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Abstract: Malaria is among the most devastating and widespread tropical parasitic diseases 
in which most prevalent in developing countries. Antimalarial drug resistance is the ability of 
a parasite strain to survive and/or to multiply despite the administration and absorption of 
medicine given in doses equal to or higher than those usually recommended. Among the 
factors which facilitate the emergence of resistance to existing antimalarial drugs: the 
parasite mutation rate, the overall parasite load, the strength of drug selected, the treatment 
compliance, poor adherence to malaria treatment guideline, improper dosing, poor pharma-
cokinetic properties, fake drugs lead to inadequate drug exposure on parasites, and poor- 
quality antimalarial may aid and abet resistance. Malaria vaccines can be categorized into 
three categories: pre-erythrocytic, blood-stage, and transmission-blocking vaccines. 
Molecular markers of antimalarial drug resistance are used to screen for the emergence of 
resistance and assess its spread. It provides information about the parasite genetics associated 
with resistance, either single nucleotide polymorphisms or gene copy number variations 
which are associated with decreased susceptibility of parasites to antimalarial drugs. Glucose 
transporter PfHT1, kinases (Plasmodium kinome), food vacuole, apicoplast, cysteine pro-
teases, and aminopeptidases are the novel targets for the development of new antimalarial 
drugs. Therefore, this review summarizes the antimalarial drug resistance and novel targets 
of antimalarial drugs. 
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Introduction
Malaria is an infectious, hematologic disease causing death and illness in children 
and adults, especially in tropical countries1 Malaria control requires an integrated 
approach, including prevention, primarily vector control, and prompt treatment with 
effective antimalarial drugs.2 Malaria is among the most devastating and wide-
spread tropical parasitic diseases in which most prevalent in developing countries.3 

Malaria is caused by the Plasmodium parasite, which is transmitted by the bite of 
a mosquito vector. Five species are known to infect humans: P. falciparum, 
Plasmodium vivax, Plasmodium ovalae, Plasmodium malariae, and Plasmodium 
knowelsi. The parasite P. falciparum causes the most dangerous, with the highest 
rates of complications and mortality.3 Antimalarial drug resistance results in 
a global resurgence of malaria making a major threat to malaria control. 
Widespread and indiscriminate use of antimalarial drugs contributes to malaria 
parasites to evolve mechanisms of resistance.4,5

The malaria life cycle is very complex which requires two organisms as host, 
mosquito, and human being.6 The most common symptoms of malaria (chills, high 
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fever, sweating, malaise, headache, and muscle aches) 
manifest usually one to four weeks after infection with 
the parasite; in relapsing Plasmodium parasites it ranges 
from five to eight years, but these signs and symptoms 
may also have seen in other diseases.7 Currently, available 
malaria diagnostic tools for identification of plasmodium 
species in human blood samples include microscopy (light 
or fluorescence)-gold standard method, immuno- 
chromatographic lateral flow assays (also called rapid 
diagnostic tests, RDTs), serology, nucleic acid amplifica-
tion techniques (NATs) that include polymerase chain 
reaction (PCR) and isothermal amplification and others.8,9

According to the 2018 malaria report WHO estimated 
that approximately, 219 million cases of malaria from 90 
countries, an increase of 2 million cases over 2016. Infants 
and young children in malaria-endemic countries of Africa 
typically experience several clinical episodes of malaria 
before they develop partial immunity. This protects against 
severe disease and death from malaria.10,11 Malaria con-
tinues to burden the overstretched health services in the 
sub-Saharan region and is a serious public health problem. 
The same report indicated that 3.1 billion US$ was 
invested for malaria control and elimination program, of 
which US$ 2.2 billion benefited the WHO African Region, 
followed by the WHO Southeast Asia Region US$ 
0.3 billion. The WHO African region with 200 million 
cases (92%) in 2017, followed by the WHO Southeast 
Asia region (5%), especially Sub-Saharan Africa suffers 
by far the greatest malaria burden worldwide and is cur-
rently undergoing a profound demographic change. 
Almost 93% of all deaths due to malaria in 2017 were 
from Africa. Globally 266, 000 (61%) malaria deaths were 
estimated to be in children less than 5 years age.12 In most 
areas of Africa, P. vivax infection is essentially absent 
because of the inherited lack of the Duffy antigen receptor 
for chemokine on the surface of red blood cells that are 
involved in the parasite invasion of erythrocytes.13 

However, in Brazilian Amazon, Madagascar, and Central 
Sudan implicated that individuals with negative Duffy 
antigen receptor were infected with p. vivax. P.falciparum 
species are dominant in Africa and the highest-burden of 
P. vivax infection is in Southeast Asia and South 
America14 In Ethiopia, major malaria transmission seasons 
are from September to December and June to August.15 

According to the 2018 federal ministry of health (FMOH) 
of Ethiopia report many densely populated highland areas 
are malaria-free including the capital city of Addis Ababa. 
Health management information system (HMIS) of 

