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Purpose: The aim of our research work was to develop dermally applicable, lidocaine 
hydrochloride (LID-HCl)-containing semisolid in situ film-forming systems (FFSs) using the 
Quality by Design (QbD) approach to increase drug permeation into the skin.
Methods: Silicones were used to improve the properties of formulations and to increase the 
permeation through the skin. The QbD approach was applied to ensure quality-based develop-
ment. With initial risk assessment, the critical material attributes (CMAs) and the critical process 
parameters (CPPs) were identified to ensure the required critical quality attributes (CQAs).
Results: During the initial risk assessment, four high-risk CQAs, namely in vitro drug 
release, in vitro drug permeation, drying properties, and mechanical properties, and three 
medium-risk CQAs, namely pH, viscosity, and film appearance were identified and investi-
gated. Moreover, four high-risk CMAs were also considered during the formulation: permea-
tion enhancing excipients, drying excipients, film-forming excipients, and emollients. During 
the experiments, LID-HCl influenced these critical parameters highly, thereby reducing the 
drying time. The formulation containing 25% silicone showed the best mechanical properties 
(49 mN skin adhesion, 20.3% film flexibility, 1.27 N film burst strength), which could predict 
better patient adherence. In addition, in vitro permeation studies showed that formulation 
containing 50% silicone has the fastest permeation rate. The flux of diffused API was 6.763 
µg/cm2/h, which is much higher compared to the silicone-free formulation (1.5734 µg/cm2/ 
h), and it can already be observed in the lower part of the dermis in 0.5 hour.
Conclusion: Our results show that LID-HCl has great influence on the critical parameters of 
FFSs. The silicone content can improve the applicability of formulations and has a favorable 
effect on the permeation rate of LID-HCl into the skin.
Keywords: in situ film-forming system, Quality by Design, formulation excipients, local 
anaesthesia

Introduction
Dermal local anaesthesia is a widely used method before a surgical procedure to 
decrease pain. Recently, research has focused on developing painless local anaes-
thetic treatment without needle insertion or injection. This non-invasive treatment 
can be used to decrease pain during a surgical intervention or chronic pain asso-
ciated with neuralgia, arthritis or other severe medical diseases.1,2 Besides, it is an 
attractive alternative to injection in pediatrics.3

Lidocaine hydrochloride (LID-HCl) is one of the commonly used drugs during 
local anaesthesia.4 Lidocaine can relieve pain rapidly, but its effective time is short. 
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Gels, sprays, creams, ointments, and patches are used as 
vehicles, but the barrier function of the skin limits the 
permeation of LID-HCl.5–7 It is a great challenge to 
reach the optimal permeation from these dermal 
preparations.8 The generally used dermal semisolid pre-
parations, such as creams, ointments, and gels can be 
smeared and removed easily by movement and wetting.5 

So a new drug delivery system may be required to enhance 
effectiveness and patient adherence.

The in situ film-forming system (FFS) is an innovative 
dermally applicable semisolid drug delivery system, which 
forms a film on the skin surface after application.9,10 FFSs 
contain non-volatile and volatile components. Non-volatile 
components include the active ingredients in matrix to 
provide the transport through the skin, while volatile com-
ponents are responsible for film formation and enhanced 
drug permeation. Throughout the application process, 
volatile components evaporate, thereby an in situ formed 
film is left on the skin surface with a concentrated drug 
content, which promotes enhanced drug permeation.11 The 
application of the FFS is convenient, the appearance is 
attractive, and the film formed after fast drying has good 
mechanical properties. With optimal compositions, these 
advantages can be exploited,12 thus offering a promising 
choice in local anaesthesia.

To achieve optimal properties, volatile and non-volatile 
silicones are a good choice in FFSs.13–16 Silicones have 
a great effect on film-forming systems, for example, they 
ensure a “silky touch” feeling on the skin surface, have 
a softening feeling during the application, and they help 
the formulation to dry.17 The effects of silicones on critical 
attributes need to be considered during the formulation. 
Non-volatile silicones modify the mechanical attributes, 
thereby softer films can be formulated. Volatile silicones 
improve the film-forming ability, and more favorable dry-
ing time can be achieved.18 The optimal mechanical prop-
erties ensure that the films are retained on the skin surface 
for a longer time, thereby increasing exposure time. To 
improve patient adherence, films need to be removable 
painlessly, and the drying time needs to stay in 
a convenient range.

During the pharmaceutical development, it is essential 
to provide the appropriate quality of formulations. The 
International Council for Harmonization (ICH) guideline 
Q8 defines and sets the basis of the Quality by Design 
(QbD) approach.19 QbD is a systematic aspect, which 
ensures the optimal environment to reach the required 
properties. The method begins with identifying the quality 

target product profile (QTPP), then helps to understand the 
critical quality attributes (CQAs), organizes them and 
ensures the control of critical materials attributes (CMA) 
and critical process parameters (CPPs) based on the risk 
assessment.20–22 QbD tools are applied to examine the 
most critical parameters.23,24 These tools are summarized 
in the ICH guideline Q9.25

Based on our previous research, in situ FFSs could be 
a good choice to ensure painless local anaesthesia.18 The 
aim of this work was to develop LID-HCl-containing 
semisolid in situ FFSs using the QbD approach. The 
purpose of using QbD approach is to select the influencing 
attributes of the investigated system, which is essential for 
future development steps, such as defining product and 
process design space, and defining control strategy. Our 
study focuses on the formulation of three LID-HCl- 
containing compositions with or without silicones to 
investigate, on one hand, the effect of LID-HCl on the 
film-forming properties and on the other hand, the effect of 
formulations on the skin permeation of the active sub-
stance. The formulations were tested relative to each 
other and to blank FFSs.

