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Background: Chronic kidney disease (CKD) is responsible for substantial clinical and 
economic burden. Drugs that inhibit the renin-angiotensin-aldosterone system inhibitors 
(RAASi) slow CKD progression in many common clinical scenarios. Guideline-directed 
medical therapy requires maximal recommended doses of RAASi, which clinicians are often 
reluctant to prescribe because of the associated risk of hyperkalemia (HK).
Objective: This study aims to develop and validate a model to identify individuals with 
CKD at elevated risk for developing HK over a 12-month period on the basis of lab, medical, 
and pharmacy claims.
Methods: Using claims from a large US healthcare payer, we developed a model to predict 
the probability of individuals identified with CKD but not HK in 2016 (baseline year [BY]) 
who developed HK in 2017 (prediction year [PY]). The study population was comprised of 
members continuously enrolled with medical and pharmacy benefits and CKD (BY). 
Members were excluded from the analysis if they had HK (by lab results or diagnosis 
code) or dialysis (BY). Prediction model performance measures included area under the 
receiver operating characteristic curve (AUROC), calibration, and gain and lift charts.
Results: Of 435,512 members identified with CKD but not HK (BY), 6235 (1.43%) showed 
incident HK (PY). Compared with individuals without incident HK (PY), these members had 
a higher comorbidity burden, use of RAASi, and healthcare utilization. The AUROC and 
calibration analyses showed good predictive accuracy (area under the curve [AUC]=0.843 
and calibration). The top 2 HK-prediction deciles identified 75.94% of members who went 
on to develop HK (PY).
Conclusion: Guideline-recommended doses of RAASi therapy can be limited by the risk of 
HK. Novel potassium binders may permit more patients at risk to benefit from these maximal 
RAASi doses. This predictive model successfully identified the risk of developing HK up to 
1 year in advance.
Keywords: chronic kidney disease, hyperkalemia, RAAS inhibitors, potassium binder

Introduction
Chronic kidney disease (CKD) is responsible for substantial clinical, economic, and 
humanistic burden. The United States (US) adult prevalence of CKD in 2013–2016 
was 14.8% for all stages and 6.9% for moderate-to-severe (stages 3–5) CKD.1

As kidney function declines, the association of CKD with comorbidities, includ-
ing hypertension, diabetes, and cardiovascular disease,2 drives rising healthcare 
expenditures.3,4 For example, a 2016 analysis using clinical data of patients 
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prescribed renin-angiotensin-aldosterone system (RAAS) 
inhibitors (RAASi) found that annual costs (2016 dollars, 
excluding dialysis) rose exponentially from $7537 in 
patients without CKD to $76,969 in patients with stage 
4–5 CKD and to over $121,000 in patients with end-stage 
renal disease (ESRD).5

Earlier diagnosis and evidence-based management of 
CKD are key to slowing progression and preventing the 
complications of advanced CKD. The RAAS blockade 
plays a major role in delaying or, in some patients perhaps 
halting, kidney failure in most types of CKD.6–10 In the 
RENAAL study, the investigators estimated that the 
RAAS blockade, with the optimal dose of losartan, 
delayed the development of ESRD by 2 years in patients 
with type 2 diabetes with nephropathy.6

RAASi drugs currently marketed in the US are classi-
fied by their mode of action: angiotensin-converting 
enzyme inhibitors (ACEi), angiotensin-receptor blockers 
(ARB), mineralocorticoid receptor antagonists (MRA; eg, 
aldosterone), and direct renin inhibitors (DRI). 
Importantly, those at greatest risk of CKD progression 
(advanced CKD and diabetes and/or heart failure [HF] 
with reduced ejection fraction) stand to benefit most.11,12

Achieving the full clinical benefits of RAASi medica-
tions requires the use of maximum or optimal doses used 
in clinical trials, but these drugs are frequently not pre-
scribed or are underprescribed because of the inherent risk 
of hyperkalemia (HK). A large clinical study found that 
only 26.8% of patients with CKD, HF, or both received 
optimal doses; other studies have confirmed RAASi under-
prescribing for patients with guideline-recommended car-
diorenal indications.13–16

