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Purpose: Traditional questionnaires assessing the severity of depression are limited and 
might not be appropriate for military personnel. We intend to explore the diagnostic ability of 
three machine learning methods for evaluating the depression status of Chinese recruits, 
using the Chinese version of Beck Depression Inventory-II (BDI-II) as the standard.
Patients and Methods: Our diagnostic study was carried out in Luoyang City (Henan 
Province, China; 10/16/2018–12/10/2018) with a sample of 1000 Chinese male recruits 
selected using cluster convenient sampling. All participants completed the BDI and 3 
questionnaires including the data of demographics, military careers and 18 factors. The 
participants were randomly selected as the training set and the testing at 2:1. The machine 
learning methods tested for assessing the presence or absence of depression status were 
neural network (NN), support vector machine (SVM), and decision tree (DT).
Results: A total of 1000 participants completed the questionnaires, with 223 reporting 
depression status and 777 not. The highest sensitivity was observed for DT (94.1%), 
followed by SVM (93.4%) and NN (93.1%). The highest specificity was observed for NN 
(60.0%), followed by SVM (58.8%) and DT (43.3%). The area under the curve (AUC) of the 
SVM was the largest (0.862) compared with NN (0.860) and DT (0.734). The regression 
prediction error and error volatility of the SVM were the smallest.
Conclusion: The SVM has the smallest prediction error and error volatility, as well as the 
largest AUC compared with NN and DT for assessing the presence or absence of depression 
status in Chinese recruits.
Keywords: depression, questionnaire, military, machine learning, diagnosis

Introduction
Major depressive disorder (MDD) is characterized by persistent low mood, lack of 
positive affect, and loss of interest in usually pleasurable activities, which accounts 
for approximately 20% of people in their lifetime.1,2 The identified risk factors for 
MDD include family or personal history of MDD, chronic medical illness, alcohol 
or substance use, post-traumatic stress syndrome (PTSD), job change or financial 
difficulty, domestic abuse or violence, female, low income and unemployment, and 
disability.1,3

The population of military personnel are at high risk of developing or 
exacerbating MDD owing to working in highly stressful conditions and environ-
ment, and a high incidence of PTSD.4–8 These mental health problems are 
associated with high costs and decreases in productivity. It is reported that 
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9–20% of military personnel returning from deployment 
suffer from mental illness, with 50% of them requiring 
mental health services.9–11 The stressors are limited to 
not only those living in the combat environment but also 
those returning from deployment.12,13 The depressive 
status of military personnel is unique because of the 
violent training in the military, while they do not have 
to bear or witness violence in the real world.14,15 

Recruits can be apprehensive toward this violence and 
resentful at mandatory military service.16,17 According to 
a research on the prevalence of depression and asso-
ciated factors among military personnel, having siblings, 
military work type, smoking, a sick person at home, and 
problematic relations with fathers, co-workers, supervi-
sors, subordinates, and relatives are the main factors 
associated with an increased likelihood of depression.18

Numerous tools are available for assessing recruits’ 
depression severity and are useful for screening MDD or 
for susceptibility to MDD. Those classic tools include 
the Zung Self-rating Depression Scale (SDS),19–21 

Symptom Checklist 90 (SCL-90),22 and Beck 
Depression Inventory (BDI),23,24 among others. Those 
questionnaires are valuable for the diagnosis of MDD, 
but they have limitations such as cultural adaptation and 
the fact that an intelligent individual can “cheat” and 
answer what the interviewer wants to hear. In addition, 
they are not adapted to the harsh working conditions of 
the military.25,26 BDI is a measure of current depressive 
symptoms. It is not a tool for predicting future depres-
sive traits. A previous study showed that pre-deployment 
mental health screening might reduce psychiatric disor-
ders during and after deployment.27 Soldiers who scored 
high for hope, optimism, confidence, and resilience 
before deployment were less likely to develop psychia-
tric illness.28 Another study developed a questionnaire 
administered early in soldiers’ carriers, and can predict 
future mental health problems.5

New methods based on machine learning methods are 
now being developed for the assessment of emotional 
status.29–34 Nevertheless, the existing studies have contra-
dictory results and deficiencies, such as using various 
machine learning methods for evaluating depression status 
and the selection of the calibration questionnaires. Many 
studies have used the SDS, and few used the BDI for 
calibration. In addition, there were no studies focusing 
on the evaluation methods and results of the depression 
status in the population of Chinese soldiers, particularly in 
Chinese recruits.