Materials and Methods
Materials
Lidocaine hydrochloride was purchased from 
Hungaropharma Ltd. (Budapest, Hungary). Poly(vinyl 
alcohol) (87–90% hydrolyzed, average mol wt 30,000–-
70,000) was obtained from Sigma-Aldrich (Budapest, 
Hungary). Ethanol (96 per centum, Ph. Eur. 9.) was from 
Molar Chemicals Ltd. (Budapest, Hungary). Xantural ® 

180 Xanthan Gum was a product sample from CP Kelco 
A Huber Company. ST – Cyclomethicone 5-NF, 
Dimethiconol Blend 20, ST Elastomer 10, and 7–3101 
Elastomer Blend HIP Emulsion were kindly provided by 
Dow Corning (Midland, Michigan, USA). Purified and 
deionized water was used (Milli-Q system, Millipore, 
Milford, MA, USA). Methyl parahydroxybenzoate (Ph. 
Eur. 9.) was supplied by Molar Chemicals Ltd. 
(Budapest, Hungary). Salvequick® sticking plaster was 
from Orkla Care AB (Solna, Sweden). PVA-based artificial 
skin was obtained from © 2018 Tattoo machine Webshop 
(Mátészalka, Hungary). Cellulose acetate filter (Porafil 
membrane filter, cellulose acetate, pore diameter: 0.45 
µm) was purchased from Macherey-Nagel GmbH & Co. 
KG (Düren, Germany).
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Excised human skin was obtained from Caucasian 
female patient by routine plastic surgery procedure of the 
Department of Dermatology and Allergology, University of 
Szeged. Tissue samples to be destroyed are considered to be 
hazardous waste, so ethical permission is not required for 
research on these tissue samples in Hungary according to the 
Act CLIV of 1997 on Health Section 210/A. The local 
ethical committee (Regional Ethics Committee for Human 
Biomedical Research, University of Szeged) has to be 
informed about the in vitro skin penetration studies 
(Notification document number: 83/2008).

Methods
Quality by Design Methodology
Definition of TPP and QTPP
The definition of the Target Product Profile (TPP) is the 
first step during the product formulation. It defines the 
target of our work. After that, the Quality Target Product 
Profile (QTPP) summarizes the quality characteristics of 
the target product. It is the basis of design. QTPP para-
meters include, for example, therapeutic indication, route 
of administration, dosage form and strength, etc. according 
to the relevant guidelines.19,24,26

Definition of CQA, CMA, CPP
CQAs are derived from the QTPP. Based on prior knowl-
edge, they potentially affect the quality of the product, for 
example, physical properties, solubility of active pharma-
ceutical ingredients (API) in the formulation, pH, viscos-
ity, etc., which are clearly defined to provide the required 
product quality.19 After the determination of the quality 
attributes, the next step is to define the parameters which 
influence CQAs to provide the predefined quality. These 
are the critical material attributes (CMAs) and the critical 
process parameters (CPPs), which include properties of the 
API and excipients (eg, emollient, polymer), and 

properties of the applied process (eg, type of technology, 
homogenization time and rate).18,27

Risk Assessment: Quality Tools
Risk assessment is in the focus of the QbD approach. 
During risk management, the risks of the product quality 
are assessed, controlled, communicated, and reviewed. 
Quality tools such as the Ishikawa diagram, risk estimate 
matrix (REM) and Pareto analysis support and facilitate 
risk assessment. The Ishikawa diagram, which collects 
possible root causes and effects that have an influence on 
the quality. During the risk assessment, the next step was 
to select the critical parameters with Pareto analysis. 
This technique, which is also called ABC analysis, is 
used for the selection of risks that produce a significant 
effect. Categories A, B, and C of items have the highest, 
medium and the lowest influence on the quality of for-
mulations, respectively. The REM presents the interde-
pendence rating between QTPPs and quality attributes. 
Furthermore, the REM was used to define the connection 
between the quality attributes and CMAs, CPPs. The 
parameters were selected and the critical control points 
were defined with LeanQbD™ software (QbD Works 
LLC, Fremont, CA, USA).25,28

Preparation of FFSs
Three different types of formulations were examined. 
Blank formulations were also formulated and investigated 
for better understanding of the effect of LID-HCl on FFSs. 
The compositions and the functions of different ingredi-
ents can be found in Table 1. The blank film formulations 
without active substance (F1 - F3) and film formulations 
containing 5% LID-HC (LF1 - LF3) were prepared. The 
first type of formulations (F1 - LF1) did not contain 
silicones, while the others (F2 - LF2, F3 - LF3) contained 
different volatile and non-volatile components.

