/lysosome. Consistent 
results have been reported, in which DOPC-based liposome 
also navigated CME when interacted with bovine brain 
cell47 and rat liver cell.48 The above results indicate 
a selectivity of DOPC containing formulations towards 
CME, which may suggest that in this particular case, che-
mical composition plays a more important role in the choice 
of the endocytosis pathway than other factors.

Caveolae-Mediated Endocytosis
Structure of Caveolae 
Caveolae belong to non-planar lipid rafts, a cholesterol-rich 
functional domain of the plasma membrane, and are respon-
sible for endocytosis, cell signaling and membrane 
organization.49,50 Structurally, caveolae are 60–80 nm flask- 
shaped invaginations of the plasma membrane that can be 
identified by electron microscopy,51 as shown in Figure 3A– 
C.52,53 Besides, caveolae are distinguished from CCVs in the 
following ways. Firstly, caveolae show constant shape with 
consistent curvature which is relatively static on the cell 

surface. Whereas clathrin-coated vesicles are dynamic struc-
tures with a rapid progression from a flat clathrin lattice to an 
increasingly invaginated structure.54 Secondly, the coat of 
caveolae is less evident. Platinum-replica electron micro-
scopy (PREM) shows a striped structure of caveolar coat 
in comparison with the hexagon network of clathrin coat.55

Chemical Constitution of Caveolae 
Integral membrane proteins termed caveolins (particularly 
caveolin-1 (Cav-1)) work together with cavins (particu-
larly cavin-1) to generate caveolae in tumor cells. 
Genetic ablation of Cav-1 abolishes caveolae formation 
in tumor cells.56 Cav-1, ubiquitously in non-muscle cells, 
is a hairpin-like transmembrane protein (Figure 3A) with 
its amino- (N-) and carboxyl- (C-) terminal domains facing 
the cytosol.54 Tyrosine residue 14 (Y14) in the N-terminal 
domain is reversibly phosphorylated to modulate caveolae 
internalization and tumor cell growth suppression.57 

Importantly, Cav-1 directly binds cholesterol, presumably 
through a specific motif within its caveolin scaffolding 
domain (CSD, residues 82–101), which is critical for 
caveolae stability.54 Thus, inhibitors causing cholesterol 
depletion, such as nystatin,58 methyl-beta-cyclodextrin 
(mβCD) and filipin (causing)31,59 can disrupt caveolar 

Figure 3 Schematic diagram and images of caveolae. (A) Schematic diagram of caveolae. (B) Thin-section electron microscopy image of fibroblast caveolae. Reproduced 
from Rothberg KG, Heuser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW. Caveolin, a protein component of caveolae membrane coats. Cell. 1992; 68(4): 673–682. 
Copyright 1992, with permission from Elsevier.52 (scale bar = 0.25 μm). (C) Rapid-freeze, deep-etch image of fibroblast caveolae. Reproduced with permission of Annual 
Reviews, Inc, from Anderson RG. The caveolae membrane system. Annu Rev Biochem. 1998; 67: 199–225, Copyright 1998; permission conveyed through Copyright 
Clearance Centre Inc.53 (scale bar = 0.1 μm).
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structures and are used as specific inhibitors of caveolae- 
mediated endocytosis in elucidating endocytosis of NMs. 
Actually, caveolins include three isoforms, besides Cav-1, 
Cav-2 is coexpressed with Cav-1, acting as scaffolding 
protein within caveolae60 while Cav-3 specifically 
expresses in muscle cells. As for cavin-1, it may induce 
membrane curvature. In the absence of cavin-1, Cav-1 can 
form functional non-caveolar domains. What’s more, 
caveolae-mediated endocytosis is dynamin-dependent, 
which is responsible for vesicle scission and budding- 
off.31 Budding and internalization of caveolae can be 
stimulated by several agents.

Distribution of Caveolae in Tumor Tissues 
As Cav-1 plays a dominant role for the formation of 
caveolae in tumor, the expression of Cav-1 may indicate 
the distribution of caveolae in tumor cells. However, there 
is no universal rules for change in Cav-1 expression 
between cancer cells and their normal counterparts, and 
Cav-1 expression depends on tumor cell type and disease 
stage. As concluded in related reviews, Cav-1 is down-
regulated in breast cancer, GC, hepatic cancer, colon and 
ovarian carcinoma cells; while upregulated in esophagus, 
pancreatic, renal, prostate and colorectal cancer.61,62 

What’s more, Cav-1 expression varies during carcinoma 
progression: low in early stages, where its role of curbing 
proliferation predominates, but high in advanced stages, 
where it correlates with invasive phenotypes and therapeu-
tic resistance.57 NMs employing caveolae-mediated endo-
cytosis may achieve improved tumor accumulation in 
those Cav-1 upregulated cancers to obtain better therapeu-
tic efficacy.

Compared with tumor tissue, caveolae are abundant in 
terminally differentiated cells, like endothelial cells.31,63,64 

Interestingly, nearly 90% of all cancers including breast, 
lung, prostrate and colon cancer originate from normal 
epithelial cells.25 Different location of caveolae between 
normal and cancer epithelial cells has been reported. In 
endothelial cells forming a monolayer in situ, a narrow 
parajunctional strip of plasma membrane was found to be 
devoid of caveolae by freeze-fracture studies.65 Strikingly, 
in another research by Gaurav Sahay,25 an absence of 
caveolae-mediated endocytosis route was observed at the 
apical side of confluent normal epithelial cells and thus 
a DOX-loaded micelle sequestered in tight junction (TJ) 
regions of the cell membrane without entering the normal 
cells. These facts remind us that the differential location of 
this endocytosis route between normal and cancer cells 

may be taken advantage of for an efficient delivery of 
NMs to the epithelial cancer cells.