Other factors associated with HK include reduced kid-
ney function, age, male gender, diabetes, HF, adrenal 
insufficiency, and certain medications, such as nonsteroi-
dal anti-inflammatory drugs and RAASi.17 The likelihood 
of developing HK increases as kidney function declines. 
A large clinical data analysis found the 5-year HK pre-
valence to be 23.5% in patients with HF, 29.5% in patients 
with CKD stages 3–4, and 47.6% in patients with both.18

The presence of HK further adds to the cost of CKD. 
A claims study of patients with CKD and/or HF found that 
after multivariable adjustment, those with HK cost $25,156 
more annually than matched patients without HK.19 In addi-
tion, a 2016 clinical data study found that in CKD stage 4–5, 
HK expenditures were 38% and 22% higher for commercial 
and Medicare patients, respectively.5

The clinical and potential economic value of opti-
mal-dose RAASi in slowing CKD progression highlights 
the importance of predicting the risk of developing HK, 
especially because interventions to prevent HK would 
enable most patients to remain optimally treated.17,20 

With administrative claims and electronic medical 
records, predictive analytics can be applied to combine 
the contribution of multiple risk factors into a single 
probabilistic estimate to guide healthcare.21 The objec-
tive of this study was to develop and validate 
a predictive model to identify patients with CKD likely 
to develop HK within a large national health plan, based 
on a broad set of demographic, clinical, and healthcare- 
resource utilization (HCRU) characteristics found in 
administrative claims data.

Data and Methods
Data
The model was developed to predict the occurrence of HK 
in the prediction year (PY, 2017) of individuals identified 
with CKD in the baseline year (BY, 2016). Individuals 
were excluded if they had HK or underwent dialysis in 
the BY or were enrolled in an end-of-life care program or 
hospice in either the BY or PY.

Data included medical and pharmacy claims and lab- 
test results of deidentified individuals continuously 
enrolled from January 2016 through December 2017 in 
a fully insured commercial or Medicare Advantage plan 
operated by a large national health plan. Membership in 
the study population required continuous medical and 
pharmacy coverage throughout both BY and PY; diagnosis 
in BY of CKD (at least 1 claim with a principal or sec-
ondary diagnosis of CKD or from estimated glomerular 
filtration rate [eGFR]—see Table S1); and being at least 18 
years old on January 1, 2016.

Disease comorbidities were identified based on medical 
and pharmacy claims and lab results. The burden of 
chronic diseases was estimated from the original condi-
tions and weights of the Charlson-Deyo Comorbidity 
Index using the International Statistical Classification of 
Disease and Related Health Problems, 10th revision (ICD- 
10) codes.22,23

HK was identified if an individual met at least 1 of the 
following criteria: (1) ≥2 serum potassium >5.0 mmol/L 
on different dates (Logical Observation Identifiers Names 
and Codes [LOINC]: 2823–3); (2) ≥2 claims with princi-
pal or secondary diagnosis of HK (International 
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Classification of Diseases, 10th Revision, Clinical 
Modification [ICD-10-CM]: E87.5); (3) 1 claim with HK 
and 1 potassium >5.0 mmol/L; (4) ≥1 dispensed prescrip-
tion for sodium polystyrene sulfonate or patiromer (the 
potassium binders approved by the FDA prior to 2017).

RAASi medications (see Table S2) included ACEi, 
ARB, MRA, and DRI. Patients were categorized as receiv-
ing optimal dosing if they were dispensed the maximum 
package-labeled dose in the BY, whereas patients who 
were dispensed any dose below that were categorized as 
receiving suboptimal dosing.24 RAASi adherence was esti-
mated by proportion of days covered (PDC) as defined by 
the Centers for Medicare & Medicaid Services (CMS) 
performance measure D12, renin-angiotensin system 
(RAS) antagonists.25

Descriptive Statistical Analysis
All baseline characteristics were analyzed descriptively. 
Means (±SD) and medians (IQR) were reported for con-
tinuous variables, and frequencies (%) were reported for 
categorical variables. Statistical significance was assessed 
with the Student’s t-test or Wilcoxon rank-sum test or 
Kruskal–Wallis test for continuous variables and X2 test 
for categorical variables.