Ethiopia report between June 2016 and July 2017, 
1,530,739 confirmed malaria illnesses (69.24% 
P. falciparum, 30.76% P. vivax) malaria illnesses from 
these 356 deaths were reported.16

Drugs Used for the Treatment of 
Malaria
Currently available antimalarial drugs are broadly categor-
ized into three types. Aryl amino alcohol compounds 
including quinine, quinidine, halofantrine, lumefantrine, 
chloroquine, amodiaquine, mefloquine, cycloquine, etc. 
Antifolate compounds: proguanil, pyrimethamine, tri-
methoprim, etc. Artemisinin compounds like artemisinin, 
dihydroartemisinin, artesunate, artemether, arteether, 
etc.17,18

Most of the antimalarial drugs target the asexual ery-
throcytic stages of the parasite (blood schizonticidal 
drugs). Two types either fast-acting (Chloroquine, quinine, 
and mefloquine) or slow-acting (Pyrimethamine, sulpho-
namides, and sulphone). Tissue schizonticidal drugs target 
the hypnozoites (dormant stage of the parasite) in the liver 
whereas gametocytocidal drugs destroy sexual erythrocy-
tic forms of the parasite in the bloodstream preventing 
transmission of malaria to the mosquito. Sporontocides 
prevent or inhibit the formation of malarial oocysts and 
sporozoites in the infected mosquito.19

Quinolines (affects polymerization of hemozoin), anti-
folates (block dihydrofolate reductase and dihydropteroate 
synthetase enzymes of the parasite) and artemisinin (have 
various mechanisms), administered alone or in combina-
tion to treat malaria18 Artemisinin combination therapy is 
the cornerstone of malaria control in sub-Saharan Africa 
such as artemether/lumefantrine and artesunate/amodia-
quine. Because of the notorious capacities of 
Plasmodium falciparum to develop drug resistance, many 
antimalarial programs have recently included dihydroarte-
misinin/piperaquine (DHA/PPQ) as a second-line antima-
larial drug.20

Resistance to Plasmodium vivax and 
Plasmodium falciparum
Before dealing with resistance to malaria it is better to 
know the terminologies of recurrence, recrudescence, 
relapse, and resistance (4R’s). Recurrence is the recurrence 
of asexual parasitemia following treatment (in P. vivax and 
P. ovale infections only) or a new infection. 
Recrudescence is the recurrence of asexual parasitemia 
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after the treatment of the infection with the same infection 
that caused the original illness. Relapse is the recurrence 
of asexual parasitemia in P. vivax and P. ovale malaria 
deriving from persisting liver stages from persisting hyp-
nozoites. Resistance is the ability of a parasite strain to 
survive and/or multiply despite the proper administration 
and absorption of an antimalarial medicine in the dose 
normally recommended.21 Plasmodium vivax is continued 
to put a substantial burden on the malaria-endemic world 
with the morbidity and mortality due to its propensity to 
cause recurrent infections.22 Plasmodium vivax forms dor-
mant liver stages (hypnozoites), which causes relapses of 
infection weeks to months after the initial attack. 
Recurrent infections can occur as often as every three 
weeks, with relapses the main cause of vivax illness. 
Even though chloroquine is the first-line treatment for P. 
vivax malaria in most endemic countries resistance is the 
main problem facing chloroquine in different parts of the 
world. In Africa and South America chloroquine resistance 
to plasmodium falciparum first appeared in 1978 and 1996 
respectively.23,24

Chloroquine-resistant Plasmodium vivax was first 
reported in 1989 from Papua New Guinea. High-grade chlor-
oquine-resistant Plasmodium vivax is prevalent in areas such 
as Indonesia and Oceania (regarded as epicenters of chlor-
oquine resistance).25 Both the acute illness and relapses from 
hypnozoites can be effectively prevented by the administra-
tion of a combination of chloroquine with primaquine (radi-
cal cure). Primaquine has activity against both blood and 
liver stages, including against chloroquine-resistant strains. 
Severe P. vivax infections can cause cerebral malaria with 
generalized convulsions and status epilepticus, severe ane-
mia, hepatic dysfunction and jaundice, acute lung injury, 
pulmonary edema, splenic rupture, acute renal failure, and 
severe thrombocytopenia with or without bleeding from dif-
ferent parts of the body.26–28

Primaquine has activity against both asexual and 
sexual blood stages of the parasite as well as against 
the liver stage schizonts and hypnozoites.29 Primaquine 
can result in significant hemolysis in people with glu-
cose-6-phosphate dehydrogenase deficiency (G6PDd). 
G6PD deficiency is the most common heritable enzymo-
pathy in the world, with a prevalence range of 2% to 
40%.30 The WHO for radical cure of vivax malaria 
currently recommends the use of a daily dose of 
0.25 mg/kg/day (3.5 mg/kg total dose) primaquine 
taken with food once daily, which can be either co- 
administered with chloroquine or artemisinin 

combination therapy depending on chloroquine sensitiv-
ity in the area for radical cure of vivax malaria. Current 
guidelines recommend a 14-day course of primaquine 
administered either once or twice daily to reduce the 
risk of hemolysis and improve tolerability from gastro-
intestinal disturbance.2