Therefore, this study aimed to explore the diagnostic 
ability of three machine learning methods, neural net-
works, support vector machines (SVM), and decision 
trees, so as to evaluate the depression status of Chinese 
recruits, using the BDI as the standard. The results could 
provide additional tools for the detection of the depression 
status and its susceptibility to this specific population.

Methods
Study Design and Participants
This study was carried out in Luoyang City (Henan 
Province, China) between October 16 and December 10, 
2018. A sample of 1000 Chinese male soldiers were selected 
using the method of cluster convenient sampling. This study 
was approved by the Medical Ethics Committee of the Army 
Medical University of the Chinese People’s Liberation 
Army. The study was anonymous. The soldiers consented 
to this study and participated voluntarily. The soldiers were 
informed about the purpose of the study, and it was con-
ducted in accordance with the Declaration of Helsinki.

The inclusion criteria were: 1) age ≥18 years; 2) 
male; 3) <1 year of military service; 4) junior high school 
education and above; and 5) residing in Luoyang City, 
Henan Province. The exclusion criteria were: 1) subjects 
with severe physical illness or schizophrenia, bipolar dis-
order, cerebral organic diseases, epilepsy, substance abuse, 
and other mental disorders; 2) non-cooperation or serious 
data loss; or 3) could not complete the investigation due to 
withdrawal, distribution, deployment, injuries, etc.

Survey Tools
The BDI was used as the calibration questionnaire. The 
BDI has 21 items mainly used to assess the severity of 
depression. Each item corresponds to a symptom category, 
such as pessimism, suicidal intention, sleep disorders, and 
social withdrawal. The severity of depressive symptoms 
assessed by the BDI ranges from none to extremely severe 
and is classified into four levels, with a value of 0–3. 
A total score of 4 points or less represents no depressive 
state, 5–13 points a mild depressive state, 14–20 points 
a moderate depressive state, and 21 points or higher 
a severe depressive state.35 Anyone with a score below 4 
is considered not depressed.35 The results of the BDI 
assessment were converted into binary categories, that 
was, with or without depression.

The Chinese version of Beck Depression Inventory-II is 
validated among depression patients.36 The Cronbach 
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coefficient of BDI is 0.83. The odd and even split-half 
reliability coefficient was 0.86 (Spearman-Brown correla-
tion coefficient was 0.93). For the retest consistency, the 
stability coefficient of this scale for retesting within a few 
weeks was usually 0.70–0.80. For the convergent validity, 
the BDI was significantly associated with clinical depres-
sion assessment, with a correlation coefficient of 0.60–0.90, 
which varied with sample size. For discriminant validity, 
the BDI had a greater correlation with clinical depression 
assessment (0.59) than that of anxiety (0.14).23,37,38

Eighteen factors from three questionnaires were used 
as a part of the input features. Military mental health status 
questionnaire (MMHSQ) included 7 factors: psychosis, 
depression, suicidal tendency, post-traumatic stress, sleep 
problems, social phobia and antisocial tendency. The mili-
tary mental health ability questionnaire (MMHAQ) 
included 6 factors: emergency dealing ability, stress toler-
ance ability, calm ability, adapting ability, physical control 
ability and cooperation ability. There are 5 factors in the 
mental quality questionnaire for army-men, including 
intelligence, loyalty, courage, frustration, and confidence. 
All these scales have good content validity, structure valid-
ity and criterion validity.39–41

Observation Indicators and Data 
Collection and Processing
The input features of three machine learning models include 
not only demographic data but also psychological self- 
reports data. And the psychological self-reported data came 
from the 3-dimension 3-rank model (3D3RM), which is 
thought to be representative of China.42 The baseline data 
collected in this study include age, duration of military ser-
vice, serving place, sex, and personnel classification. Each 
participant completed the BDI scale assessment and the 
evaluation of 18 factors of three questionnaires. So, the 
input features of three machine learning models were age, 
duration of military service, serving place, sex, personnel 
classification and 18 factors from 3 questionnaires.