Development and Validation of the 
Prediction Model
Data on study group members were randomly divided into 
2 equal sets for model development and validation. The 
development phase focused on selection of PY HK pre-
dictor variables from a variety of candidates, including 
demographics, CKD stage, comorbidities, drugs, lab 
results, and HCRU.

The first step in the development phase excluded vari-
ables lacking significant (P≤0.05) univariate association 
with HK. This step yielded 46 candidate predictor vari-
ables, which, in the next step, were subjected to stepwise 
logistic regression to identify those that were indepen-
dently correlated with HK. The probability for entry of 
a variable was set at 0.01 and for removal at 0.1. Adjusted 
odds ratios (ORs) were calculated, along with their asso-
ciated 95% confidence intervals (CIs). Interactions 
between predictive variables in the model were checked 
using a pooled interaction test.26 Multicollinearity was 
checked using Pearson’s correlation coefficient. The mod-
el’s goodness-of-fit was tested using deviance, Hosmer- 
Lemeshow, and log-likelihood.27

The model’s performance was validated on the valida-
tion dataset. The area under a receiver operating character-
istic curve (AUROC) was calculated to determine the 
model’s ability to discriminate between those who devel-
oped HK and those who did not during the PY follow-up 
period. AUROC was computed by a nonparametric 
method.28 An AUROC of 1 implies perfect discrimination, 
whereas an AUROC of 0.5 implies the model performs no 
better than chance.29

Calibration was assessed by plotting observed ver-
sus predicted probability of HK in the PY among 
patients grouped by deciles of predicted probability as 
estimated by the model (decile 1: lowest risk; decile 
10: highest risk). Risk accuracy was estimated as the 
mean absolute difference (error) between the predicted 
and observed (actual) probability of HK across the 10 
risk strata. Risk stratification performance was assessed 
by (1) the mean actual risk (observed probability) 
increases between strata, and (2) the risk ratio between 
the observed probability in the highest-risk strata to 
that in the lowest-risk strata.

A gains chart was used to compare predictive accuracy 
with the prediction model versus without the prediction 
model. The data were sorted in descending order of the 
probability of HK estimated by the model, binned by 
deciles, and the cumulative rate of HK at each decile 
was evaluated, from the highest-risk decile to the lowest- 
risk decile. The greater the area between the gain curve 
and the baseline (random selection without a prediction 
model), the better the model’s performance. The model’s 
goodness-of-fit was further tested using deviance, Hosmer- 
Lemeshow, and log-likelihood.

All data management, statistical analyses, and predic-
tive modelling were performed using SAS software, ver-
sion 9.4 (SAS Institute, Cary, NC, US). The study was 
approved by an independent institutional review board, 
Sterling IRB, before proceeding.

Results
Baseline Characteristics
Of the 435,512 individuals who met the study criteria, 
57% were female, 42% lived in the South region, and 
54% were enrolled in a Medicare Advantage plan 
(Figure 1, Table 1). Table 1 compares BY characteristics 
of study group members who went on to exhibit (6235; 
1.44%) or not exhibit (429,277; 98.57%) evidence of 
HK in the PY. Members who were first identified with 
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HK in the PY tended to be older, male, of Southern 
residence, urban, Medicare-insured, with a higher 
Charlson-Deyo Comorbidity Index (CCI). They were 
more likely to have comorbid hypertension, hyperlipide-
mia, diabetes or congestive HF, and more advanced 
CKD (Table 2).

In addition, members of the HK subgroup were 52% 
likelier to use RAASi in the BY (70% versus 46.1% for 
the non-HK group; Table 3; Table S3). Submaximal 
RAASi dosing was widespread, but overall, adherence as 
measured by PDC ≥80% was similar in the HK and non- 
HK groups. Serum potassium and urine protein excretion 
were greater in the HK group (Table 2).