Intracellular Trafficking of Caveolar Vesicles 
The intracellular destinations of the endocytic caveolar 
vesicles vary in different cells. In endothelial cells caveo-
lae are able to perform trans-endothelial transport, which 
can be utilized for the trans-vascular endothelial cell deliv-
ery in tumor tissues.66,67 While in tumor cells, the endo-
cytic caveolar vesicles are initially fused with early 
endosome or caveosomes. The neutral pH of caveosomes 
can be considered as a means to avoid the acidic hydro-
lytic environment of lysosomes, which has attracted tre-
mendous attention in the cellular delivery of proteins and 
DNA by NMs.68,69 The sorting of caveosomes to the GA 
and ER may also be exploited for the targeting delivery of 
NMs to these subcellular compartments.31

Typical NMs Employing Caveolae-Mediated Endocytosis 
Albumin-Bound NMs. Albumin-bound NMs can take 
advantage of caveolae-mediated endocytosis. They can 
bind to the glycoprotein 60 (gp60) receptor localized in 
caveolae that facilitates the endothelial caveolae-mediated 
transcytosis.70 Another albumin binding protein SPARC is 
reported to overexpress on the cancer cell surface and can 
bind to the albumin-NMs, leading to the uptake of the 
carrier into tumor cells by endocytosis.71 One typical 
example is nab-paclitaxel, albumin-bound form of pacli-
taxel approved by FDA for metastatic or relapsed breast 
cancer.72 Caveolae-mediated endocytosis of nab-paclitaxel 
was proved in pancreatic cancer cells by Moumita 
Chatterjee.56 The report indicated that Cav-1 expression 
level was different in diverse pancreatic cancer cells and 
the expression levels were correlated positively with sen-
sitivity and cellular resistance to nab-paclitaxel. These 
findings suggested Cav-1 as a predictive biomarker for 
the response to albumin-bound paclitaxel nanocomplex 
and other albumin-based cancer therapeutic drugs.
Negatively Charged NMs. Negatively charged NMs are 
more likely to utilize caveolae-mediated endocytosis. 
One typical example is Doxil, the first FDA-approved 
liposomal form of DOX with slightly negative charge 
(−2.6 mV), which is used to treat patients with metastatic 
ovarian cancer, metastatic breast cancer and multiple 
myeloma.73 Gaurav Sahay25 verified a caveolae-mediated 
pathway to enter epithelial cancer cell MCF-7/ADR for 
this liposome. Notably, it was routed to lysosomes, instead 
of bypassing the lysosome, where the drug is apparently 
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released. Moreover, anionic poly(amidoamine) (PAMAM) 
dendrimers entering A549 lung epithelial cells,74 nega-
tively charged quantum dot (QD) NMs entering human 
epidermal keratinocytes (HEKs)75 also appeared to be 
mainly through caveolae mediated endocytosis.

Although the cell plasma membrane is typically overall 
negatively charged, NMs with negative surface charges 
can also efficiently overcome the anionic cell plasma 
membrane and accumulate within cells.25,74,75 This sug-
gests that interaction between nanoparticle and cell surface 
in cellular uptake is more complicated than the simplified 
notion of electrostatic interactions, which may be related 
to the formation of a serum protein corona around the 
nanoparticle surface and still needs further study.76,77

Macropinocytosis
Macropinocytosis is a kind of clathrin-, caveolae- and 
dynamin-independent transient endocytosis, initiated spon-
taneously or in response to growth factor receptor 
stimulation,78 which leads to assembly of the actin cytos-
keleton and triggers extensions of membrane ruffles. 
Ruffles curve into open, crater-like “cups”79 and close at 
their distal margins to engulf extracellular fluid. Combined 
with membrane fusion and fission, intracellular vacuole 
forms, which is also termed as macropinosome with 
a diameter of 0.5–10 µm,80 larger than other vesicles 
formed during pinocytosis.

Macropinocytosis is possible for almost any cell and 
can internalize large particles of submicron and micron 
size in cells. In most cases this pathway may serve as 
a non-specific entry point.31 As a consequence, macropi-
nocytosis often occurs in conjunction with clathrin-41 and 
caveolae-mediated endocytosis.81

Clathrin- and Caveolae-Independent Endocytosis
These endocytosis pathways occur in cells devoid of both 
CME and caveolae and are sub-classified as Arf6-dependent, 
flotillin-dependent, Cdc42-dependent and RhoA-dependent 
endocytosis based on the small G-proteins involved.82 These 
pathways are cholesterol-dependent, while the dynamin 
dependence is controversial.51,82 Endocytosis vesicles in 
these kinds of pathways have an average diameter of 90 nm 
and cargoes encapsulated in are reported to be delivered to 
clathrin-independent carrier (CLIC) or GPI-anchored pro-
tein-enriched early endosomal compartments (GEEC),83 fol-
lowed by the transfer to late endosomes and lysosomes. In 
addition, the cargo can be routed to the trans-Golgi network 
or recycled back to the plasma membrane.12

NMs entering cells via pathways mentioned above 
are not commonly reported. DNA polyplexes formed 
through DNA complexation with PAMAM can achieve 
efficient gene expression through flotillin-dependent 
endocytosis.82 Amorphous silica NMs (aSNPs) were 
shown to colocalize with flotillin-bearing endocytic 
vesicles in lung epithelial and endothelial cells.84 

What’s more, the knockdown of flotillin resulted in 
a decreased uptake of aSNPs suggesting that their 
uptake was flotillin-dependent.