The research subjects were randomly selected as the 
training set and the testing set at a ratio of 2:1 (N: 667, 
333). The scores of mental health ability and mental health 
quality were reversely scored. The scores of 18 factors 
were calculated, which were the original score of the 
factor. The BDI score was calculated, which was the 
original score of the calibration. The extremum standardi-
zation method was used to normalize the original score of 
the factor and the original score of the calibration, and the 

data were converted into a score using the centesimal 
system, which was the standard score. The k-means 
method was used to perform binary clustering of the 
standard scores of BDI, and to determine the category of 
each sample. The standard scores of durations of military 
service, age, personnel category, and 18 factors were used 
as the input features of machine learning. The BDI cen-
tesimal score was used as the outcome variable for model 
training and testing. The goodness and badness of the 
model were presented by parameters such as sensitivity, 
specificity, accuracy, and area under the curve (AUC).

Machine Learning Methods
Neural network: This study used a backpropagation neural 
network (BPNN) with only one hidden layer to handle the 
model calculation, including the processes of network 
initialization, hidden layer output calculation, output 
layer output calculation, error calculation, weights updat-
ing, thresholds updating, and determining whether the 
algorithm iteration was ended. Figure 1 shows the sche-
matic diagram of neural network training.

SVM: This study used SVM to find the most suitable 
hyperplane based on the indicators. Figure 2 shows the 
flowchart of SVM parameter optimization.

Decision tree: This study used the C4.5 decision tree 
algorithm, which divided the characteristics with the infor-
mation gain rate and discretized the value space. It could 
convert continuous values and missing values into discrete 
attributes and then perform calculations, overcoming the 
shortcomings of using information gain to select charac-
teristics, and had pruned in the process of constructing the 
tree, and improved the accuracy. Figure 3 shows the local 
schematic diagram of the two-level regression tree model.

Statistical Analysis
All data were analyzed using Pycharm Community Edition 
(Version 2019.1.3, JetBrains, Czech Republic) and SPSS 
24.0 (IBM, Armonk, NY, USA). All continuous variables 
were tested for normal distribution using the Kolmogorov– 
Smirnov test. The data that conformed to the normal dis-
tribution were expressed as means ± standard deviations; 
otherwise, they were presented as medians (ranges). 
Categorical variables were expressed as frequencies (per-
centages) and analyzed using the chi-square test. A grid 
search algorithm was used for parameter selection of the 
SVM classification model and regression model to obtain 
the optimal error penalty factor C and the parameter 
gamma of the kernel function. The comparison of model 
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classification results was presented using receiver operat-
ing characteristic (ROC) curves. The comparisons of the 
differences in regression results were calculated by non-
parametric tests. In the regression model, the dependent 
variables were the combined scores of the three combined 

weighted factors after converting to the centesimal system. 
The parameters used to compare the regression accuracy 
of the three machine learning models were obtained, 
including the mean square error (MSE), root means square 
error (RMSE), mean absolute error (MAE), mean absolute 
percentage error (MAPE), and coefficient of determination 
(R2). P<0.05 was considered statistically significant.

Results
Characteristics of the Participants
In this study, a total of 1000 questionnaires were distrib-
uted, and 1000 valid questionnaires were retrieved. The 
effective retrieval rate was 100%. At the Luoyang training 
site, 1000 military soldiers were selected using the method 
of cluster convenient sampling. All of them were males, 
aged 18–24 years, with an average of 19.3±1.4 years. The 
median age was 19 years old, and the mode was 18 years 
old. The military service in all samples was <1 month. 
There are no missing BDI items. According to the BDI 
results, anyone with a score below 4 is considered not 
depressed.35 Seven hundred and seventy-seven partici-
pants had no depressive symptoms, 171 samples had 
mild depressive symptoms, 40 samples had moderate 

Figure 1 Schematic diagram of neural network training.

