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Abstract: Osteonecrosis of the epiphyseal and metaphyseal regions of major weight-bearing 
bones of the extremities is a condition that is associated with local death of bone cells and 
marrow in the afflicted compartment. Chronic inflammation is a prominent feature of 
osteonecrosis. If the persistent inflammation is not resolved, this process will result in 
progressive collapse and subsequent degenerative arthritis. In the pre-collapse stage of 
osteonecrosis, attempt at joint preservation rather than joint replacement in this younger 
population with osteonecrosis is a major clinical objective. In this regard, core decompres-
sion, with/without local injection of bone marrow aspirate concentrate (BMAC), is an 
accepted and evidence-based method to help arrest the progression and improve the outcome 
of early-stage osteonecrosis. However, some patients do not respond favorably to this 
treatment. Thus, it is prudent to consider strategies to mitigate chronic inflammation con-
current with addressing the deficiencies in osteogenesis and vasculogenesis in order to save 
the affected joint. Interestingly, the processes of inflammation, osteonecrosis, and bone 
healing are highly inter-related. Therefore, modulating the biological processes and crosstalk 
among cells of the innate immune system, the mesenchymal stem cell-osteoblast lineage and 
others are important to providing the local microenvironment for resolution of inflammation 
and subsequent repair. This review summarizes the clinical and biologic principles associated 
with osteonecrosis and provides potential cutting-end strategies for modulating chronic 
inflammation and facilitating osteogenesis and vasculogenesis using local interventions. 
Although these studies are still in the preclinical stages, it is hoped that safe, efficacious, 
and cost-effective interventions will be developed to save the host’s natural joint. 
Keywords: chronic inflammation, osteonecrosis, osteogenesis, vasculogenesis, bone 
healing, inflammation

Introduction
Inflammation: General Principles
Acute inflammation is the first step of the healing of all tissues and organs subjected 
to physical (mechanical), chemical, infectious, thermal, and other types of injurious 
stimuli. Such trauma leads to activation of the innate immune system, and subse-
quent release of cytokines, chemokines, reactive oxygen species, and other pro- 
inflammatory stimuli, and triggering of the complement and coagulation systems.1,2 

These events are initiated by the recognition of specific chemical motifs called 
pathogen-associated molecular patterns (PAMPs) and damage-associated molecular 
patterns (DAMPs) by pattern recognition receptors (PRRs) on/within the cells at the 
site of injury.3 PAMPs are derivatives of infectious organisms. DAMPs are mole-
cular byproducts from dead or dying cells and are also referred to as endogenous 
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danger signals. The most important PRRs include the Toll- 
like Receptors (TLRs), the C-type lectin receptors, the 
NOD-like receptors, the RIG-I-like receptors, and 
others.3 The acute inflammatory response of the innate 
immune system is a generalized broad response to eradi-
cate or negate the offending stimulus, initiate the clearing 
of cellular debris, and begin the resolution and reconstruc-
tion of normal host tissue. Interestingly, the phase of repair 
and renewal is aided by the pro-inflammatory environ-
ment, that in the case of musculoskeletal and many other 
tissues, activates or licenses mesenchymal stem cells 
(MSCs) and endothelial progenitors to migrate to the 
injured area under the direction of chemokine 
gradients.4–8 Acute inflammation can lead to restoration 
of native host tissue, fibrosis, or chronic inflammation.

Chronic inflammation is a persistent injurious state in 
which acute inflammation and fibrosis continue, despite 
ongoing unsuccessful attempts at definitive resolution and 
repair.1,9,10 In simple terms, innate immune processes (and if 
applicable the more restricted antigen-specific adaptive 
immune system) cannot overcome the offending adverse 
stimulus to reconstitute normal anatomy and 
physiology.11,12 Thus, homeostasis is never achieved despite 
the continued mobilization of all biological resources. 
Chronic inflammation is also a state of heightened energy 
demands, in which organelles such as the mitochondria, 
endoplasmic reticulum, and other important components of 
the cell become exhausted, inefficient, dysfunctional, and 
dysregulated.13–15 If chronic inflammation persists, the resi-
lience and survival of the organism are at risk.