Strategies for NMs to Avoid Uptake by 
Phagocytes
Phagocytosis performs predominantly in phagocytes, as men-
tioned above, such as macrophages, neutrophils, monocytes 
and dendritic cells. Phagocytosis is a receptor-mediated pro-
cess and is characterized by the large endocytosed vesicles 
(0.5–10 μm in diameter), known as phagosomes.85 In mam-
malian organisms, phagocytosis is responsible for engulfing 
the disabled particles, senescent cells and infectious micro-
organisms as a response of innate and adaptive immunity.12,86 

NMs intended to accumulate in tumor cells need to avoid 
uptake by phagocytes, to avoid being eliminated by phago-
cytes mediated by immune response. Therefore, designing of 
immune tolerant NMs is essential to ensure effective drug 
delivery to tumor cells and the efforts are concentrated on the 
surface modification and shape design.

Surface Modification
Yaqing Qie20 studied the strategy of surface modification 
with polyethylene glycol (PEG) and a specific biomolecule 
CD47 to evade phagocytosis in macrophage. The results 
turned out that modification with PEG (PEGylation) 
reduced nanoparticle uptake by all types of macrophages, 
which may stem from the ability of PEG to reduce the 
adsorption of a wide range of soluble proteins such as 
complements, glycosylated proteins, and lipoproteins.87 

CD47, an integrin-associated transmembrane protein, was 
previously shown to be up-regulated in multiple cancer 
cells to evade phagocytic clearance.88 Similar to 
PEGylated samples, NMs coated with CD47 also signifi-
cantly reduced phagocytosis across all macrophage 
populations.

Although PEGylation is effective to avoid phagocytic 
clearance, immunogenicity of PEG is a potential limitation 
which may result in increased clearance and reduced effi-
cacy of PEGylated NMs after repeated administration, 
known as accelerated blood clearance phenomenon (ABC 
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phenomenon).89–91 Therefore, alternative materials are 
developed, such as poly(glycerols) (PGs), poly-
(oxazolines) (POZ) and poly(carboxybetaine) (pCB), 
which are low immunogenic without compromising stealth 
behavior. Huan Xu92 proved that PEOz surface-decorated 
liposomes exhibited excellent long circulating properties 
in vivo and PEOz might be a promising biomaterial for the 
modification of liposomes. Besides synthetic polymers, 
natural cell membranes to coat NMs are also promising 
to achieve the aforementioned goals. Yanhua Tian93 and 
Milad Riazifar94 proved that exosome membrane (EM) 
coated NMs were resistant to phagocytosis and could sig-
nificantly prolong blood circulation time, owing to the 
high expression level of CD47 on the membranes. 
Although bio-originated surface design is inspiring to 
achieve phagocytosis evasion, further consideration is 
still needed for the heterogeneous nature of bio- 
originated materials and activity guarantee of these mate-
rials during complex formulation progress.

Shape Design
For shape design, particle shape has significant influence 
on phagocytosis, which mainly relates to the aspect ratio 
of particles. It was proved that elongated particles with 
higher aspect ratio were less prone to phagocytosis.95–97 

The round or spherical nanoparticles with minimum 
aspect ratio are more prone to phagocytosis than other 
shaped nanoparticles. Worm-like nanoparticles95 showed 
6 to 20 times less phagocytosis than spherical particles 
of the equal volume. For needle-like particles, they can 
be essentially considered as high aspect ratio ellipses, 
which may exhibit similar phagocytosis characteristic as 
worm-like nanoparticles.95 Julie A. Champion96 pre-
pared irregular nanoparticles in the shape of UFOs 
(sphere radius 1.5 μm, ring radius 4 μm), which were 
also shown to be less prone to phagocytosis. Role of 
distinct shapes of nanoparticles in phagocytosis were 
supplemented in Shape Design shown in blue words. 
Particles with high aspect ratio can generate multiple 
local particle shapes at the initial point of cell attach-
ment. Once the local particle shapes are in decreased 
curvature, phagocytosis may not occur due to the failure 
to create the required actin structure. The decreased 
phagocytosis of particles with high aspect ratio benefits 
from the decreased curvature regions around the particle 
surface.

Effect Factors of the Endocytosis 
Pathways
Some studies suggested that not only structure and physi-
cochemical characteristics of nanoparticles, like size,98,99 

shape,95 charge, elasticity, surface modification,20,41,100 

but also the peculiarities of the endocytic machinery in 
different types of cells41 could affect the trafficking path-
ways of the NMs. Just as reports showed that particle size 
was a decisive parameter in determining efficiency of gene 
transfer,68,98,99 in which small PEI polyplexes with dia-
meter smaller than 200 nm were taken up predominantly 
via clathrin-mediated endocytosis, while large PEI poly-
plexes (>500 nm) entered cells almost exclusively via the 
caveolae-mediated pathway. Some worm-like particles 
with high aspect ratios were less prone to phagocytosis 
than spherical particles.95 Charge of nanoparticles may 
also affect endocytosis pathway. NMs with positive sur-
face charge were reported to prefer CME for cellular 
uptake,31 such as DOTAP based liposome for gene 
delivery,37 cationic silica-based nanomaterials (SNTs)38 

and cationic chitosan NMs,39 while negatively charged 
NMs were more likely to utilize caveolae-mediated endo-
cytosis, with one typical example as Doxil.25 For the effect 
of cell types, PLGA based nanoparticle employed different 
endocytosis pathways to enter three different kinds of 
hepatoma cells.41 For more systematical analysis, the 
author can refer to published reviews.13,19,101

Strategies to Actively Exploit 
Endocytosis for Antitumor NMs
Receptor-Mediated Active Targeting of 
NMs to Tumor Cells
To increase the affinity to tumor cells, active targeting 
NMs are prepared by surface-modification with specific 
ligands to receptors over-expressed on the surface of 
tumor-related cells. Specific receptor-ligand interaction 
assists NMs to bind with the tumor-related receptors, 
leading to improved endocytosis amount in the tumor cell.