Variables in the Logistic Regression Model
Forty-six variables with significant univariate associa-
tion to HK first appearing in the PY (see Table S4) 
were reduced to 21 by stepwise logistic regression. 
Table 4 shows that CKD stage, higher BY potassium, 
use of ACEi, MRA, and calcineurin inhibitors; and 
certain comorbidities, including diabetes, independently 
predicted HK. Suboptimal RAASi dose and adherence 
were equally predictive of HK, but dose and adherence 
together were not more predictive.

Validation of the Logistic Prediction Model
Nine predictive models were developed and compared by 
their AUROC during validation (Figure 2). Among the 

models based solely on single-feature variables, laboratory- 
only (M5) performed best (AUROC: 0.784), followed by 
CKD stage and comorbidities (M2, AUROC: 0.741), 
whereas models based solely on drugs (M3) or HCRU 
(M4) or demographics (M1) yielded poor AUROCs. 
Fitting the model using all predictive variables (full model) 
yielded a logistic regression model with 27 nonzero coeffi-
cients, plus an intercept. The full model’s AUROC was 
0.843, demonstrating good discriminative performance.

Figure 3 shows the prediction model’s risk estima-
tion of HK and stratification performance. The model’s 
estimated average HK risk across the population closely 
matched the average actual risk (1.43% versus 1.51%, 
respectively). The mean absolute error was 1.48%, sug-
gesting good accuracy calibration. There was, on aver-
age, a 1% increase in risk with each higher stratum, and 
those in the highest-risk stratum had 240 times the 
probability of developing HK in the PY than those in 
the lowest-risk stratum (9.15% versus 0.04%, respec-
tively). The second-highest risk strata’s actual risk was 
2.9%, significantly higher than the overall mean of 
1.43% for the cohort. Model calibration showed that 
the top 2 prediction deciles (20% of the study popula-
tion) identified 75.94% of individuals first identified 
with hyperkalemia in the PY.

The model somewhat overpredicted deciles 1–8 and 
was very close for deciles 9 and 10 in people who actually 
developed HK. Model gains are shown in Figure 4. For 

Figure 1 Study population flowchart. 
Abbreviations: CKD, chronic kidney disease; eGFR, estimated glomerular filtration rate; ICD-9-CM, International Classification of Diseases, 9th Revision, Clinical 
Modification; ICD-10-CM, International Classification of Diseases, 10th Revision, Clinical Modification; HK, hyperkalemia; MDRD, modification of diet in renal disease.
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Table 1 Baseline Patient Demographics

Characteristics Study Population BY HK BY No HK P value

(N=435,512) (N=6235) (N=429,277)

Age
Mean (SD) 61.3 (16.3) 69.3 (11.8) 61.1 (16.3) <0.0001
Median (IQR) 64 (50–73) 71 (62–77) 63 (50–73) <0.0001

Gender, n (%)
Male 186,261 (42.8) 3281 (52.6) 182,980 (42.6) <0.0001
Female 249,228 (57.2) 2954 (47.4) 246,274 (57.4)

Geography, n (%)
Midwest 77,548 (17.8) 853 (13.7) 76,695 (17.9) <0.0001
Northeast 132,504 (30.4) 1703 (27.3) 130,801 (30.5)

South 185,599 (42.6) 3302 (53.0) 182,297 (42.5)

West 39,613 (9.1) 377 (6.1) 39,236 (9.2)

Urban/rural, n (%)
Urban 162,723 (37.4) 2825 (45.3) 159,898 (37.3) <0.0001
Suburban 125,973 (28.94) 1647 (26.4) 124,326 (29.00)

Rural 146,558 (33.7) 1763 (28.3) 144,795 (33.8)

Insurance, n (%)
Commercial 199,155 (45.7) 1293 (20.7) 197,862 (46.1) <0.0001
Medicare Advantage 236,357 (54.3) 4942 (79.3) 231,415 (53.9)

Abbreviations: BY, baseline year; HK, hyperkalemia; IQR, interquartile range; SD, standard deviation.