The cellular profile of the innate immune system com-
prises cells of the monocyte/macrophage lineage, espe-
cially local DAMP and PAMP sensing macrophages, 
polymorphonuclear leukocytes (neutrophils), dendritic 
cells, mast cells, specific lymphocyte subgroups including 
NK cells, and other cell types. Chronic inflammation 
involves the above cells as well as other T and B cell 
subgroups. Fibroblasts and vascular lineage cells appear 
in both acute and chronic inflammatory states. During the 
resolution of inflammation, pro-inflammatory M1 macro-
phages polarize to an anti-inflammatory, pro- 
reconstructive, pro-vascularization M2 phenotype, with 
reciprocal effects of local mesenchymal and vascular 
progenitors.1,16,17

Osteonecrosis: Definition and Etiology
Osteonecrosis encompasses a diverse set of conditions that 
lead to the death of the bone cells and marrow within 

a bone compartment.18–20 Osteonecrosis can be localized 
or widespread (multifocal). For simplicity, osteonecrosis 
of the femoral head (ONFH) will be used as the prototype 
condition. Many different predisposing factors are asso-
ciated with osteonecrosis. In general, ONFH is due to 
traumatic events (eg, a displaced fracture of the femoral 
neck, hip dislocation, or vigorous attempts at closed reduc-
tion of a dislocated hip) or may be atraumatic, ie, not due 
to mechanical injury. Traumatic etiologies are thought to 
compromise the vascular supply to the local area directly. 
Atraumatic etiologies include the use of high dose corti-
costeroids, excessive alcohol intake, autoimmune diseases 
such as systemic lupus erythematosus (SLE), radiation, 
chemotherapy, hypercoagulable states, sickle cell disease, 
Gaucher’s disease, and other causes.21,22 Osteonecrosis 
usually afflicts the epiphyseal and metaphyseal areas of 
bone, and can lead to the collapse of bone and secondary 
degenerative arthritis. Osteonecrosis must be differentiated 
from insufficiency fractures due to overuse, pathological 
fractures in abnormal bone, and other conditions. 
Osteonecrosis often occurs in the large weight-bearing 
joints of the hip (femoral head), knee (femoral and tibial 
condyles), and humerus (head), but can occur in virtually 
any bone and location. The majority of cases are asso-
ciated with corticosteroid use or alcohol abuse, usually in 
younger patients in their prime working years.23,24 

Collapse of the involved joint advances to painful and 
debilitating end-stage arthritis. Therefore, it is important 
to diagnose osteonecrosis early so that potential inciting 
factors can be assessed and mitigated, limiting progression 
to the later stages. Furthermore, early diagnosis and treat-
ment may possibly arrest or reverse the progression of 
disease, thereby retaining the patient’s own anatomical 
structures and avoiding joint replacement surgery. 
Unfortunately, a recent study reported from our tertiary 
care center with a special interest in osteonecrosis dis-
closed that 77% of cases were diagnosed in the late stages 
of ONFH, compromising joint saving procedures.25

Relationship Between Chronic 
Inflammation and Osteonecrosis
Despite the fact that numerous etiologies are associated 
with osteonecrosis, the final pathway involves inadequate 
oxygen and nutrient supply to the affected area (Figure 1). 
These events are associated with enhanced differentiation 
of MSCs along the adipogenic pathway, and deficient 
osteogenic and vasculogenic pathways.22,26 The lesions 
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of multifocal osteonecrosis are often diagnosed at various 
stages of the disease. However, at some point, the affected 
anatomical areas demonstrate histological evidence of 
chronic inflammation, cell death, and compromised reso-
lution and repair.27 Real-time image probe analysis shows 
that 6 weeks after induction of osteonecrosis by vascular 
cauterization in mice, activated macrophages and neutro-
phils persist locally.27 In other studies, steroid-associated 
osteonecrosis in rats resulted in upregulation of the PRR 
Toll-like Receptor 4 (TLR4), the downstream adapter pro-
tein for the majority of TLRs: Myeloid differentiation 
factor 88 (MyD88), the major transcription factor for 
inflammatory proteins: Nuclear Factor-Kappa B (NF-κB), 
and Monocyte Chemotactic Protein-1 (MCP-1).28

It is appreciated that many of the molecules related to 
acute and chronic inflammation, osteonecrosis, and bone 
healing are overlapping, and play major roles in activation 
of the innate immune system and tissue repair. NF-κB is 
the major pro-inflammatory transcription factor induced by 

injurious stimuli; pro-inflammatory factors activate or 
license MSCs.1 TLR4 is a PRR on the cell surface, and 
is activated by PAMPs, DAMPs, and other substances.29 