Commonly Targeted Receptors in Tumor Cells and 
Corresponding Examples of NMs
Receptor-ligand pairs commonly used for cancer cell tar-
geting are overviewed in Table 2. Two common kinds of 
receptors are being explored.102 The first is internalization- 
prone receptors over-expressed on the surface of tumor 
cells, like TfR, EGFR, folate receptor (FR) and prostate- 
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specific membrane antigen (PSMA). Active targeting to 
this kind of receptor directly enhances intracellular uptake 
of NMs through receptor-mediated endocytosis, mainly 
navigate CME as stated above, and thus improves anti- 
tumor efficacy. While the second kind of receptors are 
those existing in the tumor microenvironment, especially 
on the capillary endothelial cell surface, such as vascular 
endothelial growth factor receptor (VEGFR) and αvβ3 

integrin receptor. Active targeting of this kind of receptor, 
together with passive targeting based on the EPR effect, 
increases accumulation in the interstitial spaces of the 
tumor that are eventually endocytosed by cancer cells.

TfR expresses 100-fold higher in cancer cells than the 
regular expression of normal cells,12 making it one of the 
most attractive targets. MBP-426 is a liposome conjugated 
to Tf loaded with oxaliplatin. Preclinical study of MBP- 
426, compared to the corresponding ligand-lacking formu-
lation, showed increased Tf-specific cell internalization in 
Tf-overexpressing Colon 26 cells,103 2.5 times higher con-
centration in the tumor of oxaliplatin 72 h after adminis-
tration and superior tumor suppression in tumor-bearing 
mice.104 MBP-426 is currently undergoing Phase II trial 
for second line treatment of gastroesophageal or esopha-
geal adenocarcinoma.105 Anti-EGFR or anti-HER-2 mono-
clonal antibody-grafted nanopreparations, mainly as 
immunoliposomes have been studied as anticancer 

therapeutics. Anti-EGFR-IL-DOX, conjugated with Fab’ 
(fragments antigen-binding) fragments of anti-EGFR 
monoclonal antibody (mAb) cetuximab and loaded with 
DOX, is a promising immunoliposomes targeted to EGFR. 
In vitro studies demonstrated about 30-fold more EGFR- 
positive cell internalization and 29-fold more effectiveness 
of anti-EGFR ILs compared to the ligand-lacking 
counterpart.106 Anti-EGFR-IL-DOX is now in phase II 
trial as a first-line therapy in patients with advanced triple 
negative, EGFR positive breast cancer.107

Obstacles to Achieve Active Targeting of NMs
Active targeting of NMs may be more complicated than it 
seems for the following reasons:

Firstly, the increased level of cell uptake is associated 
with ligand density. Drew R. Elias108 created NMs 
labeled with HER2/neu targeting affibodies at different 
ligand densities, among which an intermediate ligand 
density provided statistically significant improvements 
in cell binding in comparison with higher and lower 
ligand densities. The same phenomenon conserved with 
small targeting molecule-folic acid. The decrease of 
uptake in the high ligand density may be caused by 
nanoparticle competition, steric hindrance,109 suggesting 
a necessity to optimize ligand density when preparing 
active-targeting NMs.

Table 2 Summary of Receptor-Ligand Pairs Used for Cancer Cell Targeting

Receptor Cells Over-Expressing the Receptor Ligand

Transferrin receptor (TfR) Breast, glioma, bladder, lung, prostate cancer; chronic 
lymphocytic leukemia, non-Hodgkin’s lymphoma153

Transferrin (Tf)

Epidermal growth factor 
receptor (EGFR)

Breast, colorectal, brain, ovarian, pancreatic, and 
prostate cancer154

Small molecules: 
epidermal growth factor (EGF), transforming growth 

factor-α (TGF-α), epigen, betacellulin, and epiregulin155 

Monoclonal antibodies: 
Anti-EGFR mAb, anti-HER2 mAb102

Folate receptor (FR) Ovarian, lung, brain, and colorectal cancer156 Folic acid (FA)

Prostate-specific 

membrane antigen (PSMA)

Prostate carcinomas, neovasculature of majority of the 

solid tumors12

Anti-PSMA mAb, A10 PSMA aptamer157,158

Urokinase plasminogen 

activator receptor (uPAR)

Pancreatic cancer and tumor stromal cells67 Recombinant amino-terminal fragment (ATF) peptide159

Vascular endothelial 

growth factor receptor 
(VEGFR)

Tumor neovascular endothelial cells160 Human recombinant VEGF isoform VEGF121; Anti- 

VEGFR-2 mAb160,161

αvβ3 integrin receptor Tumor neovascular endothelial cells162 Arginine–Glycine–Aspartic acid (RGD) anchored 
peptides163
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Secondly, ligand modification may change intracellular 
itineraries of NMs. Qiang Zhang’s group17 prepared three 
kinds of polypeptide ligand (FcBP, 7pep and c(RGDfK)) 
modified PEG-PCL micelles and studied how the decora-
tions influenced the intracellular trafficking. Results 
showed that 7pep decorated micelles were recycled to 
apical plasma membrane in a ligand dependent way. c-
(RGDfK) decorated micelles were transferred through the 
Golgi complex to basolateral plasma membrane. While 
FcBP decorated micelles took both the recycling pathway 
and transcytosis but bypass the Golgi complex. Thus, in 
the design of active targeting nanocarriers receptor char-
acter should be considered.