Table 1 Composition of Blank FFSs and FFSs Containing LID-HCl

Composition Function of the Excipient F1 LF1 F2 LF2 F3 LF3

LID-HCl Active pharmaceutical ingredient - + - + - +

Purified water with methyl parahydroxybenzoate Solvent with preservative + + + + + +

Ethanol 96% Drying, permeation enhancing + + + + + +
PVA Film-forming, viscosity enhancing + + + + + +

Xanthan gum Film-forming, viscosity enhancing + + + + - -

Dimethiconol Blend 20 Film-forming, emollient - - + + - -
ST-Elastomer 10 Film-forming, emollient - - + + - -

7–3101 Elastomer Blend HIP Emulsion Film-forming, emollient - - - - + +

ST-Cyclomethicone 5NF Drying, permeation enhancing - - + + + +
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ST – Cyclomethicone 5 – NF was the volatile silicone 
component to ensure the drying properties and to increase 
the permeation through the skin.18,29,30 Additional non- 
volatile silicones, Dimethiconol Blend 20, ST – 
Elastomer 10, and 7–3101 Elastomer Blend HIP 
Emulsion were added to F2, LF2 and F3, LF3, to modify 
film formation and rigidity of films.12 Furthermore, they 
modify the appearance of the film, provide a “silky touch” 
feeling, protect and soften the skin.17 F2, LF2 contained 
25% of silicones, and F3, LF3 had 50% of silicones in the 
formulations. Volatile silicone containing was the same in 
these compositions. PVA and Xanthan gum also enhance 
film formation and have viscosity increasing 
properties.12,18 Additionally, ethanol is a drying excipient 
and a permeation enhancer excipient as well.30

LID-HCl was dissolved in Ethanol 96% and PVA 
was dissolved separately in purified water at 80°C 
under mixing. The two solutions were mixed at room 
temperature. Then, Xanthan gum was added to formula-
tions F1, LF1 and F2, LF2 to ensure the required con-
sistency. Finally, silicones were added slowly and mixed 
with a high shear mixer.

Characterization of the Critical 
Parameters of the Semisolid System
Investigation of Drying Properties
PVA-based artificial skin was used as model skin surface 
to detect the drying time of the preparations. When the 
formed film seemed to be dry, a microscope slide was used 
to touch the top of the film. If no marks were left on the 
slide, the film could be considered dry, and the elapsed 
time was the drying time. If the film left marks on the 
slide, the test was repeated until we got a dry film.18,31 

Five parallel measurements were carried out. The results 
were calculated as means ± SD.

Investigation of pH
Each 10 g sample was placed in a beaker, and a Testo 206 
pH meter (Testo SE & Co. KGaA, Lenzkirch, Germany) 
was used to measure the pH. Three parallel measurements 
were carried out.

Rheological Investigation
Rheological measurements were carried out with a Physica 
MCR101 rheometer (Anton Paar GmbH, Graz, Austria) to 
investigate the properties of FFSs before drying, and the 
effect of LID-HCl on the rheological parameters. Parallel 
plate geometry PP25 was applied with a measuring gap of 

0.1 mm. The blank FFSs were also studied. Flow curves were 
obtained during the examination. The shear rate was raised 
from 0.1 to 100 1/s (up-curve) and then reduced from 100 to 
0.1 1/s (down-curve) in CR mode. The shearing time was 
300s and the measurements were made at 32°C.32

Characterization of the Critical 
Parameters of Films
Investigation of in vitro Drug Release
A Franz diffusion cell system (Logan Automated Dry heat 
sampling system) was applied to model drug release 
through a cellulose acetate synthetic membrane. Around 
300 mg of each sample was used as the donor phase. The 
acceptor phase was thermostated phosphate buffer (PBS 
pH 7.4±0.15) at 32°C±0.5°C. Drug release lasted 8 hours 
(sampling times: 0.5; 1; 2; 3; 4; 5; 6; and 8 h). The 
concentration of the drug was examined by high- 
performance liquid chromatography (HPLC) (Shimadzu 
Nexera X2 UHPLC, Kyoto, Japan).

HPLC was equipped with a C18 reverse-phase column 
(ZORBAX Eclipse XDB-C18, Phenomenex, Torrance, 
CA, USA) with 5 µm, 4.6X150 mm dimension. The 
mobile phase was 0.1% phosphoric acid (solvent A):acet-
onitrile (solvent B) 90:10 in gradient mode. It was changed 
from 90:10 (A:B, v/v) to 40:60 (A:B, v/v) in 6 minutes 
then going back to 90:10 (v/v) between 6.1–10 minutes. 
The flow rate of 0.8 mL/min was set over 10 minutes, the 
column temperature and sample tray temperature were set 
to 25°C, and the detection was made at 230 nm. The 
injection volume was 5 µL. The time of analysis was 10 
min, and the retention time was 4.2 min.32 Four parallel 
measurements were carried out. The results were calcu-
lated as means ± SD.

Investigation of in vitro Drug Permeation
Measurements of Drug Permeation with Franz 
Diffusion Cell System
A Franz diffusion cell system (Logan Automated Dry heat 
sampling system) was applied to model the permeation 
through ex vivo human heat-separated epidermis (HSE). 
The preparation of HSE was based on a procedure 
reported by Kligman and Christophers.33 Around 300 mg 
of each sample was used as the donor phase. The acceptor 
phase was thermostated phosphate buffer (PBS pH 7.4 
±0.15) at 32°C±0.5°C. Drug permeation through HSE 
lasted 24 hours (sampling times: 0.5; 1; 2; 4; 6; 12; 18; 
and 24 h). The concentration of the drug was examined by 
high-performance liquid chromatography (HPLC) 
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(Shimadzu Nexera X2 UHPLC, Kyoto, Japan). The 
method of the HPLC measurement was the same as for 
the investigation of in vitro drug release. Four parallel 
examinations were carried out. The results were calculated 
as means ± SD.