Figure 2 Support vector machine diagram.
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depressive symptoms, and 12 participants had severe 
depressive symptoms. In other words,777 participants 
had no depressive symptoms, and 223 had depressive 
symptoms. There were 667 participants in the training set 
and 333 in the validation set after randomization.

The Classification Effect of the Three 
Machine Learning Methods
The highest sensitivity for MDD was observed for the deci-
sion tree (94.1%), followed by the SVM (93.4%) and the 
neural network (93.1%). The highest specificity for MDD 
was observed for the neural network (60.0%), followed by 
the SVM (58.8%) and the decision tree (43.3%). (Table 1) 
Regarding the ROC curve, the AUC of the SVM was the 
largest (0.862), compared with that of the neural network 
(0.860) and that of the decision tree (0.734) (Figure 4).

Regression Analysis of Three Machine 
Learning Methods
The comparison results of the regression model parameters 
showed that SVM had the smallest regression prediction 
error and the error volatility (Table 2), thus presenting the 
best regression results.

Discussion
Traditional questionnaires for the detection of MDD or 
susceptibility to MDD have disadvantage and might not 
be appropriate for military personnel.25,26 Therefore, this 
study aimed to explore the predictive and diagnostic abil-
ity of three machine learning methods for evaluating the 
depression status of Chinese recruits, using the BDI as 
the standard. The highest sensitivity was observed for the 
decision tree, followed by the SVM and neural network. 
The highest specificity was observed for the neural net-
work, followed by the SVM and decision tree. The AUC 
of the SVM was the largest compared with the neural 

Figure 3 Local schematic diagram of the two-level regression tree model.

Table 1 The Sensitivity, Specificity, and AUC of Three Machine 
Learning Methods (Neural Network, Support Vector Machine, 
and Decision Tree) for Evaluating the Depression Status of 
Chinese Recruits

Neural 
Network

Support Vector 
Machine

Decision 
Tree

Sensitivity 0.931 0.934 0.941

Specificity 0.600 0.588 0.433
AUC 0.860 0.862 0.734

Abbreviation: AUC, area under the curve.
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network and decision tree. The regression prediction error 
and error volatility of the SVM were the smallest. 
Therefore, an SVM had the best prediction error, error 
volatility, and AUC compared with the neural network 
and decision tree for the detection of depression status in 
Chinese recruits.

Sensitivity and specificity are important indicators of 
machine learning. In this study, high sensitivity and med-
ium specificity may indeed result in high false positive. 
This result may be attributed to the dichotomy problem 
with BDI, which is a rigorous screening criterion for 
depression. However, the sensitivity of this model is sig-
nificant for the identification of depressed state in Chinese 
military recruits. Based on the results of this model and 
combined with clinical interviews, the new recruits can be 
selected and eliminated without missing a single person. 
Furthermore, feature selection in machine learning models 
has the potential to solve the specificity problem. We will 
go further in the follow-up study.

The military is supposed to commit to the well-being 
of their troopers. This not only ensures an optimal fighting 
force but also contributes to the unity of the army. Taking 
care of military personnel is conducive to military fitness 
and operational readiness.43 In the present study, the fre-
quency of having depressive symptoms was 22.3%, higher 
than that in the general Chinese population.44,45 The rea-
son might be that all participants were recruits of less than 
1 month, and they were still adapting to military life.16,17 

The recruits in the study were between 18 and 24 years 
old, but the onset of MDD tends to be greater in later 
adolescence/earlier adulthood, so the comparison with the 
entire population may not be all that fair.