Thirdly, non-specific surface interactions exist between 
ligand-modified NMs with cells and organelles due to the 
hydrophilicity and exogenous nature of NMs. One remedy 
could be raised as to modify the surface of the NMs with 
“inert” polymer with minimal cellular interactions. 
Besides, choosing one or multiple targeting ligand(s) 
with higher affinity allowing for specific binding with 
their receptor may be another solution.31

Actually, obstacles to achieve efficient ligand modifi-
cation for active targeting are not limited to the above. 
How to define the extent of over-expressing of a receptor 
on the tumor cell? How to deal with the tumor heteroge-
neity? How to realize equal effectiveness between in vitro 
and in vivo therapy? These questions still remain to be 
answered in improving tumor cell endocytosis by tumor- 
targeting.110

Transporter-Mediated Cellular Uptake for 
Antitumor NMs
Except for cell-surface receptors, transporters in the 
plasma membrane are also exploited as targets for the 
delivery of anti-cancer NMs. Plasma membrane transpor-
ters are generally classified into two major families: ATP- 
binding cassette (ABC) transporters and solute carriers 
(SLC) with the following characteristics.111 First of all, 
they are in charge of providing nutrients to all mammalian 
cells and this transportation is substrate selective. 
Secondly, most transporters have a site-specific expression 
in different tissues. Moreover, expression of transporters 
may also upregulate in selective cells under pathological 
conditions, such as cancer. Unique function and expression 
characteristics make plasma membrane transporters ideal 
targets to facilitate NMs delivery to selective cells, thus to 
improve cellular accumulation in targeted cells, increase 

therapeutic efficacy and decrease off-target side effects.112 

As for anti-cancer NMs, plasma membrane transporters 
are helpful in two aspects. Firstly, they can mediate selec-
tive delivery to cancer cell and improve cellular accumula-
tion. Secondly, they can enhance permeation across 
biological barriers such as the blood–brain barrier (BBB) 
before NMs encounter tumor cells.

Transporter-Targeted NMs for Increased Tumor 
Cellular Internalization
Tumor cells have an increased demand for nutrients to 
support their malignant proliferation, including glucose, 
amino acids and vitamins.111 To meet the increased 
demands, corresponding plasma membrane transporters 
are upregulated in tumor cells and can be used for NMs 
to realize cancer cell targeting, as summarized in Table 3. 
By conjugating selective substrates to nanoparticles, the 
corresponding transporter-targeted NMs can be prepared. 
Longfa Kou113 developed both OCTN2 and ATB0,+- 
targeted nanoparticles by conjugating L-carnitine to 
PLGA nanoparticles (LC-PLGA NPs). Results indicated 
that the cellular endocytosis of LC-PLGA NPs was both 
OCTN2 and ATB0,+-mediated and was increased com-
pared to unmodified nanoparticles in colon cancer cell 
line Caco-2, in which cell both transporters were over-
expressed. Additionally, an endocytosis inhibiting study 
showed that OCTN2-assisted entry of LC-PLGA NPs 
occurred via CME and caveolae-mediated endocytosis.114 

Lin Li115 prepared LAT1-targeted PLGA nanoparticles by 
surface decorating of glutamate, which exhibited better 
tumor accumulation and antitumor effects compared to 
the undecorated ones. The above results suggested that 
the overexpressed transporters on cancer cells were poten-
tial targets for the rational design of active-targeting NMs.

Transporter-Targeted NMs to Improve Transfer 
Across Biological Barriers Related to Tumor Tissue
Tumor cells buried under biological barriers present an addi-
tional problem in effective drug delivery. The anti-cancer 
NMs need to cross the biological barrier before encountering 
tumor cells. For example. NMs targeted to the brain tumor 
cells have to cross the BBB firstly. Selective transporters are 
expressed at high levels in endothelial cells that constitute 
BBB, such as OCTN2, LAT1 and ChT1 (choline transporter 
1, SLC5A7, in charge of choline transport).111 By taking 
advantage of the specific expression of OCTN2 on both 
brain capillary endothelial cells and glioma cells, Longfa 
Kou116 prepared L-carnitine conjugated PLGA nanoparticles 
(LC-PLGA NPs), which enhanced the uptake of LC-PLGA 
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NPs in both the BBB endothelial cell line hCMEC/D3 and 
the glioma cell line T98G. Furthermore, in vivo mouse 
studies showed that LC-PLGA NPs achieved high accumu-
lation in brain as well as improved anti-glioma efficacy. 
A similar achievement was reported by Lin Li,117 in which 
Docetaxel-loaded glutamate conjugated LAT1-targeting 
liposomes (DTX-TGL) were applied to enhance BBB pene-
tration and glioma therapy, proved by both in vitro and 
in vivo studies in C6 glioma cells.

Differences exist between receptors and transporters in 
the plasma membrane. First of all, the substrates of trans-
porters are small molecules with no or little immunogeni-
city and steric hindrance. Whereas most of the ligands for 
receptors are macromolecules (eg, LDL, transferrin).12,113 

Lack of immunogenicity of the substrates offers advan-
tages in preparing active-targeting NMs, which may 
decrease clearance by phagocytes in vivo. Secondly, trans-
porters usually have broad substrate selectivity while the 
ligands for receptors are much more specific.111 The dif-
ference of the specificity may be a double-edged sword. 
On one side, broad substrate selectivity provides multiple 
choices for surface modification of the nanoparticles. 
Therefore, more transporters can be selected for NMs to 
target, which is advantageous. On the other side, due to the 
broad selectivity, NMs decorated with certain 

substrates may compete with other substrates when inter-
acting with the corresponding transporter, which may 
attenuate the targeting advantages. Therefore, selecting of 
the substrate with high affinity to the transporter is impor-
tant when preparing transporter-targeted NMs.

