Is Bodyweight-Based Dosing Truly Better Than Flat Dosing for Panitumumab? [Letter]

Dear editor

With great interest we read the paper by Liao et al in which they compared a 2-weekly bodyweight-based (6 mg/kg) and fixed (480 mg) administration of panitumumab, a monoclonal antibody (Mab) binding the EGFR receptor. The authors used a population pharmacokinetics model to simulate pharmacokinetics of 1200 virtual individuals for each strategy. The observed interpatient variability in mean simulated AUC (CVAUCmean) was compared and was 34% (fixed dosing) versus 29% (bodyweight-based dosing). Based on this, the authors concluded for panitumumab that “body weight-based approach is the recommended patient dosing strategy”.

Previously, we assessed feasibility of fixed dosing as an alternative strategy for thirteen Mabs including panitumumab. We concluded that fixed dosing is a more rational approach as pharmacodynamics (efficacy and toxicity) of antagonistic Mabs are not concentration-related at concentrations exceeding the minimum target inhibitory concentration (ICmin). For panitumumab, the estimated threshold is 3.83 μg/mL. The authors compared the CV AUCmean of both dosing strategies. However, because of the ICmin trough levels (Cmin) would be a better parameter for assessing efficacy of panitumumab. Although the observed Cmin after bodyweight-based dosing is reported (Figure 1 and Discussion), we miss report of simulated Cmin of the fixed dosing schedule. As the lowest interquartile AUC after fixed and bodyweight-based dosing of panitumumab is comparable (987 versus 908 μg*d/mL, respectively, in Table 2), it is likely that Cmin of the both strategies is comparable (~20–30 μg/mL and >ICmin) and, therefore, both strategies have equivalent efficacy.

The reported difference in CVAUCmean for both dosing strategies is mainly caused by the higher exposure of panitumumab in patients with a low bodyweight after fixed dosing (Figure 2). This results in a difference between the highest interquartile AUC after fixed and bodyweight-based dosing (1582 versus 1254 μg*d/mL, respectively in Table 2). However, this is clinically irrelevant as for panitumumab (like most Mabs in oncology), an exposure-toxicity relationship is absent. Although increased incidence of skin toxicity has been reported with increasing doses, this is related to the EGFR inhibition and reaches a plateau at doses of ≥2.5 mg/kg. As onset of ≥grade 2 toxicity is related to better survival and is a result of target inhibition, it even may be evaluated as biomarker for efficacy. In fact, the manufacturer reports that doses up to 12 mg/kg have been used and that the safety profile was consistent with the recommended dose. Since
an exposure-toxicity relationship is absent in the tested dose range, the interpatient variability of Mabs is of less concern as long as C_{min} stays above IC_{min}.

In conclusion, both fixed and bodyweight-based dosing give an exposure that is far above IC_{min} and therefore give similar clinical benefit and risks. Therefore, we argue that for panitumumab – as for most Mabs in oncology – no dosing strategy is to be preferred over the other. If one should be preferred, it should be the fixed dosing strategy for several reasons.2,5 This is in accordance with the recently FDA and EMA approved fixed doses of nivolumab and pembrolizumab.

Disclosure
The authors declare no conflicts of interest in this communication.

References