TLR4 has two signaling pathways: the MyD88 dependent 
(TLR4/MyD88/NF-κB) pathway and the MyD88 indepen-
dent (TLR4/TRIF/IRF3) pathway.30 The MyD88 depen-
dent pathway activates NF-κB and promotes the 
expression of MCP-1, a chemokine.31 MCP-1 is 
a chemoattractant for cells of the monocyte-macrophage 
lineage and the MSC-osteoblast lineage.32 MCP-1 induces 
the proliferation of monocytes/macrophages and promotes 
the differentiation and activation of osteoclasts.33 In 
a porcine model, byproducts of necrotic bone have been 
shown to upregulate numerous pro-inflammatory cyto-
kines in a mechanism that is dependent on TLR4 activa-
tion by macrophages.34 This observation has been 
confirmed in a rat model of steroid-associated ONFH, 
which demonstrated excessive activation of TLR4/NF-κB 
and suppression of the canonical Wnt/β-catenin pathway 

Figure 1 Pathophysiology of osteonecrosis. Numerous etiologies are associated with osteonecrosis. However, the final common pathophysiologic pathway involves 
inadequate oxygen and nutrient supply to the affected area. These events lead to enhanced differentiation of MSCs along the adipogenic pathway, and deficient osteogenesis 
and vasculogenesis. Osteonecrosis also demonstrates signs of chronic inflammation: persistent accumulation of activated neutrophils, macrophages, T cells, and other cell 
types; continued activation of TLR4, MyD88, and NF-kB; increased production of pro-inflammatory mediators. 
Abbreviations: MSCs, mesenchymal stem cells; TLR, toll-like receptors; MyD88, myeloid differentiation factor 88; NF-κB, nuclear factor-kappa B.
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(the latter pathway regulates cell fate, cell migration, and 
organogenesis).35 In a study in which serum was collected 
from 20 patients with various stages of ONFH and com-
pared with serum from normal controls, eight genes, 
including TLR4 were identified as potential serum biomar-
kers of the disease.36 The other biomarkers including 
BIRC3, CBL, CCR5, LYN, PAK1, PTEN, and RAF1 
were related to inflammation, bone and cartilage metabo-
lism, and vasculogenesis. This suggests that potential bio-
logical strategies to mitigate the adverse sequelae of 
osteonecrosis might entail curtailing chronic inflammation, 
and facilitating bone formation and vasculogenesis.

Strategies to Mitigate Chronic 
Inflammation and Enhance 
Osteogenesis and Vasculogenesis in 
ONFH
Healing of chronic critical-size bone defects due to trauma 
(delayed union, nonunion), previous infection, periprosthetic 
osteolysis, and other causes is similar, in many ways, to 
defect that are encountered in osteonecrosis. To a lesser or 
greater degree, all of these etiologies have a component of 
chronic inflammation with localized bone necrosis, fibrosis, 
deficient osteogenesis and vasculogenesis, and fatty infiltra-
tion of the tissues. Consequently, research from in vitro and 

in vivo models of healing of critical-size bone defects is 
relevant to treating osteonecrotic lesions. Strategies and 
methodologies that have been used to solve these difficult 
clinical scenarios from our laboratory and others will be 
reviewed in this light.

Inhibition of Chronic Inflammation
Given the fact that osteonecrosis is associated with chronic 
inflammation, it seems prudent to consider interfering with 
these processes. Potential approaches must be delivered in 
a temporal and spatially sensitive manner, as soft and hard 
tissue healing after acute injury is dependent on a short 
period (usually several days) of acute inflammation for 
subsequent resolution and initiation of repair by licensing 
MSCs and other cells.4,5,37–42

Given these facts, below are possible methods to miti-
gate chronic inflammation (Figure 2):

(a). interfering with or obstructing receptor ligation and 
continued activation that prolongs the inflammatory process,

(b). inhibiting the relevant pro-inflammatory pathways 
within the cell,

(c). impeding the transcription, translation, or release 
of inflammatory mediators,

(d). interfering with the end-organ response to specific 
inflammatory mediators,

Figure 2 Potential therapeutic approaches for the resolution of chronic inflammation. Acute inflammation is necessary for healing of tissues after injury. However, chronic 
inflammation is detrimental, and leads to loss of tissue integrity and function. Potential avenues for mitigation of chronic inflammation are listed.
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(e). altering the local cellular microenvironment by 
providing signals and cues to facilitate competing biologi-
cal processes,

(f). elimination of the cells relevant to chronic inflam-
mation altogether.