Different countries have different methods of screening 
for depression. In Canada, screening mostly relies on inter-
views, while in the United States, screening tools are 
used.14,15 Nevertheless, self-reported data on the psycho-
logical dimension improve model performance. 
A machine-learning technique was applied in Britain in 
a study of 13,690 current or former servicemen and found 
out that self-report could effectively distinguish those with 
PTSD.34 The US military improved the accuracy of 
machine-learning models from 17.5% to 29.4% (67.9% 
improvement) by adding self-report into management 
data.30 In the present study, the input features of three 
machine learning models include not only demographic 
data but also psychological self-reports. Additionally, the 
psychological self-reported data came from the 3-dimen-
sion 3-rank model (3D3RM), which is thought to be the 
representative of China.42 The 3D3RM focuses on the 
mental health of military soldiers, which are three dimen-
sions of psychological stability, psychological capability, 
and psychological quality.42 Therefore, the use of self- 
reported data in the present study probably increases the 
value and reliability of the machine learning models.

Previous studies examined machine learning methods 
for the prediction of MDD and related conditions. 
Batterham et al46 elaborated on a decision tree model 
that could assess the 4-year risk of MDD, and that was 
better than logistic regression. A decision tree allows for 
the inclusion of high-order interaction terms than a logistic 
regression model and allows breaking down a population 
into categories with clinical usefulness. Karstoft et al31 

used a Markov boundary feature selection algorithm for 
generalized local learning and achieved a model that could 
predict PTSD with high accuracy in Danish military per-
sonnel. Gradus et al47 elaborated random forest models for 
the detection of trauma and suicidal ideation after 

Figure 4 Receiver operating characteristics (ROC) curve for depression in Chinese 
recruits from three machine learning methods: support vector machine (blue line), 
neural network (orange line), and decision tree (green line).

Table 2 Comparison of Regression Model Parameters of Three 
Machine Learning Methods (Neural Network, Support Vector 
Machine, and Decision Tree)

Neural 
Network

Support Vector 
Machine

Decision 
Tree

R2 0.465 0.544 0.477

MSE 64.884 60.087 68.043

RMSE 8.055 7.752 8.249
MAE 4.821 4.659 5.243

MAPE 0.897 1.030 0.822

Abbreviations: R2, coefficient of determination; MSE, mean square error; RMSE, 
root mean square error; MAE, mean absolute error; MAPE, mean absolute percen-
tage error.
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deployment in Iraq and Afghanistan. The results showed 
that their model achieved a high degree of replicability 
that could be used as a screening tool among veterans. 
Moreover, Rosellini et al48 used super-learning to develop 
models to show that they could detect MDD, suicidal 
ideation, and anxiety with high accuracy, identifying sol-
diers that might benefit from not being deployed. 
Nevertheless, those studies only examine one machine 
learning method. Leightley et al34 compared SVM, ran-
dom forests, artificial neural networks, and bagging for the 
detection of PTSD in British military personnel. In their 
study, random forests achieved the highest accuracy 
(97%), while SVM achieved the highest sensitivity 
(70%). In our study, sensitivity was >93% for all three 
machine learning methods (neural network, SVM, and 
decision tree) as BDI is the standard. SVM achieved the 
highest AUC and the lowest errors. Nevertheless, further 
studies are necessary to refine the model. Nevertheless, 
a strength of the present study was the use of BDI as the 
standard compared with previous studies that used the 
SDS, since a head-to-head comparison of the BDI and 
SDS showed that the BDI was superior in terms of psy-
chometric properties.49