Table 2 Clinical Characteristics and Comorbidities

Characteristics Study Population BY HK BY No HK P value

(N=435,512) (N=6235) (N=429,277)

Charlson-Deyo Comorbidity Index
Mean (SD) 1.5 (2.0) 2.52 (2.4) 1.5 (2.0) <0.0001

Median (IQR) 1 (0–2) 2 (1–4) 1 (0–2)

CKD stage, n (%)
Stage 1 104,319 (24.0) 376 (6.0) 103,943 (24.2) <0.0001
Stage 2 210,353 (48.3) 2309 (37.0) 208,044 (48.5)

Stage 3 108,583 (24.9) 2814 (45.1) 105,769 (24.6)

Stage 4 9891 (2.3) 621 (10.0) 9270 (2.2)
Stage 5 2366 (0.5) 115 (1.8) 2251 (0.5)

Key comorbidities, n (%)
Hyperlipidemia 276,289 (63.4) 5365 (86.0) 270,917 (63.1) <0.0001

Hypertension 278,336 (63.9) 5270 (84.5) 273,063 (63.6) <0.0001

Diabetes 110,881 (25.5) 3139 (50.4) 109,294 (25.5) <0.0001
Obesity 89,324 (20.5) 1708 (27.4) 87,615 (20.4) <0.0001

Congestive HF 40,067 (9.2) 1327 (21.3) 38,764 (9.0) <0.0001

Selected baseline biometrics
Serum K+, mmol/L 4.43 4.71 4.33 <0.0001

Hemoglobin, g/dL 13.69 13.23 13.70 <0.0001
Urine protein, mg/24 h 177.91 259 173.00 <0.0001

Proteinuria, % 2.1 4.0 2.0 <0.0001

Abbreviations: BY, baseline year; HF, heart failure, HK, hyperkalemia, IQR, interquartile range; K+, potassium; SD, standard deviation.
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a given decile, gain is the cumulative number of indivi-
duals correctly identified with HK up to that point, divided 
by the total number of individuals with HK. For example, 
for the second-highest decile, gain = 1572/2070 = 75.94%.

Discussion
Early identification and appropriate management with 
pharmacologic inhibition of the RAAS has been shown 
to mitigate the consequences of CKD and slow the pro-
gression to ESRD. Yet more than one-third of new ESRD 
patients receive little or no pre-ESRD nephrology care,30 

despite dissemination of kidney disease and diabetes prac-
tice guidelines.31–33 To accelerate improving the quality 
and outcomes of kidney care, the US Department of 
Health and Human Services recently launched the 
Advancing American Kidney Health initiative, targeting 
early CKD identification and incenting evidence-based 
management of advanced CKD and ESRD.34,35

Using a large national administrative claims database, 
we identified members with CKD but without HK or 
dialysis. We developed and internally validated a model 

to predict the occurrence of HK in the following year. 
The performance characteristics of the logistic regression 
model were comparable to those of a neural network and 
decision tree model (data not shown in this article). We 
therefore selected the logistic model because of its gen-
eral applicability in a clinical or care-management 
setting.

The model’s performance was promising for poten-
tial use and further development in health plan–based 
care management: AUROC was 0.843; the numbers of 
predicted versus observed individuals with HK were 
well matched in the highest probability deciles; and 
a cutoff of the top 20% scores captured more than three- 
quarters of those who exhibited HK.

There is much evidence supporting maximal recom-
mended RAASi dosing, if tolerated.6,7 An individualized 
approach using predictive analytics to identify patients at 
high risk of HK may allow clinicians to treat to guideline- 
recommended RAASi dosing.

Until recently, options for reducing chronic HK have 
been limited, but the recent introduction of novel 

Table 3 Baseline Medications

Characteristics Study Population BY HK BY No HK P value

(N=435,512) (N=6235) (N=429,277)

RAASi use, n (%)
ACEi 108,269 (24.9) 2532 (40.6) 105,737 (24.6) <0.0001
ARB 83,325 (19.1) 1536 (24.6) 81,789 (19.1) <0.0001

MRA 10,339 (2.4) 281 (4.5) 10,058 (2.3) <0.0001

Other RAASi 528 (0.1) 19 (0.3) 509 (0.1) 0.0003

RAASi PDC ≥80%, n (%)
Stage 1 14,196 (53.8) 101 (58.1) 14,095 (53.8) 0.2856
Stage 2 55,918 (63.2) 791 (63.2) 55,127 (63.2) 0.9776