In Ethiopia first report of P. falciparum and P. vivax 
chloroquine treatment failure in Debre Zeit, was in 1995. 
The invasion of human red blood cells by the extracel-
lular merozoite form of Plasmodium falciparum is 
a process central to the pathogenesis of this devastating 
pathogen. In the present time control of multidrug- 
resistant P. falciparum malaria has become a very diffi-
cult task because endogenous allelic exchanges occurred 
in P. falciparum have increased the therapeutic failures 
and significantly increased the levels of resistance world-
wide. As evolution is an unending process how the 
formation of drug-resistant mutant alleles stops is 
a very concerning question.31 Usually higher mean para-
sitemia index is seen in infected individuals with 
P. falciparum but P. vivax infection generally exhibits 
low parasitemia index due to its preference to invade 
reticulocytes rather than erythrocytes.32

Mechanism of Antimalarial Drug 
Resistance
According to the World Health Organization (WHO), anti-
malarial drug resistance is defined as the ability of 
a parasite strain to survive and/or to multiply despite the 
administration and absorption of medicine given in doses 
equal to or higher than those usually recommended but 
within the tolerance of the subject, provided drug exposure 
at the site of action is adequate. Resistance to antimalarial 
arises because of the selection of parasites with genetic 
mutations or gene amplifications that confer reduced 
susceptibility.2

Resistance appears to be caused by a change in the 
structure, function, or quantity of a protein. The change in 
the protein is mediated by genetic changes such as single 
nucleotide polymorphisms (SNP) or gene amplification. 
Because of antimalarial drug resistance is becoming the 
most difficult hurdle for the success of antimalarial ther-
apy, so scientists are in continuous move researching to 
overcome the problem. Resistant parasite strains will 
always emerge, requiring the continual generation of new 
molecules. The novel drugs with a new mechanism of 
action are entering into clinical trials.17
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Several factors facilitate the emergence of resistance to 
existing antimalarial drugs. To mention some factors, the 
parasite mutation rate, the overall parasite load, the 
strength of drug selected, the treatment compliance, and 
poor adherence to malaria treatment guidelines.33 

Improper dosing, poor pharmacokinetic properties, fake 
drugs lead to inadequate drug exposure on parasites.34 

Poor-quality antimalarial (falsified antimalarial without 
active pharmaceutical ingredient (APIs)) may aid and 
abet resistance by increasing the risk of hyperparasitaemia, 
recrudescence, and hypergametocyopaenia, wrong APIs 
such as the use of halofantrine instead of artemisinin 
which without chemical analysis will be invisible to inves-
tigators but not to parasites.35,36 Frequently targeted bio-
logical pathways by antimalarial drugs in parasites of 
plasmodium are heme detoxification (in digestive vacuole) 
biosynthesis folate and pyrimidine and electron transport 
(in mitochondrion). Studies done during treatment with 
aryl amino alcohols quinine, lumefantrine (LMF), and 
mefloquine (MFQ) from South East Asia showed that 
copy-number changes in pfmdr1, as well as PfCRT and 
PfMDR1 sequence variants, can affect the parasite’s 
susceptibility.32 Unlike other diseases (eg Tuberculosis, 
AIDS), malaria drug resistance mechanisms are unique, 
as the parasite is capable of inducing resistance in the 
exact cellular target of the drug, drug resistance phenotype 
is mostly induced due to enhanced and non-specific efflux 

of drugs through induction of multidrug resistance (MDR) 
transporters. In malaria, MDR transporters are not the 
primary mechanism of resistance (Table 1).37

The antimalarial activity of Artemisinin is due to its 
unique trioxane structure with an endoperoxide bond. 
Usually, semi-synthetic derivatives are used clinically 
(artemether, artesunate, and dihydroartemisinin) because 
due to the low solubility of artemisinin.38 Artemisinin 
combination therapy (ACT), currently recommended are 
artemether + lumefantrine, artesunate + amodiaquine, arte-
sunate + mefloquine, artesunate + sulphadoxine- 
pyrimethamine, and dihydroartemisinin + piperaquine, 
the current gold standard for malaria treatment but resis-
tance is emerging in different areas. Resistance to 
Artemisinin and its derivatives are emerging and troubling 
phenomena in malaria treatment.39 In the Greater Mekong 
Subregion of Asia, the Artemisinin-based drug resistance 
is emerging.40 As resistance to each new malaria drug 
arises, it becomes necessary to combine two or more 
component drugs to slow the spread of resistance to reduce 
the chance of resistance combinations containing an arte-
misinin derivative that is currently in use.41 Within the 
malaria parasite-host hemoglobin is degraded by a series 
of protease enzymes to release peptides and amino acids 
required for development and to create space within its 
digestive vacuole in which buildup of hematin occurs 
which is potentially toxic to the parasite.