Many of these strategies have been used in the treat-
ment of systemic chronic inflammatory diseases such as 
rheumatoid arthritis (RA). Pharmacologic agents for RA 
include antimetabolites and other chemotherapeutic 
agents, disease-modifying drugs and biologics that directly 
or indirectly interference with specific cytokines, chemo-
kines, and other pro-inflammatory molecules such as 
Tumor Necrosis Factor alpha (TNFα), Interleukins (IL) 
such as IL-1β and IL-6, etc. Although these drugs are 
highly efficacious in treating RA, systemic delivery of 
these medications with potential serious adverse effects 
is not pragmatic for chronic inflammation due to osteone-
crosis and critical-size bone defects.43 Thus, local delivery 
is probably the preferred route. With respect to mitigating 
chronic inflammation in clinical scenarios relevant to 
osteonecrosis and critical-size bone defects, the following 
local approaches have promise: inhibition of specific 
TLRs, most prominently TLR4; interference with the fol-
lowing: the adapter protein MyD88, the transcription fac-
tor NF-κB, or the chemokines MCP-1 and Macrophage 
Inhibitory Factor (MIF); altering the macrophage 

polarization state from an M1 pro-inflammatory to an 
M2 anti-inflammatory phenotype via local delivery of IL- 
4 or IL-13. Our laboratory and others have utilized some 
of these strategies in models simulating chronic inflamma-
tion associated with wear particle disease.41,44–52 Infusion 
of IL-4, an anti-inflammatory cytokine is one important 
putative strategy to curtail chronic inflammation in a wide 
variety of clinical conditions.41,53–56 IL-4 protein can be 
delivered directly, via scaffolds or other devices, or as 
genetically modified MSCs that over-express IL-4 consti-
tutively, or in response to upregulation of NF-κB.41,48,57–62 

This approach is one of the great interests of our labora-
tory’s treatment of chronic bone defects and 
osteonecrosis.1,63 Other potential immunotherapeutic 
approaches include delivery of IL-13, IL-10, IL-1Ra, 
TNFsR, etc.64

Local Delivery of Biomolecules and/ 
or Cells for Osteogenesis and 
Vasculogenesis (Figure 3)
Biomolecules and Drugs
Local delivery of growth factors and other molecules that 
enhance osteogenesis and vasculogenesis, or inhibit osteo-
clasts for the treatment of bone defects and osteonecrosis 
is not a new concept.65 These factors include members of 

Figure 3 Potential approaches for local delivery of biomolecules, cell therapies, and gene therapies to enhance osteogenesis and vasculogenesis in osteonecrosis. 
Abbreviations: BMAC, bone marrow aspirate concentrate; MSCs, mesenchymal stem cells; GAMs, gene-activated matrices.
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the Transforming Growth Factor (TGF) superfamily 
including TGFβ and Bone Morphogenic Proteins 
(BMPs), Fibroblast Growth Factor (FGF), Vascular 
Endothelial Growth Factor (VEGF), Platelet-Derived 
Growth Factor (PDGF), Insulin-like Growth Factor 
(IGF), Hepatocyte Growth Factor (HGF), Parathyroid 
Hormone (PTH), and others.66,67 These agents have been 
delivered locally as proteins within various polymers, 
scaffolds, types of cements, etc. The biomolecules are 
absorbed, entrapped, immobilized, or coated as drug deliv-
ery systems and then released by diffusion, matrix or 
crosslinker degradation.67 Other drugs for local delivery 
include corticosteroids and other sterols, statins, and 
bisphosphonates.67,68 These biomolecules are often multi-
functional, modulate numerous pathways including the 
inflammatory cascade, osteogenesis, and vasculogenesis, 
and have other biological targets. Although some of 
these interventions have been explored in extensive pre-
clinical and limited clinical studies for the healing of 
critical sized defects, few have been used clinically for 
the treatment of osteonecrosis.69–72 In fact, the clinical 
trials have not led to widespread acceptance and imple-
mentation. Systemic treatment with bisphosphonates or 
statins has not proven to be effective for ONFH in 
a recent systematic review, however local treatment may 
prove to be efficacious.73 The challenges of the necrotic, 
avascular harsh biological environment in osteonecrotic 
lesions may be too demanding for pharmacologic therapy 
alone to be successful.