Investigation of Drug Permeation with Raman 
Spectroscopy
Full thickness human subcutaneous fat free, abdominal 
skin was treated with LID-HCl-containing FFSs at room 
temperature. The skin sections were placed on filter papers 
that were soaked with phosphate-buffered saline solution. 
200 mg of each preparation was placed on a 1x1 cm sur-
face of the skin. The exposition time was 30 and 180 
minutes. After the treatment, the films were pulled down 
and the residues were wiped. The treated skins were frozen 
and sectioned with a Leica CM1950 Cryostat (Leica 
Biosystems GmbH, Wetzlar, Germany). Aluminum- 
coated slides were used under the 15-μm-thick cross- 
sections. Raman spectroscopic analysis was carried out 
with a Thermo Fisher DXR Dispersive Raman 
Spectrometer (Thermo Fisher Scientific Inc., Waltham, 
MA, USA) equipped with a CCD camera and a diode 
laser operating at 780 nm. Microscopic lens with 50X 
magnification was used. Measurements were made with 
a laser power of 24 mW and a slit width of 25 μm. Skin 
mapping was captured of an area of 200X1,000 μm, with 
a step size of 50 μm vertically and horizontally. The 
OMNIC for Dispersive Raman 8.2 software package 
(Thermo Fisher Scientific) was used during instrument 
operation and evaluation. The untreated skin was also 
measured. The individual spectrum of each formulation 
was used as a reference when comparing the treated and 
non-treated skin.34

Investigation of the Mechanical Parameters of Films 
with Texture Analyzer
TA.XT plus Texture Analyzer (Stable Micro Systems Ltd, 
Vienna Court, Lammas Road, Godalming, Surrey, UK. 
GU7 1YL) was used to carry out the measurements. Skin 
adhesion, film burst strength and film flexibility were 
characterized with different accessories. Four parallel mea-
surements were carried out during each examination. The 
results were calculated as means ± SD.

A 10x2 cm film was measured under the 90 Degree 
Peel Rig during the skin adhesion test to determine the 
mean peeling force (Pa) which can separate the film from 
the artificial skin surface. The applied test speed was 
5 mm/s, while the distance was 50 mm. The mean peel 

force was averaged from 10 mm to 45 mm during the 
evaluation. Sticking plaster was used as a reference.18,35

Film Support Rig was used during the film burst 
strength and film flexibility tests. Burst strength (Pa) and 
resilience (%) were measured. Films with a diameter of 
22 cm were made and placed into the film support rig. The 
compression mode was used for measuring film burst 
strength. Test speed, force, and target distance were 
0.5 mm/sec, 100 g, and 1 mm, respectively. Similarly, 
the compression mode was applied for film flexibility 
with a test speed of 0.5 mm/sec, a force of 100 g and 
a distance of 1 mm. In both cases, human HSE was used as 
reference.18,36 The preparation of heat-separated epidermis 
was based on a procedure reported by Kligman and 
Christophers.33

Investigation of Film Appearance
There was placed 0.2 g of each formulation on a 3x3-cm 
surface of the PVA-based artificial skin. After drying, the 
appearance was investigated visually.18

Statistical Analysis
The one-way ANOVA analysis of variance (Dunnett) with 
GraphPad Prism 8 for Windows software (GraphPad 
Software Inc., La Jolla, CA, USA) was applied to make 
the statistical analysis of results. More parallel measure-
ments ± SD were carried out. The differences were sig-
nificant if p< 0.0001****p< 0.001***p< 0.01**p< 0.05* 
versus the control.18,24

Results and Discussion
Determination of QTPP and CQAs
As regards the TPP, the target was to formulate a semisolid, 
in situ film-forming system containing LID-HCl, with 
required properties for local anaesthetic therapy. Based on 
these, the QTPP of the FFS-containing LID-HCl encom-
passes therapeutic indication, route of administration, 
dosage form, dosage strength, site of activity, release profile, 
appearance of semisolid system, physical, chemical and 
microbiological stability, patient adherence increasing effect, 
mechanical properties of film and packaging material type. 
The CQAs originate from the QTPPs. In the present case, 
the composition is a semisolid in situ FFS, so the properties 
of both the semisolid compositions and the film must be 
considered. The Ishikawa diagram shows the parameters 
influencing the quality of the semisolid in situ film- 
forming system containing LID-HCl (Figure 1).25,37
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The quality attributes of the semisolid system include 
physical properties, solubility of API in formulation, visc-
osity, pH, moisturizing effect, and drying properties. The 
quality attributes of the formed film include film appear-
ance, integrity, mechanical properties, in vitro drug release 
and drug permeation. Tables 2 and 3 present the targets 
and justifications of QTPPs and CQAs.

Initial Risk Assessment
After defining the QTPPs and CQAs, the next step is to 
determine the CMAs and CPPs of the FFSs containing LID- 
HCl with risk assessment. Risk assessment refers to the 
estimate of the risks, related to the investigated semisolid 
and film systems. Table 4 shows the influencing factors as 
well as their impacts and occurrences on the target product.