Table 1 Summary of Some Antimalarial Drugs, Mechanism of Action, Site of Action, and Mechanism of Resistance

Antimalarial Drug Mechanism of Action Site of 
Action

Mechanism of Resistance

Antifolates ((pyrimethamine 

(PYR) and cycloguanil (CYC))

Inhibition of dihydrofolate reductase 

(DHFR)

Cytosol Mutations in dihydrofolate reductase (DHFR)

Antifolates (sulfadoxine (SDX)) Inhibition dihydropteroate synthetase 

(DHPS)

Cytosol Dihydropteroate synthetase (DHPS)

Naphthoquinones (Atovaquone 

(ATQ))

Inhibits mitochondrial electron 

transport

Mitochondria A single point mutation in the cytochrome 

b subunit (CYTb) of the bc1 complex

Antibiotics (Clindamycin (CLD) 

and Doxycycline (DOX))

Inhibit protein translation inside the 

apicoplast

Inside the 

apicoplast

A point mutation in the apicoplast encoded 23S 

rRNA (CLD)

Artemisinin (ART) Alkylation of proteins and lipids ER, vesicular 

structures

Mutation in K13

4- aminoquinolines (CQ, AQ, 

PPQ, Mannich base 
pyronaridine (PND))

They bind reactive heme and interfere 

with its detoxification through 
incorporation into chemically inert 

hemozoin.

Digestive 

vacuole

Point mutations in the transporters PfCRT and 

PfMDR1, increased expression of the 
hemoglobinases plasmepsin 2 and 3 (PM2/PM3, in 

the digestive vacuole), and might in some instances 

involve mutant PfCRT
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Artemisinin and its derivatives have a fast onset of 
action but are eliminated soon (half-life 0.5–1.4 h) from 
humans for this reason it is essential to combine with slow 
clearing drugs to kill residual parasites.42 Artemisinin and 
its derivatives can be combined with other antimalarial 
drugs at least for two reasons, first to prolong the half- 
life of Artemisinin and its derivatives, second, to prevent 
resistance.43 Recent reports in Equatorial Guinea showed 
that P. falciparum isolate was resistant to artemisinin.44

Molecular Mechanism of 
Artemisinin Resistance
Artemisinin possesses a long-acting effect against drug- 
resistant malaria parasites, and also able to reduce the 
parasite burden in asymptomatic individuals who serve 
as reservoirs for malaria transmission.45 Artemisinin and 
its derivatives (artesunate, artemether, and arteether) are 
potent and fast-acting drugs that cause a rapid decline in 
parasitemia during the first days of treatment. Meshnick 
using mass spectroscopy observed that Artemisinin can 
alkylate heme resulting in decomposition of the endoper-
oxide bridge to produce carbon-centered free radicals 
which are crucial for selectively toxic to malaria 
parasites.46 Specific protein or enzyme is used as 
a molecular target for Artemisinin. Invitro studies show 
that hemoproteins such as catalase, cytochrome c, and 
hemoglobin but not free globin, is alkylated by 
Artemisinin.47

Another molecular target is PfATP6; Artemisinin inhi-
bits of a parasite Ca2+ transporting ATPases (SERCA – 
Sarco/endoplasmic reticulum membrane calcium ATPase). 
SERCA reduces cytosolic free calcium concentrations by 
actively concentrating Ca2+ into membrane-bound stores, 
an activity critical to cellular survival.48 In the parasite 
membrane, Artemisinin accumulates within neutral lipids 
and causes parasite membrane damage.49 Artemisinin has 
shown resistance in P. falciparum cultures50 and P. voelii 
mouse models51 and in vitro resistance in field isolates.52

P. falciparum Kelch 13 (PfKelch13), the marker for 
artemisinin resistance in P. falciparum malaria, is not an 
enzyme or a pump but rather is predicted to be a substrate 
adapter for a cullin E3 ligase, with a putative substrate of 
P. falciparum phosphatidylinositol 3-kinase (PfPI3K) and 
a redox sensor.53 Kelch-like protein K13 is a molecular 
marker for Artemisinin resistance, but no detectable 
impact in Africa (except one report with P. falciparum 
K13-variant infection from western Africa). The reason 

behind this low impact is the greater degree of acquired 
immunity there, resulting from repeated exposure to 
P. falciparum, which builds host immunity to help control 
drug-resistant infections.44 Mutant K13 results in lowered 
ART interactions with P. falciparum phosphatidylinositol- 
3-kinase (PfPI3K).54 In vitro and in vivo studies in many 
areas of Southeast Asia show that mutations in the K13 
propeller gene (PF3D7_1343700 or PF13_0238) are linked 
to artemisinin resistance.55