NMs Ensure Efficient Endocytosis of 
Gene Therapeutics into Cancer Cell
NMs are Necessary for Cellular Endocytosis of Gene 
Therapeutics
Gene therapeutics have long been a hotspot and are play-
ing an increasingly important role in cancer treatment. 
About 65% of all gene therapy trials worldwide are 
aimed at the treatment of solid or hematological 
malignancies,118 which made cancer gene therapy 
a dominant area in both basic and clinical research. Gene 
therapeutics, including plasmid DNA, antisense oligonu-
cleotides and RNA interference (RNAi), etc., take action 
at genetic roots by counteracting or replacing malfunction-
ing genes that are involved in cancer-related pathways 
within the cells.119 Therefore, targets of gene therapeutics 
are inside the cells and therapeutic efficacy is reliant on 
effective cellular internalization.

However, hurdles exist in endocytosis of naked gene- 
based drugs.120 Their hydrophilic nature, large molecular 

Table 3 Transporters Used for Cancer Cell Targeting

Transporter Gene Substrate Expression in Cancer

OCTN2 (Organic cation/ 
carnitine transporter 2)

SLC22A5 L-Carnitine Over-expressed in colon cancer113 and glioma cell line T98G116

ATB0,+ (Amino Acid Transporter 
B0,+)

SLC6A14 Lysine 
Aspartate 

carnitine

Over-expressed in solid tumors such as lung cancer, liver cancer, colon cancer, 
pancreatic cancer and cervical cancer164–166

LAT1 (system L amino acid 

transporter 1)

SLC7A5 Glutamate Mainly over-expressed in breast cancer, prostate cancer and lung cancer167

GLUT1 (glucose transporter 1) SLC2A1 Glucose, 

Mannose 
Galactose, 

Glucosamine

Widely expressed in different cancers including pancreas, breast, lymphomas, 

prostate, head and neck cancer168

SMVT (Sodium-Dependent 

Multivitamin Transporter)

SLC5A6 Biotin Widely expressed in different cancers including ovarian cancer, breast cancer 

and hepatocellular carcinoma168

NIS (sodium/iodine symporter) SLC5A5 iodide ions Over-expressed in thyroid and breast cancer168

NET (norepinephrine 
transporter)

SLC6A2 Norepinephrine 
Dopamine 

Serotonin

Over-expressed in neuroblastoma and Pheochromocytoma168
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size and negative charge prevent them from crossing cell 
membranes. Moreover, inside the cell, nucleic acids failed 
to escape from endosomes facing degradation in lysosome. 
To enable effective gene therapy, carriers are needed for 
gene therapy to realize cellular entry and protect them 
from degradation. Although virus-based carriers, like the 
lentiviral system, are used with high transfection effi-
ciency, security of viral vectors is not guaranteed due to 
strong immunogenicity and mutagenesis caused by ran-
dom integration of viral DNA.121 In contrast, NMs, as 
non-viral carriers with low immunogenicity and safety 
profile, are more extensively applied.122

NMs based on cationic lipids, polymers and dendrimers 
are often used in gene therapy for cancer.123 They contribute 
to enabling anti-tumor effectiveness of gene therapeutics in 
two ways. Firstly, NMs enhance tumor cellular uptake 
employing various endocytosis pathways. NMs based on 
cationic lipids are more tended to endocytosis through 
CME.68 While NMs based on cationic polymers employ 
caveolae-mediated endocytosis or CME, depending on the 
properties of the polymer.31 Secondly, NMs can protect 
nucleic acids from degradation in cancer cells by changing 
the intracellular route and bypassing lysosome. In previous 
studies, caveolae-mediated endocytosis was reported to play 
an important role in achieving endosome escape by fusing 
endocytic vesicles with neutral caveosomes.68,124 While 
recent researches place more emphasis on different endo-
some escaping mechanisms including membrane destabiliza-
tion and proton sponge, depending on specific nanomaterial 
with different physicochemical properties.

Cationic NMs for Gene Endocytosis
Polyplexes Based on Cationic Polymers 
Cationic polymers complexed with nucleic acid (poly-
plexes) have been used for efficient gene transfection 
showing the ability of endosome escaping, among which 
polyethyleneimine (PEI) and PAMAM are widely 
studied.37,125–127 THe amine in these polymers can absorb 
protons and drive the osmotic swelling and rupture of 
endosomes, finally leading to release of internalized 
NMs, which is commonly known as the proton sponge 
effect.15 Polymeric NMs based on polyethyleneimine- 
block-polylactic acid (PEI-PLA) for delivery of small 
interfering RNA (siRNA),127 nuclear localization 
sequences (NLS) decorated PEI/NLS/pDNA for delivery 
of plasmid DNA (pDNA)126 are good examples.

It was postulated that a high PEI concentration, highly 
branched architecture and cationic polymer rigidity is 
important in facilitating endosomal escape.14 

Nevertheless, cytotoxicity arising from exposure to catio-
nic materials still remain challenging and hinder the appli-
cation of PEI in vivo. To solve the problem, PEI was 
employed as a surface decorating material on distearoyl 
phosphoethanolamine-polyethyleneimine (DSPE-PEI) 
based liposome. The prepared liposome could be disrupted 
to transiently release cargos in response to high H+ levels 
in tumor cells, which served as a pten gene carrier to 
accomplish superior plasmid delivery, endosome escape 
and effcient transfection.128

Lipoplexes Based on Cationic Lipids 
Another efficient gene transfer carrier is based on catio-
nic lipids, which can facilitate electrostatic interactions 
with anionic oligonucleotides to form lipoplexes. In addi-
tion, these lipids can mediate electrostatic interaction 
between lipoplexes and the endosomal membrane and 
facilitate endosomal release of oligonucleotides prior to 
endosome/lysosome fusion through membrane 
destabilization.129 Xiuxiu Cong130 successfully designed 
plasmid DNA-encapsulated cationic lipid liposome for-
mulated with DOTAP, which significantly increased the 
tumor cell death and improve the antitumor immunity 
through enhancing the immunogenicity of dying tumor 
cells.