After that, risk assessment tools were applied to 
determine the connection between the parameters. 
Firstly, the parameters were identified, and then we 
performed risk assessment and ranked the parameters 
based on their risk. The risk estimate matrix (REM) 
was used to evaluate the relationships between CQAs 
and QTPPs (Table 5).

A three-step scale was applied to rank the relationship 
between the CQA and QTTP parameters for the FFS con-
taining LID-HCl, by assigning low (low-risk parameters), 
medium (medium risk parameters) and high (high-risk para-
meters) values to each of them. A 1(low)-3(medium)-9 
(high) scale was used for the probability rating.

A Pareto chart (Figure 2) was constructed based on the 
results of the REM to rank and show the severity scores of 
CQAs, and to highlight the highly influenced parameters 
of product quality. The results show that four quality 
attributes have the highest influence on the quality of the 
target product with the highest severity score (>400), 
called Category A. These are in vitro drug release, 
in vitro drug permeation, drying properties, and film 
mechanical properties. Category B (severity score: 
250–400) includes viscosity, pH, and film appearance. 
The last category of severity score is Category C (below 
250), which has the quality attributes with the lowest 
influence on the target product.

The next REM (Table 6) was established to show the 
connection between CQAs and CPPs, CMAs. The evalua-
tion was made by using the same scale (1-low, 3-medium, 

Figure 1 Parameters influencing the quality of FFSs containing LID-HCl.
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9-high). Eleven CMA and CPP parameters were screened 
to determine their influence on the CQAs during the for-
mulation of FFSs containing LID-HCl. The influencing 
material parameters were viscosity and permeation enhan-
cing excipients, drying excipients, film-forming excipients, 
preservatives, and emollients.

Mixing rate, mixing time, type of mixer, temperature of 
technology and type of technology were found to be the 
influencing process parameters. Based on the REM results, 
a Pareto chart (Figure 3) was generated showing the 
severity scores of CQAs. The most critical parameters 
(Category A) influencing the quality of FFS-containing 
LID-HCl have the highest severity scores (>20,000). 
These are the following parameters: permeation enhan-
cing, drying, film-forming excipients, and emollients. 
Category B includes viscosity enhancer excipients and 
type of technology (severity scores are 10,000–20,000), 
these parameters have medium influence on the final pro-
duct’s quality. Category C has a low impact on the quality 

of the FFS during the development (>10,000): mixing rate, 
temperature of technology, mixing time, type of mixer, and 
preservatives belong here.

According to the initial risk assessment, four highly 
influencing CQA parameters were identified, namely 
in vitro drug release, in vitro drug permeation, drying 
properties, and film mechanical properties. Moreover, 
three medium critical CQA parameters were also 
defined: viscosity, pH, and film appearance. These 
were the investigated parameters during the research 
work. The initial risk assessment also showed that the 
following four material parameters of the defined CPPs 
and CMAs had the highest influence on the target pro-
duct: permeation enhancing excipients, drying excipi-
ents, film-forming excipients, and emollients. These 
parameters were considered during the development.

Figure 4 shows the result of the risk assessment during 
the formulation of FFSs containing LID-HCl based on the 
QbD approach.

Table 2 QTPPs of the FFS Containing LID-HCl

QTPP Target Justification

Therapeutic indication Local anaesthetic During local anaesthesia, superficial loss of sensation can be achieved, which is a good 

choice to avoid the adverse effects of injections during minor surface-skin surgical 

interventions and invasive procedures. It can decrease pain, itching, and irritation.24,38

Route of 

administration

Dermal Non-invasive dermal delivery is a convenient and painless administration route 

compared to SC injections.39

Dosage form Semisolid in situ film-forming system Due to the advantages over other conventional dosage forms, fast drug release, resistance to 

washing and smearing can achieved, which presumably increase the drug permeation rate.12,40

Dosage strength 5% This concentration of LID-HCl is an effective dose as a local anaesthetic formulation.32,41

Site of activity Deeper layer of the skin (dermis) Regarding the local anaesthetic aim, the permeation of active ingredients into the deeper 

layer of the skin, such as the dermis, is required because of the location of skin nerves.18,24

Release profile Fast drug release Fast drug release is favorable to achieve the local anaesthetic effect as soon as possible.40

Appearance of 

semisolid system

Transparent or white, homogeneous Aesthetic preparation needs to be formulated for good patient adherence.12,18

Stability (physical, 

chemical)

No visible sign of instability in the formulation at the time 

of preparation and after 3 months (at room temperature)

Physical and chemical stability, such as proper viscosity, pH and avoidance of phase 

separation are important for applicability.18

Stability 

(microbiological)

Meets the property requirements of the 

pharmacopoeia for dermal systems

To meet the requirement for marketing authorization to provide the safety of 

formulations.