Molecular Markers of Antimalarial 
Drug Resistance
Molecular markers of antimalarial drug resistance are used 
to screen for the emergence of resistance and assess its 
spread. It provides information about the parasite genetics 
associated with resistance, either single nucleotide poly-
morphisms or gene copy number variations which are 
associated with decreased susceptibility of parasites to 
antimalarial drugs. Detection of molecular markers pro-
vides a feasible means of tracking the emergence and/or 
spread of antimalarial drug resistance.56 P. falciparum 
chloroquine resistance transporter gene (PfCRT), chloro-
quine accumulates within the DV (digestive vacuole) of 
the parasites where there is mutant PfCRT, accumulation 
of chloroquine in parasites is very less as compared to 
parasites expressing wild type PfCRT,57 as a result, chlor-
oquine-resistant parasites can export chloroquine via 
active transport,58 implying that mutant and wild type 
PfCRT have different drug transporting properties. 
P. falciparum multidrug resistance transporter 1 
(PfMDR1) locates in the digestive vacuole of the parasite 
and function as a general importer sequestering toxic 
metabolites and drugs into the digestive vacuole (DV). 
Pfmdr1 indirectly influences drug flux by affecting intra-
cellular ions and PH.59 Studies show that wild type 
PfMDR1 transports quinine and chloroquine but not halo-
fantrine while mutant PfMDR1 transports halofantrine but 
not quinine or chloroquine.60

The multidrug resistance-associated protein (PfMRP) 
is a member of the ATP-binding cassette (ABC) proteins 
family and ABC transporter C subfamily. Genetic disrup-
tion PfMRP leads to increased parasite susceptibility to 
several antimalarial drugs like chloroquine, quinine, arte-
misinin, piperaquine, and primaquine and accumulates 
more glutathione (GSH), chloroquine, and quinine.61 

Cytochrome bc1 complex catalyzes the transfer of elec-
trons from ubiquinol to cytochrome c thereby maintaining 
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the membrane potential of mitochondria used to produce 
ATP by an ATP synthase. Mutations in the Cytochrome 
bc1 complex leads to atovaquone resistance this is because 
atovaquone binds to the ubiquinol binding site, thereby 
disrupting the electron transfer chain.62,63

Imidazolopiperazine (IPZ) class of drug compounds 
(saturated cyclic amines) has activity in both liver and 
blood-stage parasites as an antimalarial drug for use in 
prophylaxis, treatment, and prevention of malaria disease 
transmission. Whole-genome sequencing done by Prof 
Paul and his co-workers of these drug-resistant 
Plasmodium falciparum clones, genes associated with 
drug resistance are identified, an acetyl-CoA transporter 
(PFACT) and a UDP-galactose transporter (PFUGT). 
These mechanisms responsible for resistance are members 
of a family of membrane transporter proteins (major facil-
itator superfamily or MFS).MFS is the largest and most 
ubiquitous secondary transporter family responsible for the 
translocation of small molecules including metabolites, 
nucleosides, oligosaccharides, amino acids, oxyanions, 
and drugs.64,65

Imidazolopiperazine is promising drug candidates with 
the potential to aid in malaria elimination include KAF156 
and KAF179 (currently in Phase II clinical trials). They 
possess low Nanomolar potency against P. falciparum 
liver stages, asexual blood stages, and sexual stage 
gametocytes.66 P. falciparum V-type H+ pyrophosphatase 
(PFVP2) is located in the DV membrane and increased 
transcription of pfvp2 has been observed in-vitro when 
P. falciparum are exposed to chloroquine (10-fold up- 
regulation) and lumefantrine (2-fold up-regulation). The 
up-regulation of pfvp2 implies that it could be involved 
in maintaining the H+ balance in the parasite DV and to 
compensate for H+ loss caused by the removal of proto-
nated CQ.67,68

Antimalarial Drug Resistance 
Surveillance
Antimalarial drug resistance surveillance can be performed 
through in vivo studies such as therapeutic efficacy stu-
dies, in vitro/ex vivo studies of cultured malaria parasites, 
and molecular studies assessing known markers of anti-
malarial drug resistance. As outcomes have direct clinical 
relevance in therapeutic efficacy studies it is regarded as 
the gold standard for informing antimalarial drug resis-
tance and for drug regimen change as well. In malaria- 
endemic countries, routine monitoring of antimalarial drug 

efficacy is carried out at sentinel sites by national malaria 
control programs using a standardized WHO protocol. 
Treatment response is defined as the absence of parasite-
mia at follow-up, on day 28 or 42. WHO recommends 
a switch to another more effective first-line drug if a 10% 
treatment failure rate is reached.69,70

Novel Targets of Antimalarial Drugs
The existing antimalarial drugs were identified based on 
the major metabolic pathway differences of the parasite 
with its host. The Key metabolic pathways of the 
Plasmodium species, including oxidative stress, heme 
detoxification, fatty acid synthesis, and nucleic acid synth-
esis are some of the novel targets for antimalarial drug 
discovery and development.71,72 Though most of the anti-
malarial drugs used for many years, presently the use of 
such drugs is limited as a result of drug resistance. 
According to previous studies, there are no antimalarial 
agents recognized to inhibit an identified antimalarial drug 
targets.73 In its place, the majority of the antimalarial 
agents were discovered in both in vitro model and animal 
models (in vivo). Thus, the exact mechanism of action of 
most antimalarial drugs is not known. In addition, the 
mechanism of antimalarial drug resistance was not well 
known for most antimalarial drugs.72 In addition to 
increasing the need to develop new antimalarial drugs, 
identifying countermeasures either to delay or minimize 
the development of resistance against new drugs is an 
important phenomenon.