Stage 3 44,915 (66.1) 1354 (66.1) 43,561 (66.1) 0.9904

Stage 4 4053 (61.8) 306 (65.0) 3747 (61.5) 0.1401
Stage 5 692 (54.7) 44 (61.1) 648 (54.3) 0.2746

RAASi at optimal dose, n (%)
Stage 1 6612 (25.1) 33 (19.0) 6579 (25.1) 0.0653

Stage 2 26,311 (28.7) 291 (23.3) 26,020 (29.8) <0.0001

Stage 3 23,243 (34.2) 631 (30.8) 22,612 (34.3) 0.0008
Stage 4 2329 (35.5) 156 (33.1) 2173 (35.7) 0.2719

Stage 5 456 (36.0) 27 (37.5) 429 (35.9) 0.8012

Baseline K+ affecting non-RAASi use, n (%)
NSAIDs 90,124 (20.7) 1335 (21.4) 88,789 (20.7) 0.1611
Calcineurin inhibitors 917 (0.2) 48 (0.8) 869 (0.2) <0.0001

Beta-blockers 98,485 (22.6) 2058 (33.0) 96,427 (22.5) <0.0001

Abbreviations: ACEi, angiotensin-converting enzyme inhibitors; ARB, angiotensin-receptor blocker; BY, baseline year; K+, potassium; MRA, mineralocorticoid-receptor 
antagonist; NSAID, nonsteroidal anti-inflammatory drug; PDC, proportion of days covered; RAASi, renin-angiotensin-aldosterone system inhibitors.
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potassium binders patiromer and sodium zirconium cyclo-
silicate may allow patients to safely achieve higher RAASi 
doses—underscoring the value of being able to quantita-
tively predict who will develop HK.36

To our knowledge, no HK predictive model has been 
validated using data typically available from health plans. 
The few published predictive models are based on clinical 
data from integrated health systems. Johnson and collea-
gues developed a model to predict quintile risk of HK 
(serum potassium ≥5.5 mmol/L) in patients with eGFR 

<60 mL/min/m2 within 90 days of starting lisinopril with-
out diuretics. The observed risk was 6.9% and 0.7% for 
the highest and lowest quintiles, respectively; predicted 
and observed risks agreed within 1%, but formal perfor-
mance characteristics were not reported.36 A model based 
on clinical data and validated in a different healthcare 
system found that 6 variables (male, diabetes, congestive 
heart failure, use of potassium-sparing diuretics, lower 
eGFR, and higher baseline serum potassium) yielded an 
AUROC of 0.845 and a decile calibration plot comparable 
to our health plan data model.37

A potential advantage of administrative claims over 
clinical data is that it essentially covers an individual’s 
entire continuum of care. Still, claims may under identify 
HK,38 lab results may not be available, and false positive 
and negative identifications might arise from lags in claims 
adjudication. Health plans are familiar with addressing 
these limitations, and our findings of approximately 6% 
HK prevalence in both years (BY/PY) is reassuring in that 
regard. In total, 21 independent predictors were included 
in the final model. The model may be theoretical in clin-
ical practice, and we usually transform the model’s para-
meters into a score; but with artificial intelligence 
technology, it could be implemented in clinical decision- 
making systems to identify high risk or subpopulations 
likely to benefit from an early intervention.

A population health program must weigh the mar-
ginal cost of outreach against the probability and 
potential impact of a true identification to maximize 
the value of its resources. The clinical and economic 
importance of optimizing RAASi dosing,39–41 together 
with the emergence of novel potassium binders,24,39–44 

make it high value to quantitatively predict the onset of 
HK in CKD. Health plans will need to adjust their 
already robust, informatics-driven identification, risk- 
stratification, and efficient outreach programs to 
address these concerns.