Helper lipids, such as dioleoyl phosphatidylethanola-
mine (DOPE), cholesterol or dioleoyl phosphatidyl cho-
line (DOPC), usually neutrally charged, are often 
employed with cationic lipids in order to gain high 
transfection efficiency. DOPE can realize conformation 
transformation to an inverse hexagonal phase in the 
acidic pH of endosome, promoting endosomal release 
upon formation of pores stabilized by the hexagonal 
phase forming lipids.37 Cholesterol is also commonly 
used in lipoplexes to stabilize lipid bilayers and promote 
membrane fusion. When present at high percentages, 
cholesterol seems to enhance the activity of cationic 
lipids and promote gene transfer.129 Lipoplexes contain-
ing both cholesterol and DOPE, demonstrated 
a cholesterol-dependent increase in DNA transfection 
efficiency at 40mol% cholesterol compared to lipoplexes 
devoid of cholesterol.131
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Organelle Targeting Strategies for 
NMs
After endocytosis of tumor cell, an increasing number of 
NMs are designed to precisely deliver drugs to specific 
intracellular compartments, such as cytoplasm, nucleus, 
mitochondria and other cellular organelles. Although var-
ious endocytosis vesicles may deliver the cargos to sub-
cellular organelles, this intracellular delivery is an 
uncontrolled form. In comparison, functional modification 
with appropriate signals on the nanoparticle surface with-
out compromising its functional moiety may realize intra-
cellular targeting in a controlled method.35 Therefore, 
nanoparticle modifications targeting different subcellular 
organelles are introduced here, as summarized in Table 4.

Lysosomes
Lysosomes are considered as digesting components of 
the cell because of the presence of various 
hydrolases.132 NMs are employed to aid endosomal 
escaping and protect the therapeutic drug from degrada-
tion by lysosomes in case the endosome or lysosome is 
not the final therapeutic target. But in certain cases,25,133 

like Doxil as mentioned above, the entry through this 
pathway may destine to the lysosomes and employ 

lysosomal pH as a trigger for release of a cytotoxic 
drug within the cancer cells. So, the acidic environment 
in lysosome may be a double-edged sword and things 
depend not only on the physicochemical property of 
NMs but also on the drugs encapsulated within.

However, lysosome is more than a digesting machine. 
Recent studies revealed the important role of lysosomes in 
cancer cell-death triggered by the release of lysosomal 
enzymes, like cathepsins.134,135 It was observed that the 
disruption of the lysosomal membrane often led to the 
release of cathepsins through a process of lysosome mem-
brane permeabilization (LMP), which can be induced by 
various mechanisms, involving ROS generation and utili-
zation of lysosomotropic agents.136 Ceramide, a precursor 
of sphingosine produced by the lysosomal enzyme, acid 
ceramidase, is a promising molecule for the induction of 
LMP.137 Intracellular delivery of ceramides via transferrin- 
functionalized liposomes induced increased apoptosis 
in vitro in HeLa and in vivo in A2780-ovarian carcinoma 
xenograft mouse model.138

Cytoplasm
Cytoplasm is where many physiological processes take 
place, like signaling, transport and metabolism. Thus, 

Table 4 Organelle Targeting Nanomedicines Mentioned in This Article

Target 
Organelle

Targeting Strategies Typical Nanomedicines Ref.

Lysosome 1. Enter cell through endosome-lysosome pathway, which 
destine to lysosomes and employ lysosomal pH for 

release of a cytotoxic drug within cancer cells.
2. Encapsulating lysosomotropic agent to induce LMP.

Doxil 

Intracellular delivery of ceramides via transferrin- 

functionalized liposomes

25 

138

Cytoplasm 1. Endosomal escape employing proton sponge effect.
2. Surface modification with CPP, such as TAT and iRGD.

Hexadentate-PLGA polymer based NMs. 
Co-administration with NMs (nab-paclitaxel and Doxil) via 

systemic injection.

139 
141

Endoplasmic 

reticulum

1. Surface modification of ER signal peptide or ER- 
retrieval sequence.

PLGA NMs decorated with specific ER-targeting moieties 

(KKXX signal).

144

Mitochondria 1. Surface modification with lipophilic cations like 
Triphenylphosphonium (TPP) or arginine-rich peptide 

octaarginine (R8)

2. Inorganic NMs

TOS-TPP-Obt-NPs, a phosphatidylcholine (PC)-based 

TPP-coated positively charged NM, leading to 

mitochondrial mediated cellular apoptosis in HeLa cells. 
Cuprous oxide NMs (Cu2O NPs), which can damage 

mitochondria membranes and induce apoptosis in tumor 

cells.

148 

150

Nucleus 1. Conjugation of nuclear localization signal (NLS) to the 
NMs

2. Combined modification of NLS with CPP

PLGA based NMs, cargo-loaded mesoporous silica NMs 

(MSNs) decorated with NLS

151,152 

142
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cytoplasm has been demonstrated to be the therapeutic 
target for cancer. Targeting the cytoplasm is also 
a method for reaching the nuclear compartment. As 
reported by Sudipta Basu,139 a hexadentate-PLGA poly-
mer chemically conjugated to a selective MAPK inhibitor 
was taken up by cancer cells and could release the active 
agent in the cytoplasm to inhibit proliferation and induce 
apoptosis in vitro.