Glucose Transporter PfHT1
Glucose is a source of energy for Intra erythrocytic malar-
ial parasites in which infected erythrocytes consume 
higher energy than normal erythrocytes.74 P. falciparum 
almost fully depend on glycolysis for energy production, 
deprived of energy stores; depend on continuous uptake of 
glucose as a source of energy. The Pyruvate is converted 
into lactate to yield ATP in the parasite, which necessitates 
for replicating in the intraerythrocytic site.75 Initially, via 
GLUT1 transporter Glucose is transported from the blood 
into the parasitized erythrocyte, which is abundant in the 
erythrocyte membrane.76 The Plasmodium glucose trans-
porter P. Falciparium Hexose transporter (PFHT) is essen-
tial for parasite growth and survival,77 as well as, is the 
main transporter of glucose.78 GLUT1 transporter can only 
transport D-glucose, while P. Falciparum Hexose transpor-
ter non selectively transports both D-fructose and 
D-glucose. Thus, the differences between PFHT and 
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GLUT1 in their interaction with the substrates, proposed 
that selective inhibition of P. Falciparum Hexose transpor-
ter is a potential novel target for the discovery of new 
antimalarial agents.79 In the previous study, Compound 
3361 which is a long chain O-3-hexose derivative can 
hinder the uptake of fructose and glucose by 
P. Falciparium Hexose transporter nevertheless, it cannot 
hinders hexose transport by mammalian transporters 
(GLUT1 and 5). Similarly, Compound 3361 was reported 
to hinders the glucose uptake by P. vivax of P. Falciparum 
Hexose transporter.80

Targeting the Parasite Protein Kinases
Kinases are involved in phosphorylation, transcriptional 
control, post-transcriptional control, and protein degrada-
tion in the plasmodium parasite life cycle. So, could be the 
strategic targets for the development of antimalarial drugs. 
The most studied Cyclin-dependent kinases (CDKs) in 
Plasmodium falciparum are P. falciparum protein kinase 
5 (PfPK5), 6, and P. falciparum mitogen related kinase 
(PfMRK). By in-vitro study two compounds, flavopiridol 
and lomoucine have shown inhibition of PfPK5, by 
decreasing DNA synthesis and changing total RNA synth-
esis and parasite growth.81

The P. falciparum kinases play a significant role in the 
parasite differentiation and growth. Amongst numerous 
kinases, cyclin-dependent protein kinases (CDKs) are con-
spicuous targets for the development of drugs, numerous 
cyclin-dependent protein kinases selective inhibitors were 
discovered for the management of different diseases such 
as neurological disorders, infectious diseases, and cancers. 
Presently, they become a potential novel target in the 
discovery and development of new antimalarial 
drugs.82,83 The PfCDPK4 plays a key role in the formation 
of infectious sporozoites through the sexual phase of the 
malarial life cycle. Compound 1294 which is PfCDPK4 
inhibitor, revealed an antimalarial effect with a novel 
mechanism of action through preventing the transmission 
of parasites from mosquitoes to humans.84 Likewise, 
Imidazopyridine derivatives have shown significant 
PfCDPK1 inhibitory effect with nanomolar antimalarial 
activity in both in vitro and in vivo models (Table 2).85

Food Vacuole as a Drug Target
The blend of digestive vesicles provides a large digestive 
vacuole/food vacuole through the growth of the malaria 
parasite inside the human erythrocytes. Food vacuole is 
accountable for the degradation of 60–80% of the host red 

cell hemoglobin, which has a key role in the attainment of 
amino acid which is essential for parasite development and 
growth. Investigation of this degradation pathway can be 
a promising method for the discovery and development of 
novel antimalarial agents. This pathway is started by 
a series of protease enzymes that digest hemoglobin into 
small peptides. During proteolysis, heme is released from 
hemoglobin as a toxic byproduct which is detoxified by 
conversion into hemozoin. In the previous studies, hemo-
zoin comprises about 95% of the free iron synthesized 
through hemoglobin digestion.86,87 In addition, two possi-
ble mechanisms responsible for the degradation of hemo-
globin were reported (degradation by hydrogen peroxide 
inside the large digestive vacuole and glutathione- 
dependent degradation within the cytoplasm).88–90

Electron Transport Chain (ETC)
The plasmodial mitochondrial electron transport chain is 
produced from non-proton motive quinone reductases, 
such as malate quinone oxidoreductase (MQO), 
(DHODH), (Alternative Complex I), type II NADH dehy-
drogenase (NDH2, glycerol 3-phosphate dehydrogenase 
(G3PDH), dihydroorotate dehydrogenase, and succinate 
dehydrogenase (SDH, Complex II), and proton motive 
respiratory complexes, such as ATP synthase (Complex 
V), cytochrome c oxidase (Complex IV), and bc1 complex 
(Complex III). The electron transport chain needs cyto-
chrome c1 and ubiquinone (coenzyme Q) which serve as 

