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Background: A new coronavirus SARS-CoV-2 has been identified as the etiological agent 
of the severe acute respiratory syndrome, COVID-19, the source and cause of the 2019–20 
coronavirus pandemic. Hydroxychloroquine and chloroquine have gathered extraordinary 
attention as therapeutic candidates against SARS-CoV-2 infections. While there is growing 
scientific data on the therapeutic effect, there is also concern for toxicity of the medications. 
The therapy of COVID-19 by hydroxychloroquine and chloroquine is off-label. Studies to 
analyze the personalized effect and safety are lacking.
Methods: A review of the literature was performed using Medline/PubMed/Embase data-
base. A variety of keywords were employed in keyword/title/abstract searches. The electronic 
search was followed by extensive hand searching using reference lists from the identified 
articles.
Results: A total of 126 results were obtained after screening all sources. Mechanisms 
underlying variability in drug concentrations and therapeutic response with chloroquine 
and hydroxychloroquine in mediating beneficial and adverse effects of chloroquine and 
hydroxychloroquine were reviewed and analyzed. Pharmacogenomic studies from various 
disease states were evaluated to elucidate the role of genetic variation in drug response and 
toxicity.
Conclusion: Knowledge of the pharmacokinetics and pharmacogenomics of chloroquine 
and hydroxychloroquine is necessary for effective and safe dosing and to avoid treatment 
failure and severe complications.
Keywords: COVID-19, pharmacokinetics, pharmacogenomics, chloroquine, 
hydroxychloroquine

Introduction
SARS-CoV-2 is a new coronavirus type that has not been previously identified in 
humans. Little is known about the highly infectious virus or how to combat it. The 
current strategy considers two broad categories of therapies: antivirals, which may 
target the coronavirus directly, and host modifiers and immune-based medications, 
which may influence the immune response to the virus. Currently, all the therapeu-
tic agents are repurposed medications.

For approximately 6000 identified medical conditions, only 500 have approved 
therapies; a critical need currently exists for the availability of drug therapies.1–3 

Drug repurposing helps to minimize the deficiency and delivers a candidate at 
a shorter development time and a lesser cost.4 A key advantage of repurposed drugs 
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is that safety has been established and only efficacy of the 
new indication needs to be assessed.5 Many of the well- 
known repurposed drugs, including sildenafil, minoxidil 
and aspirin emerged by chance from “unorganized” drug 
discovery processes.6 Several diverse disease states have 
common transcriptional inflammatory and metabolic path-
ways, suggesting that drugs designed for treatment of one 
disease can potentially be used to treat other diseases.7 

Drug repurposing is being applied to finding a therapeutic 
approach for the COVID-19 pandemic. Thirty-one poten-
tial broad-spectrum antiviral agents (BSAAs) were 
recently identified as having potential for treating SARS- 
CoV-2/COVID-19.8 Several existing BSAAs have been 
initiated into clinical trials (Table 1).

Two of the drugs listed in Table 1, hydroxychloroquine and 
chloroquine, have been proposed as treatments for 
COVID-19.

Chloroquine (Aralen®) and hydroxychloroquine 
(Plaquenil®) are 4-aminoquinoline medications used to treat 
several disease states. Chloroquine (CQ) was first developed 
for the treatment of malaria.9 Hydroxychloroquine (HCQ) is 
β-hydroxylated analogue of CQ.10 Both medications have 
been successfully used to treat extraintestinal amebiasis, 
several infectious (HIV, Q fever, Zika virus, fungal infec-
tions) and rheumatological (systemic lupus erythematosus, 
antiphospholipid syndrome, rheumatoid arthritis, Sjögren’s 
syndrome) diseases.11–13

In the therapy of malaria, the agents inhibit the action 
of heme polymerase, which causes the buildup of toxic 
heme in Plasmodium species.14,15 The antiviral activity is 
not fully understood. The drugs accumulate in human 
organelles, raise the endosomal pH and prevent viral 
activity.16–18 The elevated pH inhibits nucleic acid replica-
tion, glycosylation of viral proteins, viral fusion and entry 
into the cell, viral assembly and release.19

Adverse Reactions of Chloroquine and 
Hydroxychloroquine
Postmarketing cases of life-threatening and even fatal 
events have been reported for chloroquine and hydroxy-
chloroquine. An overdose of CQ can cause acute poisoning 
and death.20 HCQ was demonstrated to be 40% less toxic 
than chloroquine, although prolonged and overdose admin-
istration can still cause poisoning.21,22 Patients may present 
with atrioventricular block, pulmonary hypertension, sick 
sinus syndrome or with cardiac complications. The most 
life-threatening adverse reaction is QTc prolongation with 
subsequent risk of ventricular arrhythmias.23 Concomitant 
QTc-prolonging medications may increase the severity of 
the complication even more.24 The mechanism of QTc 
prolongation by chloroquine and hydroxychloroquine is 
unknown, largely depending on the cardio-vascular health 
of the patients.25–27 Another complication of the two med-
ications is retinopathy (chloroquine retinopathy), which can 
result in irreversible impairment of the retina.28,29 High 
concentrations of the drugs in the retina, due to binding to 
retinal melanin, result in the damage of the tissue.30 