Conclusion
By slowing the progression of CKD, RAASi have trans-
formed its management, but HK can threaten the opti-
mal use and dosing of these drugs. To facilitate broader, 
safe use of RAASi, we demonstrated that a predictive 
model based on administrative claims and laboratory 
results provides an acceptable level of accuracy in iden-
tifying both very high and very low risk CKD patients 

Table 4 List of Predictive Variables in the Final Logistic Model

Parameter Regression 

Coefficient (SE)

Odds Ratio 

(95% CI)

P value

Intercept –12.16 (0.34) <0.0001

CKD stage 2 versus 1 0.50 (0.09) 1.65 (1.38–1.98) <0.0001

CKD stage 3 versus 1 1.21 (0.09) 3.34 (2.77–4.02) <0.0001

CKD stage 4 versus 1 2.01 (0.11) 7.47 (6.02–9.28) <0.0001

CKD stage 5 versus 1 2.45 (0.19) 11.62 (7.90–17.07) <0.0001

Potassium, per 0.1mmol/L 

higher

2.15 (0.05) 8.59 (7.85–9.40) <0.0001

Calcineurin inhibitors use 1.49 (0.21) 4.43 (2.98–6.97) <0.0001

Diabetes mellitus 0.41 (0.04) 1.51 (1.39–1.63) <0.0001

Northeast versus 

Midwest

0.13 (0.06) 1.14 (1.01–1.29) 0.0170

South versus Midwest 0.45 (0.06) 1.57 (1.40–1.77) <0.0001

West versus Midwest 0.28 (0.09) 1.32 (1.09–1.58) 0.0102

Suburban versus Rural 0.05 (0.04) 1.05 (0.96–1.17) 0.0568

Urban versus Rural 0.29 (0.05) 1.33 (1.22–1.46) <0.0001

Hyperlipidemia 0.39 (0.07) 1.47 (1.28–1.67) <0.0001

Osteoporosis 0.24 (0.06) 1.27 (1.12–1.45) <0.0001

MRA use 0.23 (0.07) 1.26 (1.08–1.46) <0.0001

ACE inhibitors use 0.22 (0.04) 1.25 (1.16–1.35) <0.0001

Peripheral artery disease 0.17 (0.05) 1.19 (1.09–1.31) 0.0002

Malignant neoplasms 0.15 (0.05) 1.16 (1.04–1.29) 0.0107

Chronic obstructive 

pulmonary disease

0.10 (0.04) 1.11 (1.00–1.23) 0.0498

Number of comorbid 

conditions

0.07 (0.01) 1.07 (1.05–1.08) <0.0001

Hemoglobin, per 1g/dL 

higher

–0.09 (0.01) 0.91 (0.89–0.94) 0.0028

Optimal RAASi dose –0.09 (0.01) 0.91 (0.83–0.99) 0.0097

Inpatient admission – all 

cause

–0.14 (0.05) 0.87 (0.78–0.97) 0.0072

Commercial versus 

medicare plan

–0.16 (0.06) 0.85 (0.75–0.95) 0.0035

Primary care visit –0.38 (0.04) 0.68 (0.62–0.74) <0.0001

Female versus Male –0.46 (0.05) 0.63 (0.57–0.69) <0.0001

Potassium sparing 

diuretics use

–0.63 (0.07) 0.53 (0.37–0.74) 0.0003

Abbreviations: ACE, angiotensin-converting enzyme; CI, confidence interval; CKD, 
chronic kidney disease; COPD, chronic obstructive pulmonary disease; K+, potassium; 
MRA, mineralocorticoid-receptor antagonist; ORs, odds ratios.
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for HK in a large health plan. The model has been 
internally validated, but still needs external validation. 
When validated, this model could improve health 

outcomes and lower associated costs in the CKD popu-
lation at the point of care or in population health 
strategies.

Figure 2 Nine candidate models based on single and combinations of variables. 
Abbreviations: AUROC, area under the receiver operating characteristic curve; CKD, chronic kidney disease; HCRU, healthcare resource utilization.

Figure 3 HK risk estimation and stratification performance. Calibration plot of observed versus predicted risk of HK during the follow-up period. The predicted risk 
estimated by the model stratifies the population and yields estimates of the average risk of HK (gray bar) within each decile (risk stratum). The estimates are compared to 
the actual (observed) risk in each decile (blue bar).
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