Table 2 Role of Kinase in the Plasmodium Parasite Life Cycle

Type Role in the Parasite 
Life Cycle

Reference

Serine/threonine- 

protein kinase, casein 

kinase 2α (PfCK2α)

Crucial for asexual blood- 

stage parasites

[79]

Calcium-dependent 

protein kinase 1 
(PfCDPK1)

Essential for parasite 

survival

[79]

Mitogen-activated 

protein kinase 2 

(PfMAP-2)

Essential for completion of 

the asexual cycle

[80]

cGMP dependent 

protein kinase (PfPKA)

Essential for parasite 

growth and survival

[81]

Orphan protein kinase 

PfPK7

Significant for asexual 

stage development in 
humans and oocyst 

production in mosquitoes

[82]
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electron carriers between the complexes.91–93 The pool of 
electron transport chain and carbon metabolism antimalar-
ial targets that have been under the lamp post in recent 
years, as well as suggest a promising new avenue for the 
validation of novel drug targets for the treatment of 
malaria. The interaction between the pathways vital for 
the parasite, such as aspartate metabolism, mitochondrial 
tricarboxylic acid cycle, and pyrimidine biosynthesis, is 
described to create a road map of novel antimalarial 
agents.94

Apicoplast as Drug Targets
Recently, blocking the P. falciparum ribosome and other 
parts of the translational machinery accountable for pro-
tein synthesis are becoming a promising target for the 
discovery and development of novel antimalarial agents. 
The plasmodium species have three genomes: apicoplast, 
nuclear, and mitochondrial.95 The apicoplast is 
a chloroplast like organelle of apicomplexan parasites. 
The apicoplast resulted from endosymbiosis, leading to 
an organelle that maintains certain specific functions, 
probably including fatty acid, heme, and amino acid 
metabolism.96 The apicoplast genome of P. falciparum 
comprises a 35-kb DNA which is small in size.97 The 
apicoplast is a non-photosynthetic plastid that is vital for 
the malarial parasite since it covers a large number of 
important metabolic biochemical pathways (biosynthesis 
of fatty acid, isoprenoid precursors, and heme synthesis) 
for the Plasmodium falciparum survival. Human beings do 
not have these metabolic biochemical pathways which are 
important for ideal drug targeting.98,99

Even though the majority of proteins of this organelle are 
encoded in the nuclear genome and are subsequently trans-
ported to the apicoplast, it also encodes a full set of tRNAs, 
some ribosomal proteins, three genes for the subunits of an 
oligomeric RNA polymerase, a gene for the elongation factor 
PfTu and a gene contributing to the Fe–S pathway.100 Since 
the apicoplast possess unique metabolic pathways such as 
isoprenoid, heme synthesis, and fatty acid, which are not 
found in the human,101 it could be a potential drug target 
for the management of malaria. As reported in the previous 
study, protein syntheses inhibitors play a key role in the 
clinical success of potent antibiotics. Azithromycin, 
Clindamycin, and Doxycycline revealed antimalarial activity 
since they can inhibit the ribosomes within the apicoplast and 
Plasmodium species mitochondria, resulting in loss of the 
normal function of these organelles.95 For prevention of 
malaria, azithromycin has shown a noticeable protective 

effect in Kenyan102 and Indonesian103 adults when received 
daily doses, even though the preventive activity was lower 
than doxycycline in both trials (protective efficacy in Kenya 
was 93% for doxycycline vs 83% for azithromycin; in 
Indonesia 96% vs 72%, respectively). In Kenya, azithromy-
cin preventive activity was fairly deprived when adminis-
tered weekly (64%). Mass distribution of azithromycin for 
the control of trachoma was linked with a decrease in malaria 
parasitemia as compared to controls.104 Azithromycin + 
piperaquine was well tolerated in pregnant Papua New 
Guinean women,105 even though preventive efficacy data 
are not obtainable.

Plasmodium Proteases
Plasmodium proteases are a regulatory and ubiquitous 
catalytic enzyme that play a significant role in the survival 
of the plasmodium parasite and responsible for the hydro-
lysis of the peptide bond (Figure 1).106 The role of plas-
modium proteases in the pathogenesis of malaria disease 
includes activation of inflammation, cell/tissue penetra-
tion, invasion of erythrocyte, development of the parasite, 
immune evasion, autophagy, and hemoglobin and other 
proteins breakdown.107 Plasmodium proteases such as 
aspartate, serine, cysteine, metallo, threonine, and gluta-
mate are auspicious drug targets for the treatment of 
malaria since the disruption of the plasmodium proteases 
gene inhibits the degradation of hemoglobin and the 
growth of the parasite in the erythrocyte stages.108

Proteases are generally used for the rupture and subsequent 
reinvasion of erythrocytes by merozoite-stage parasites and the 
degradation of hemoglobin by intraerythrocytic trophozoites. 
For instance, drugs that inhibit Plasmodium cysteine proteases 
are the potential targets for malarial treatment and shown 
potential effects.109 Cysteine proteases have different roles in 
Plasmodium parasites including hemoglobin hydrolysis (pro-
vide amino acids for parasite protein synthesis, maintain the 
osmotic stability of malaria parasites),110 erythrocytic ruptur-
ing, helps merozoites to be released,111 erythrocyte invasion 
also it has a role on non-erythrocytic parasitic stages (Table 3).