Nevertheless, comparing deep learning models can be 
difficult because each model has its own advantages and 
disadvantages. Furthermore, different input variables may be 
the primary factors influencing output. The fuzzy neural 
network was used in the mental health assessment of college 
students.50 The gradient enhancement model was better than 
the random forest and the regression in predicting mortality 
of patients admitted to the hospital.51 The risk of suicide in 
American soldiers was evaluated using the Naive Bayes, 
random forest, SVM, and elastic net penalty regression, of 
which the sensitivity was optimal for an inelastic mesh 
classifier.32 In another study of suicide risk in soldiers, the 
AUC of logistic regression was 0.62, while that of the Super 
Learner model was 0.83.52 In a study by Ding et al, 144 
patients with MDD and 204 matched healthy controls were 
recruited. They were required to watch a series of affective 
and neutral stimuli under monitoring using EEG, eye track-
ing, and galvanic skin response; then, three machine learning 
algorithms including random forests, logistic regression, and 
SVM were trained to build dichotomous classification 
model.53 The results showed that the highest classification 
f1 score was obtained by logistic regression algorithms 
(79.6% accuracy, 76.7% precision, 85.2% recall, and 
80.7% f1 score).53 The SVM is a supervised learning 
method to classify the annotated results with only one 

solution. The SVM is considered as one of the most effective 
classification algorithms available. The advantage of SVM is 
that it suits in building classifiers with a small number of 
samples for each category and tries to adapt the nonlinear 
discriminant function to achieve more accurate 
classification.29 Meanwhile, the generalization performance 
of SVM is not stable, and BPNN has different advantages in 
sensitivity and specificity compared with SVM.54,55 The 
utility of these machine learning models also differs based 
on their input variables.

A recent systematic review has pointed out that the 
current available studies have methodological limitations, 
but that research is on the right way.56 In particular, there 
is a need to recapitulate the results in multiple centers. 
Another research avenue could also be the inclusion of 
neuroimaging biomarkers, which have been identified for 
PTSD.57–61 Indeed, the combination of self-reported data 
and neuroimaging features could provide a complete 
model of the risk of depressive status in military person-
nel. A study revealed that using functional MRI data in an 
SVM could identify patients with severe depression, but 
did not perform well for milder depression.62 Hence, 
inclusion of self-reported data could help distinguish all 
grades of depression. Indeed, self-reported data can be 
used to stratify the patients effectively using machine 
learning.63 Additionally, self-reported and pre- 
deployment demographic/clinical data are much cheaper 
than imaging data. The utility of the imaging data might be 
limited if it does not improve the predictions. A review 
highlights that the common challenges of the learning 
machine studies in depressive disorders are the small sam-
ple size, feature reduction, overfitting, classification meth-
ods, and cross-validation.58 Those points should be taken 
into consideration in future studies.

This study has limitations. First, the sample size was 
small and limited to a single station. BDI has good reliability 
and validity, and there are many clinical and applied studies 
using the most common scale in China.23,24,36 BDI can 
differentiate subtypes of depression and distinguish depres-
sion from anxiety,64. Nevertheless, BDI is a severity rating 
scale, rather than a screening scale, and is often used as 
a self-scoring questionnaire. There are limitations that only 
one tool was used to estimate the depression status and to 
screen MDD without a clinical interview and the machine 
learning model cannot overcome the limitations of the BDI 
scale. The use of multiple tools could be explored in the 
future to improve the sensitivity and specificity of the mod-
els. Moreover, routine blood biochemistry data could also be 
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included.65,66 In addition, this study lacks data-driven fea-
ture selection for depression, and model generalization abil-
ity has not been clarified. Second, machine learning methods 
have their own limitations, such as not considering some 
relationships that might be bidirectional. Third, the predic-
tive power of the model has not been verified by prospective 
studies. The present study included cross-sectional data and 
should be validated using longitudinal data. Fourth, only 
men were recruited, and the models should be validated in 
women. Moreover, a large number of complex socio- 
demographic variables and career variables have not been 
included into the model. Finally, the mediators of depression 
were not explored.

Conclusion
In conclusion, an SVM had the smallest prediction error and 
error volatility, as well as the largest AUC compared with 
the neural network and decision tree for the detection of 
MDD in Chinese recruits. This tool could be used to esti-
mate the depression or susceptibility to MDD in recruits and 
identify those who could benefit from interventions to pre-
vent MDD. In addition, this tool could be particularly valu-
able since military personnel is often unwilling to disclose 
psychiatric conditions by themselves.67
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