Patient adherence 

increasing effect

“Silky touch” feeling on the skin To soften and hydrate the skin, improve comfort for patients, thereby providing 

patient adherence.42

Mechanical properties 

of film for skin 

application

Optimal structure of film, flexible, highly adherent, 

resistant film

Suitable mechanical properties are required to achieve optimal skin adhesion and 

flexible movement like that of the skin. Films need to be removed in one piece, 

easily, painlessly.18

Packaging material type Appropriate for the formulation type, well-closed Because of the volatile components, well-closed package is required to avoid evaporation.19
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Table 3 CQAs of the FFS Containing LID-HCl

CQA Target Justification

Semisolid system properties

Physical properties 

(color, odor, 
appearance)

Translucent or slightly white appearance, homogeneous, 

clear, and odorless

To ensure patient adherence and stability.18

Solubility of API in 
formulation

High (>90%) Drug solubility provides a homogenous system. It is 
important to achieve a high concentration gradient to 

improve the permeation through the skin.43

Viscosity Appropriate spreadability (range: 500–5,000 mPas) To provide optimal application properties of the formulation 

and ensure the required stability.31

pH Optimal pH for dermal application (range: 4–8 pH) Proper pH is an important parameter for dermal application 

for the safety and efficacy of use, to avoid irritation and to 
ensure the stability of formulation.44,45

Moisturizing effect To increase skin hydration with 20% compared to the control To increase skin hydration, to promote drug permeation.46

Drying properties Convenient drying time (within 10 minutes) Due to fast drying, smearing is avoided, thereby comfortable 

usability and resistance are ensured.18,31

Film properties

Film appearance Translucent or slightly white, homogeneous, compact film Better patient adherence can be achieved with invisible, 

homogenous, not shiny, and resistant films.12

Film integrity Compact, resistant film on the skin surface To ensure aesthetic appearance, and to be pulled down 

completely and easily.31

Film mechanical 

properties

Optimal structure of film (Tg: under 80 °C), skin adhesion (mean 

peel range: 100–500 mN) compared to sticking plaster; film burst 

strength (range: under 5 N), film flexibility (range: above 25%) 
compared to heat-separated human epidermis

To provide the optimal structure of the film, optimal 

exposure time, good adhesion and film flexibility are 

essential. Burst strength and flexibility also allow following 
the skin movement.18

In vitro drug release 30% in 0.5 hour To provide fast effect, fast drug release is necessary.

In vitro drug 

permeation

Detected in the lower layer of the skin (epidermis, dermis) 

in 0.5 hour

The API penetrates into the dermis.47

Table 4 Summary of All the Parameters That Affect the FFS Containing LID-HCl

QTPPs Impact CQAs CPPs and CMAs Occurrence

Therapeutic indication High Physical properties (semisolid system) Mixing rate Medium

Route of administration High Solubility of API Mixing time Low

Dosage form High Viscosity Type of mixer Medium

Dosage strength Medium pH Temperature of technology High

Site of activity High Moisturizing effect Type of technology High

Release profile High Drying properties Viscosity enhancing excipients Medium

Appearance of semisolid system Low Film appearance Permeation enhancing excipient High

Stability (physical, chemical) Medium Film integrity Preservatives Low

Stability (microbiological) Low Film mechanical properties Drying excipients High

Patient adherence increasing effect Medium In vitro drug release Film-forming excipients High

Mechanical properties of film for skin application High In vivo drug permeation Emollients Medium

Type of packaging material Medium
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Results of the Critical Parameters of the 
Semisolid System
Drying Properties
As our previous work described, silicone content signifi-
cantly decreases drying time.18 Additionally, a further 
examination was carried out to observe the effect of LID- 
HCl on this parameter. LID-HCl significantly decreased 
the drying time of all compositions, so it has favorable 
effect on the formulations. It was the most noticeable in 
the case of formulation LF2, where the values dropped 
from 10 minutes to 8.35 minutes (Figure 5). Formulations 
LF2 and LF3 met the requirement (10 minutes).

Results of pH of FFSs
The pH is an important attribute to provide safety and 
efficacy of use, and the stability of formulations. The 
results showed that all the formulations were in the opti-
mal range of pH, thereby these are appropriate for dermal 
application. The LID-HCl content decreased the pH of the 
formulations. The values are presented in Table 7. 
However, the LID-HCl is a weak base, with 7.75 pKa. 
Below this pKa the ionized form of the drug is higher, than 
the base form, which predicts lower permeation rate 
through the SC, so the permeation enhancer silicones 
could be favorable for increasing permeability of SC.48,49

Rheological Properties of FFSs
The three different types of formulations showed different 
rheological properties. In the flow curves, thixotropy was 
observed in all cases. Thixotropy was the lowest in the 
case of F1 and LF1. Based on the flow curves (Figure 6), 
both the LID-HCl content and the silicon amount 
increased the shear stress of the systems.

The viscosity value of F1 (608 mPas) and LF1 (718 mPas) 
was the lowest at 100 1/s at 32°C. F2 was 2070 mPas and LF2 
was 2560 mPas. The highest viscosity was detected for F3 
with 3540 mPas and for LF3 with 4770 mPas. The rheological 
measurements showed that the formulations met the require-
ments (Table 3), they are suitable for dermal use.

Results of the Critical Parameters of 
Films
In vitro Drug Release Studies
The in vitro drug release study was one of the most critical 
parameters in the case of risk assessment (Figure 3). The 
measurement was performed to examine the release profile 
of the active ingredient from the formulations. The release 
of LID-HCl was measured through a synthetic membrane, 
which was an artificial mixed cellulose ester membrane, 
for 8 hours (Figure 7). According to our target (Table 3), 
30% of the API had to be released in 0.5 h. The results 

Figure 2 Pareto chart of CQA parameters; (A) high-risk parameters, (B) medium-risk parameters, (C) low-risk parameters.
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Figure 3 Pareto chart of CPP and CMA parameters; (A) high-risk parameters, (B) medium-risk parameters, (C) low-risk parameters.