Endosomal escape is an access for NMs to the cyto-
plasm. Apart from which, the direct transport of cargo 
across the plasma membrane can be achieved by surface 
modification of CPP. As a kind of short peptide that can 
carry macromolecules into cells, CPP is capable of cross-
ing the biological membrane barriers of the cell mem-
brane and this process is not relying on classical 
endocytosis. TAT140 and iRGD141 are two popular exam-
ples of CPP. Notably, the ability of iRGD to directly 
translocate across the plasma membrane is greatly lost 
when conjugated with a cargo. As a consequence, iRGD 
usually employs co-administration via systemic injection 
to improve the therapeutic index of drugs including NMs 
(nab-paclitaxel and Doxil).141 What’s more, CPP can be 
further decorated by functional molecules to target spe-
cific organelles. Meyer GA combined nuclear localization 
signal (NLS) with TAT, which may localize in the 
nucleus.142 The potential to be reconstructed renders 
CPP broad application space in clinics for intracellular 
targeting therapy.

Endoplasmic Reticulum (ER) and Golgi 
Apparatus (GA)
Dilation of ER and ER stress are reported to result in 
paraptosis, a vacuolization-associated cell death in cancer 
cells.143 Paraptosis can be induced by gambogic acid, an 
anticancer drug with xanthone structure, which makes ER 
a potential therapeutic target.

Surface modification of ER signal peptide or ER- 
retrieval sequence can be used for active targeting to 
ER. An intracellularly targeted delivery system based on 
PLGA NMs decorated with a peptide containing specific 
ER-targeting moieties (KKXX signal) are reported to 
uptake by dendritic cell and efficiently accumulated on 
ER.144 Another lecture reported that PLGA based NMs 
are observed to accumulate predominantly in GA in the 
case of human epithelial cells like Caco-2.145

Mitochondria
Mitochondria are bilayered film-coated (inner and outer 
mitochondrial membranes) semi-autonomous organelle, 
with the mitochondrial DNA enclosed in the inner mem-
brane. Referred to as the powerhouses of the cell, mito-
chondria have recently emerged as one of the major targets 
in cancer therapy, because of their central role in cellular 
differentiation, metabolism, signaling, key modulator of 
programmed cell death and being the alternative home of 
cellular genomic materials.146,147

Lipophilic cations are generally known to target the 
mitochondria, primarily because of the high membrane 
potential (negative inside) owing to the high-density phos-
pholipids in the inner membrane.12 Triphenylphosphonium 
(TPP), fulfilling the prerequisite of positive charge and the 
lipophilicity, has been shown to selectively reach the inner 
mitochondrial membrane. TPP can not only conjugate to 
small molecule-based drugs as a delivering vector to mito-
chondria, but can also be incorporated in the lipid for 
nanoparticle construction by covalently conjugating with 
stearyl moieties. Along this line, a phosphatidylcholine 
(PC)-based TPP-coated positively charged NMs comprised 
of α-tocopheryl succinate (TOS, inhibitor of complex II in 
electron transport chain) and obatoclax (Obt, inhibitor of 
Bcl-2) were engineered.148 The TOS-TPP-Obt-NPs entered 
into acidic lysosomes via macropinocytosis, followed by 
lysosomal escape and finally homed into the mitochondria 
over a period of 24 h, leading to mitochondrial mediated 
cellular apoptosis in HeLa cells.

Arginine-rich peptide octaarginine (R8), which prefer-
entially interacts with the inner membrane of mitochondria, 
also has been reported as a mitochondrial targeting device 
of NMs.149 What’s more, inorganic NMs, such as cuprous 
oxide NMs (Cu2O NPs),150 can be taken up by mitochon-
dria, which damaged their membranes and thereby inducing 
apoptosis in tumor cells.

Nucleus
The nucleus, a double lipid bilayer wrapped organelle, has 
been a focus of targeted drug and DNA (DNA as a drug 
for gene therapy) delivery. For most instances, the NMs 
deliver the drugs into the cell and the drug molecules 
diffuse through the cytosol to reach the nuclear target. 
Conjugation of NLS to the NMs has been demonstrated 
to direct the cargo to the nuclear target. PLGA based 
NMs151 and cargo-loaded mesoporous silica NMs 
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(MSNs)152 are all reported to be decorated with NLS for 
an efficient targeting of the nucleus.

Summary and Perspectives
Rapid development of NMs for cancer therapy relies on an 
integrative effort of physiochemistry, pharmaceutics and 
pharmacology, among which endocytosis of NMs is at the 
interface of biology and material science. Comprehensive 
understanding of cellular entry and intracellular trafficking 
is critical for design and targeting delivery of NMs. In this 
review, we summarized the characteristics of different 
endocytosis pathways, mainly focusing on specific effector 
molecules involved and possible intracellular trafficking 
routes mediated by definitive endocytic routes. In addition, 
NMs used for gene delivery based on endosome escaping, 
latest active targeting strategies towards tumor cells as 
well as intracellular organelles were introduced.

Although impressive achievements have been 
achieved, endocytosis and intracellular targeting for cancer 
cells is still in its fledgeling stages. Little difference has 
been explicated on the endocytosis pathway between can-
cer cell and normal cell. Almost all the consensus 
comes from in vitro studies, little in vivo research has 
been reported, which may be more complicated. 
Challenges still remain and deeper studies are still needed 
in the future.

With the development of precision therapy, the abun-
dance of targeting strategies for cancer therapy have been 
exploited. However, few of them have been applied in 
clinics. Unsatisfied therapeutic effectiveness and unexpected 
side effects are still a worry. By summarizing different 
endocytosis pathways, we hope it will be helpful to render 
new ideas for nanomedicine design. What’s more, under-
standing of the definite endocytosis pathway one nanomedi-
cine prefers and the effector proteins involved may facilitate 
in searching endocytosis-relevant clinical biomarkers to 
select patients most likely to benefit from nanomedicine 
therapy, which is of great clinical value.
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