Cell Therapies
Cell therapy for ONFH and other bones afflicted with this 
disease is no longer experimental. The use of concentrated 
autologous iliac crest bone graft in conjunction with core 
decompression (CD) in the early stages of osteonecrosis is 
evidenced based.18,74–78 Perhaps the most compelling 
study is the one reported by Hernigou et al in 2018, in 
which the authors performed simultaneous bilateral CD in 
125 sequential patients; in one of the two hips undergoing 
CD, they added bone marrow aspirate concentrate 
(BMAC).76 The number of MSCs (or colony-forming 
unit-fibroblasts [CFU-Fs]) injected into the CD site ran-
ged from 45,000 to 180,000 cells with a mean of 90,000 ± 
25,000 cells. After 20–30 years of follow-up, the addition 
of BMAC was found to reduce the rate of collapse of the 
femoral head from 72% to 28%; the percentage of patients 
undergoing hip replacement was reduced from 76% to 
24%. Using quantitative MRI, the volume in the femoral 

head occupied by the osteonecrotic lesion in the group 
receiving BMAC decreased from 44.8% to 12%. These 
are compelling data. The concept of addition BMAC to 
CD for treatment of ONFH would benefit from a large 
prospective randomized multicenter study.

Extensive preclinical and laboratory analysis has been 
performed on BMAC and is reviewed in recent 
publications.74,79–82 Numerous factors are relevant to the 
number and vitality of the harvested cells, including the 
age and gender of the patient, the presence of medical co- 
morbidities and medications such as corticosteroids and 
others, smoking, obesity, etc. It is important to note that 
BMAC is not MSCs, but a conglomerate of different 
mononuclear cell types including macrophages, lympho-
cytes, mast cells, and other cells. In fact, only about 1 
CFU-F was present in 30,000 nucleated cells harvested 
from the anterior iliac crest, which equates to about 600 
CFU-Fs per cc of bone marrow aspirate.82

Despite the apparent success of BMAC for the treat-
ment of osteonecrosis, several questions remain. Is BMAC 
the preferred cells to inject for osteonecrosis? How many 
cells of different lineages are necessary? Are MSCs alone 
sufficient? Can MSCs be altered to mitigate inflammation 
and facilitate healing of the osteonecrotic lesion? Are 
allograft-derived MSCs equally efficacious? Although no 
definitive answers are currently available for these ques-
tions, some pertinent observations need mentioning. There 
is substantial evidence that the addition of macrophages 
will augment the osteogenic capabilities of MSCs, prob-
ably by licensing the latter cells and engaging in contin-
uous MSC-macrophage crosstalk to enhance tissue 
repair.17,38,41,53,62,83–85 These findings substantiate inject-
ing an agglomerate of MSCs and hematopoietic lineage 
cells. Nevertheless, autologous and allogenic MSCs alone 
(and/or their byproducts such as exosomes) are being iso-
lated, expanded and delivered to heal bone defects and for 
treatment of osteonecrosis.86–90 In the USA, the FDA has 
rather stringent regulatory guidelines for the use of cells 
and their byproducts, which must undergo “minimal 
manipulation” prior to use in humans.91 A recent publica-
tion from the present authors summarizes significant mod-
ifications to the phenotype of MSCs (more than minimal 
manipulation) to facilitate bone healing.9 Some of these 
techniques include preconditioning with biologics, expo-
sure of MSCs to low oxygen environments, and gene 
therapy/genetic manipulation of cells. Some other 
approaches include optimizing techniques for isolation, 
expansion, and storage of MSCs, and improving the 
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physical, chemical, topographic, electrical, and other prop-
erties of the carrier or scaffold used, and the defect in the 
host into which the cells are implanted.

Gene Therapies
Gene therapy and the genetic manipulation of cells for the 
purpose of musculoskeletal tissue healing are an exciting 
concept and have been reviewed elsewhere.9,92 Gene ther-
apy may be accomplished using chemical and physical 
methodologies without viruses to transport DNA or micro-
particles into cells; by the use of gene activated matrices 
(GAMs) or other platforms that support the release of 
genetic material to the surrounding cells according to pre-
determined temporal and spatial parameters; via the use of 
viral vectors to engineer autologous or allogeneic cells ex 
vivo with subsequent injection of these cells in vivo; or by 
direct transfer of genes into cells in vivo.9 Gene therapy 
has also been used as a treatment for osteonecrosis, mostly 
in preclinical studies.93–100 We have used BMAC, MSCs, 
preconditioned MSCs, and genetically modified MSCs that 
overexpress IL-4 injected into the CD tract with/without 
a novel 3D printed, customized functionally graded scaf-
fold as a treatment for ONFH in rabbits.1,101 In preclinical 
studies, the addition of IL-4 over-expressing MSCs in the 
acute phase of osteonecrosis may hamper regenerative 
efforts by suppressing the acute inflammatory reaction 
that is necessary for bone healing. Other strategies are 
currently being assessed.