Figure 4 Process of research work.

Figure 5 Comparison of the drying times of blank and LID-HCl-containing formulations; Mean ± SD (n=5), (p < 0.05 * and p < 0.0001 **** vs blank formulation).
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showed that the diffused API was lower than 30% in 
0.5 hour but more than 30% of LID-HCl was released in 
the case of LF2 and LF3 after 1 hour. After 3 hours, the 

diffused amount of API was more than 60% from all 
formulations (Table 8).

In the case of LF3, the diffusion of API significantly 
increased in 0.5 hour. Later, the release profiles through 
this synthetic membrane were similar in all cases, so the 
different excipients have a similar effect on the drug 
release. However, the API released form the LF3 formula-
tion faster, than from the other formulations, so it could be 
explained by the favourable effect of the 7–3101 
Elastomer Blend HIP Emulsion in the composition.

Table 7 pH Data of FFSs

pH pH

F1 5.70 LF1 5.40
F2 6.00 LF2 5.50

F3 6.00 LF3 5.37

Figure 6 Flow curves of FFSs.

Figure 7 In vitro drug release through cellulose acetate membrane; Mean ± SD (n=4), (p < 0.05 *, LF3 vs LF1 and LF2).
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In vitro Drug Permeation Studies
The in vitro drug permeation study consisted of two mea-
surements. The permeation of LID-HCl was measured 
through HSE during 24 h in a Franz cell and completed 
with Raman spectroscopy, where the location of the API 
was detected in the skin layers.

Then, the mathematical evaluation was carried out. The 
rate of the permeation (flux) was calculated from the slope of 
the cumulative amounts of LID-HCl (µg/cm2) permeated ver-
sus time (h) profiles (Table 9). LF1 and LF2 contained volatile 
silicone to increase the permeation rate through the skin. The 
results showed that ST-Cyclomethicone 5NF increased the 
permeation rate compared to LF1. In addition, the amount of 
volatile silicone was the same in both formulations, but the 
highest permeation rate was detected in the case of LF3. This 
could be explained by the additional effect of 7–3101 
Elastomer Blend HIP Emulsion, and the fast drying of the 
formulation with prolonged drying mechanism.18

The in vitro skin permeation studies were also carried out 
with Raman spectroscopy. The correlation maps were estab-
lished, which showed the distribution of LID-HCl-containing 
FFSs by using the appropriate spectra that fit to the treated 
skin spectra. The spectra of LID-HCl, blank formulations, 
and API-containing formulations were recorded. In this case, 
the spectra of API-containing formulations were used to 
make the distribution correlation maps, because these spectra 
indicate the presence of LID-HCl. The spectra of pure API 
could not be used because of the low intensity of LID-HCl in 
the formulations. A non-treated correlation map was used as 
a control during the evaluation. Figure 8 shows the recorded 
correlation maps of LF1 (A), LF2 (B), LF3 (C). The warmer 
color indicates a higher amount of the preparations in the 
different skin layers.

The results showed that the LID-HCl-containing pre-
parations were present in the different regions of the 
human skin. Formulation LF1 was found in the upper 
region of the human skin and formulation LF2 permeated 
into the epidermis and the upper part of the dermis after 3 
hours. Formulation LF3 could already be observed in the 
lower part of the dermis after 0.5 hour. After 3 h the 
distribution of the formulation could be found in all skin 
layers as well.

Based on the results, the LF3 showed the fastest per-
meation rate, so the results of Raman mapping correlated 
with the measurements of the in vitro permeation study in 
a Franz cell.

Mechanical Properties of Films with Texture Analyzer
According to the risk assessment, the film mechanical prop-
erties are also critical parameters, which give important 
information about the usability of formulations (Figure 2). 
The optimal mechanical properties ensure patient adherence 
as well as long and durable application. Skin adhesion is 
required to increase the exposure time of API; however, if 
the skin adhesion value is too high, the removal of the film 
can be painful for the patients. Flexibility ensures that the 
film can imitate the movement of the skin, which is also 
required for durable use. If film burst strength is high, the 
structure of the film can be too rigid, but if the value is low, 
the film is not able to keep its integrity. During the measure-
ments, we used sticking plaster as reference in the case of 
skin adhesion, and heat-separated epidermis in the case of 
flexibility and film burst strength.

In our previous study, it was obtained, that silicone 
content makes the films softer but less resistant.18 In this 
research, we examined the effect of API on the FFSs. As 
the results show (Figure 9A), skin adhesion highly 
increased due to the LID-HCl content in formulations 
LF1 and LF2. When these preparations were used, the 
parameters met our targets (Table 3). In the case LF3 the 
adhesion parameter was lower than expected.

The flexibility of films can be seen in Figure 9B. LF1 
(27.2%) and LF2 (38.3%) met the requirement, while LF3 
(20.3%) showed lower flexibility. In the case of LF1 and 
LF3, the API decreased the flexibility of the film; however, 
the flexibility of LF2 increased.