Aminopeptidases
Amino peptidases catalyze the cleavage of amino acids from 
the amino terminus of peptides and proteins and are distributed 
widely in prokaryotes and eukaryotes as either integral mem-
brane or cytosolic proteins (Figure 1). They play a role in 
protein and peptide metabolism, activation/inactivation of bio-
logically active peptides, removal of the N-terminal methio-
nine from newly synthesized proteins, and the trimming of 
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antigens for presentation by the major histocompatibility com-
plex-1 system.112 Bestatin inhibits the growth of P. falciparum 
in vitro and in vivo and is active against the intraerythrocytic 
stages. Bestatin appears to inhibit both leucine aminopeptidase 
(PfLAP) and membrane alanine aminopeptidase, (PfA-M1) by 
chelating the active metal ions in their metal-binding centers. 
Inhibitors capable of binding compactly within the active site 
and chelating the tightly bound metal ions of both PfA-M1 and 
PfLAP. It has two metal-binding sites, a readily exchangeable 
site, and a tight binding site may prove more potent and show 
greater anti-malarial activity.113–115

A Recent Achievement in the 
Discovery and Development of 
Antimalarial Agents
Drugs currently in Phase I, II and III trials for blood-stage 
treatments of malaria includes KAE609 (cipargamin) 

inhibit Na+-TPase 4 ion channel,116 KAF156/GNF156/ 
(Cyclic amine resistance unknown mechanism of locus 
(PfCARL) inhibitor),117 Albitiazolium/SAR9727/(Inhibit 
the transport of choline into the parasite),118 DSM265 
(Inhibit dihydroorotate dehydrogenase enzyme),119 

Methylene Blue (Prevents haem polymerisation by inhibit-
ing P. falciparum glutathione reductase),120 Sevuparin/ 
DF02/(Anti-adhesive polysaccharide derived Blocks mer-
ozoite invasion and sequestration),121 MMV048 
(Inhibiting the parasite enzyme phosphoinositol 4-kinase 
enzyme),122 MMV390048 (Phosphatidylinositol 4-kinase 
(PfPI4K) inhibitor),123 Fosmidomycin + piperaquine 
(DOXP pathway), Artefenomel (oz439) + Piperaquine 
(Synthetic endoperoxide),124 OZ277+ Piperaquine 
(Inhibit Pf-encoded sarcoplasmic endoplasmic reticulum 
calcium ATPase), P218 (PfDHFR inhibitor),125 M5717/ 
DDD498/(Protein-making machinery of the malaria 

Hemoglobin (Hb)

Small Peptides

Toxic Heme

Hematin

Hemazoin

ProteasesPDT

Oxidation

Aminopeptidas
e

Amino acids

Glutathione dependent 
degradation
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PDT

PDT
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Figure 1 Targets of proteases and amino peptidase, malaria parasite detoxification mechanism. 
Abbreviation: PDT, possible drug targets.
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parasite, liver- stage P. falciparum),126 SJ733 (The P-type 
Na+–ATPase transporter),116 and Spiroindolone (ciparga-
min) inhibits PfATP4, a parasite plasma membrane Na+- 
ATPase that regulates sodium (maintains low-level Na+ in 
the cytosol) and osmotic homeostasis. Cipargamin is used 
in the treatment of falciparum and vivax malaria. 
Inhibition of PfATP4 increases a Na+ in the cytosol as 
Na+ moves into the cell, down its electrochemical gradient 
leading to a concomitant increase in cytosolic pH 
(PfATP4-mediated acid load). Mutation in PfATP4 results 
in cipargamin.127 Artefenomel is a new synthetic antima-
larial peroxide that clears parasitemia rapidly in both 
P falciparum and P vivax malaria. It has a good safety 
profile and long half-life (for a single dose malaria 
cure).128

Conclusion
In conclusion, present and future therapeutic targets for the 
discovery and development of novel antimalarial agents 
were reviewed. The frequently emerging antimalarial drug 
resistance including combination therapies globally forces 
the scientists to search and develop antimalarial drugs with 
novel mechanisms of action. Resistance to two highly 
dominant species Plasmodium falciparum and 
Plasmodium vivax is highly predominant in south East 
Asia, Africa, and South America. The complex life cycle 
of malaria parasite provoke obstacle in the discovery of 
new therapeutic agents, nevertheless, the discovery of 
novel biochemical pathways in the malaria parasite offers 
new opportunities for development antimalarial agents. 
Due to the resistance of antimalarial agents globally, 
searching for novel cellular targets and developing new 

therapeutic agents targeting old targets is both imperative 
aspects in fighting drug-resistant malaria. The future anti-
malarial drug development will better target medicines 
with a distinctive mechanism of action.
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