Summary
The use of biomolecules, drugs, cells, and gene therapy for 
the treatment of osteonecrosis is very enticing. However, 
these treatments are generally in the preclinical stage 
except for BMAC therapy, and must be weighed against 
numerous potential risks including unintended adverse 
effects on neighboring cells, and the development of 
immunogenicity, mutagenicity, and carcinogenesis. 
Furthermore, the timing, dose and optimal platform for 
delivery, and issues related to cost-effectiveness must be 
addressed.

Discussion
Chronic inflammation is detrimental to all tissues and 
organs. This process generally leads to the replacement 
of normal host tissue by an undesirable fibrovascular stro-
mal scar laden with acute and chronic inflammatory cells. 
This substitute tissue does not have the anatomical, phy-
siological, metabolic, and functional integrity of the host 

tissue. In clinical cases in which substantial portions of an 
organ are afflicted by chronic inflammation, the opera-
tional performance of vital processes may be jeopardized, 
eg, in chronic hepatitis, nephritis, diabetes, cardiopulmon-
ary disease, RA, aging, and other disorders.102,103 The 
associated morbidity and mortality are substantial.104

In this regard, bones and joints are no different. 
Chronic inflammation is often seen in inflammatory arthri-
tis, chronic osteomyelitis, nonunion of fractures, and 
osteonecrosis. This is manifested as persistent unresolved 
overactivity of the innate, and in some cases, the adaptive 
immune systems. In osteonecrosis, despite various asso-
ciated predisposing factors, chronic inflammation in 
response to DAMPs impedes neovascularization and 
osteogenesis. This situation will progress to joint collapse 
and end-stage arthritis if it is not arrested. The situation is 
even more dire in cases of multifocal osteonecrosis.105,106

The optimal treatment for early-stage osteonecrosis 
involves strategies for mitigation of chronic inflammation, 
and fostering of osteogenesis and vasculogenesis prior to 
joint collapse. In these cases, joint preservation is a much 
better option than joint replacement, due to the patient’s 
young age. However, the exact treatment for these com-
plex cases, often in the presence of persisting predisposing 
factors (eg, continued high dose corticosteroids for the 
treatment of SLE) sometimes restricts the medical practi-
tioner’s options.

Systemic pharmacological approaches appear to have 
little utility in the treatment and prevention of osteonecro-
sis in the adult.73 Early diagnosis is important so that 
treatment options can be reviewed and implemented. 
This suggests that high-risk patients need to be identified 
and screened, at least with a comprehensive history and 
possibly with selective non-invasive imaging such as 
MRI.25

Local treatment with CD, possibly with the addition of 
biological adjuncts such as BMAC seems reasonable in 
the pre-collapse stages. Research should address what 
component(s) of the BMAC and what doses optimize 
reconstitution of the osteonecrotic defect. Specific biolo-
gical approaches might focus on the issues of attendant 
chronic inflammation, and their adverse effects on osteo-
genesis and vasculogenesis. Custom design of cells and 
biologics derived from the patient’s own tissues, though 
currently not approved by the FDA as they would involve 
more than minimal manipulation, might further improve 
the aims and goals of regenerative medicine for osteone-
crosis. Custom-designed mechanically based implants 

Journal of Inflammation Research 2020:13                                                                                 submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                         
919

Dovepress                                                                                                                                          Goodman and Maruyama

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


could potentially delay physical collapse of bone and 
cartilage, and provide important signaling cues for tissue 
regeneration. Such implants that are 3D printed and bio-
degradable are currently being tested in preclinical studies 
in our laboratory.101 It is hoped that some of these tech-
nologies will prove to be safe, efficacious, and cost- 
effective. In this way the pain, disability, and morbidity 
of the millions of patients with osteonecrosis worldwide 
might be assuaged.
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