Film burst strength showed a significant increase when 
the formulation contained LID-HCl (Figure 9C). The burst 
strength of LF1 jumped from 4.91 N to 8.12 N, and thus 
its values were too high for our target. The other two films, 
LF2 (2.96 N) and LF3 (1.27 N) had optimal properties.

Table 8 Mean Cumulative Amount of Diffused API (%) ± SD 
(n=4) After 0.5; 1 and 3 Hours, (p < 0.05 *)

0.5 h 1 h 3 h

LF1 10.24±0.54 28.57±1.24 65.84±1.88

LF2 12.59±2.01 31.63±3.35 68.27±4.90

LF3 18.50*±3.45 31.75±4.78 63.72±7.91

Table 9 Fluxes J (µg/cm2/h) of Diffused API

J (µg/cm2/h)

LF1 1.5734
LF2 4.2924

LF3 6.763
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In conclusion, the API increased skin adhesion and 
film burst strength. The film flexibility of LF2 increased, 
while the flexibility of LF1 and LF3 decreased due to the 
API content. Based on the results, LF2 had the best 
mechanical properties, which could predict higher effect 
and better patient adherence.

Appearance of Films
The film appearance met our requirements (Table 3). After 
drying, translucent, slightly white, homogenous, and com-
pact films were formed, which are appropriate for conve-
nient application. There were no differences between the 
films formed by blank or LID-HCl-containing 
formulations.18

Conclusion
In this research work semisolid in situ FFSs containing 
LID-HCl were formulated using the QbD approach. Initial 

risk assessment was applied to evaluate the critical para-
meters during the development. Based on the results of 
initial risk assessment, three compositions with or without 
API were formed and investigated. Initial risk assessment 
defined the CMAs and the CPPs to ensure the required 
CQAs. During the initial risk assessment, four CQAs, 
namely in vitro drug release, in vitro drug permeation, 
drying properties, and film mechanical properties were 
found to be highly critical attributes, and three CQAs, 
namely viscosity, pH, and film appearance were found to 
be medium critical attributes in the formulation of FFSs. 
These parameters were investigated. Furthermore, the 
effects of LID-HCl on these parameters were studied. 
The initial risk assessment also revealed that four factors, 
namely permeation enhancing excipients, drying excipi-
ents, film-forming excipients, and emollients were highly 
critical parameters for the CQAs.

Figure 8 Raman correlation maps for the distribution of FFSs of (A) LF1, (B) LF2, and (C) LF3.
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The results of in vitro drug release showed, there were no 
significant differences between the diffusion of the formula-
tions after 3 hours, so the formulations have the same drug 
release profile. However, the LF3 showed significant 
increase in the diffusion of API in 0.5 hour, so it was released 
from the LF3 formulation faster, than from the other formu-
lations. The results of in vitro permeation through the HSE 
showed that the silicone content increased the permeation 

rate through the skin. The LF3 formulation had the highest 
permeation rate, which could be explained by the additional 
effect of non-volatile silicone in the composition, and the fast 
drying of the formulation with prolonged drying 
mechanism.18 The measurements of Raman spectroscopy 
revealed that the LID-HCl-containing preparations were pre-
sent in the different regions of the human skin. LF3 showed 
deeper permeation into the skin and the rate of permeation 
was higher. The measurements of drying properties showed 
that LID-HCl decreased the drying time significantly. 
Mechanical properties give important information about the 
usability of films. Silicone content makes the films softer and 
less resistant; however, the API content modifies the mechan-
ical properties of FFSs. The API increased the skin adhesion 
and film burst strength, and in the case of LF2, the film 
flexibility increased, too. Based on these, the formulation 
containing 25% silicone (LF2) showed the best mechanical 
properties, which could predict better patient adherence. In 
respect of pH, rheological parameters, and film appearance, 
all the three formulations met our requirement. Table 10 
summarizes the applicability of FFSs considering our initial 
expectations (Tables 2 and 3).

In summary, LID-HCl has high influencing effect on 
the formulation properties. The silicone content has 

Figure 9 Mechanical properties of FFSs: (A) Skin adhesion, (B) film flexibility, (C) film burst strength; Mean ± SD (n=4), (p < 0.05 *, p < 0.01 **, p < 0.001 ***, and p < 
0.0001 **** vs blank formulation).

Table 10 Summary of Applicability of FFSs Containing LID-HCl: 
Optimal: Exceptionally Good Result, Adequate: The Result 
Meets Our Requirement of Table 3, Inadequate: The Result 
Does Not Meet the Requirement of Table 3

Formulation 
Investigation

LF1 LF2 LF3

In vitro drug 
release

Optimal Optimal Optimal

In vitro permeation Inadequate Inadequate Optimal

Drying properties Adequate Adequate Optimal
Mechanical 

properties

Inadequate (too 

rigid)

Optimal Adequate 

(too soft)

pH Optimal Optimal Optimal
Viscosity Optimal Optimal Optimal

Film appearance Optimal Optimal Optimal
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improved the effect on the permeation rate of API through 
the skin. Based on our results, formulations F2-LF2 have 
good mechanical properties, but the permeation rate need 
to be increased with addition of other permeation enhan-
cers, and F3 - LF3 are appropriate delivery systems for 
LID-HCl, but the mechanical properties of film are 
required to improve.
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