Hydroxychloroquine may also produce a severe cutaneous 
adverse effect such as a generalized pustular figurate 
erythema (GPFE).126 High concentrations of the medica-
tions in the skin and very slow cutaneous elimination 
(longer than 6 months) may result in this severe cutaneous 
reaction.59,87 The most common adverse effects of the drugs 
are nausea, vomiting, diarrhea.31 Other complications 
include hypoglycemia in diabetics, hemolytic anemia in 
G6PD deficiency patients, tinnitus and headache.32,33

Chloroquine and Hydroxychloroquine for 
COVID-19 Therapy
Chloroquine and hydroxychloroquine have shown the ability 
to inhibit replication of multiple coronaviruses in vitro,34–36 

including SARS-CoV-2 in concentration-dependent 
manner.17,19,22,37,38 The anti-SARS-CoV-2 activity of HCQ 
seems to be less potent compared to CQ. The EC50 for CQ 
(2.71 μM) was significantly lower than that of HCQ 
(4.51μM).22 In contrast, hydroxychloroquine was found 
more potent than chloroquine against SARS-CoV2 when 
given post-infection and prophylactically.19

Clinical evidence of the effectiveness of HCQ or CQ for 
the treatment of COVID-19 is limited. Some small clinical 
trials have shown therapeutic benefits of the drugs, while 
others have shown the opposite. In recent clinical trials, over 
100 people with COVID-19 have been treated with 

Table 1 Broad-Spectrum Antiviral Agent Candidates in Clinical 
Trials

Phase II

Favipiravir

Phase III

Remdesivir
Hydroxychloroquine

Chloroquine

Phase IV

Umifenovir

Lopinavir/Ritonavir
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chloroquine. These patients had less severe disease and 
a shorter illness duration compared to those who did not 
receive chloroquine.39 Another open-label non-randomized 
clinical trial with 36 COVID-19 patients demonstrated that 
hydroxychloroquine treatment resulted in viral load reduc-
tion/disappearance in the patients. The effect was reinforced 
by azithromycin.40 Contrasting results were reported in 
a small study with 11 hospitalized patients; no difference in 
clinical outcomes was observed between patients treated 
with HCQ and azithromycin and patients on standard 
care.41 In a randomized trial with 62 hospitalized patients, 
patients on HCQ had a more substantial proportion of clinical 
improvement of pneumonia (80% vs 55%) than patients with 
standard care.42 In another clinical trial with 368 COVID- 
patients, an increased overall mortality was observed in the 
patients treated with hydroxychloroquine.43 More clinical 
trials are going on.

The FDA has issued an emergency use authorization for 
CQ and HCQ to treat COVID-2019 infection, allowing the 
unapproved use of these medications in light of a public 
health emergency.32,33 On April 24, the FDA issued warning 
against HCQ or CQ unless the therapy is closely supervised 
by a healthcare professional.44 The caution was initiated after 
the agency received reports of serious adverse effects in 
COVID-19 patients. These findings do not apply to the use 
or evaluation of hydroxychloroquine in pre- or post-exposure 
prophylaxis in patients exposed to COVID-19.

These results bring forward the need for large con-
trolled clinical trials to provide guidance on safe and 
effective dosing of CQ/HCQ for COVID-19 therapy. 
Furthermore, response to drugs is subject to inter- 
individual variability. Patients treated with the same dose 
of the same drug, may exhibit lack of efficacy, or adverse 
reactions. The variability, at least in part, is attributed to 
genetic polymorphisms. Knowledge of pharmacogenomic 
(PGx) of the drugs is necessary to estimate effective and 
safe dosing and to avoid/minimize adverse reactions. No 
PGx studies have been conducted to investigate the inter- 
patient variability of CQ and HCQ in COVID-19 patients.

The purpose of the study was to highlight the impor-
tance of large, randomized, controlled clinical trials and 
pharmacogenomic studies to assess the optimal dosing of 
CQ and HCQ in diverse populations as a treatment for 
COVID-19.

Methods
A review of the literature was performed using Medline/ 
PubMed/Embase database resources for English language 

papers from 1947 up to July 2020 to identify appropriate 
articles that addressed the objectives of this review. A variety 
of keywords were employed in keyword/title/abstract 
searches that included: chloroquine, CQ, hydroxychloro-
quine, HCQ, pharmacokinetics, pharmacogenomics, 
COVID-19, SARS-CoV-2. We obtained 126 appropriate 
results after screening all sources; relevant and non- 
relevant. The publications were reviewed independently by 
two investigators. The investigators extracted the data and 
inspected each reference identified by the search. In cases 
where the same studies were reported in more than one 
publication, the study’s results were accounted for only 
once. Limits to the search strategy were English language 
articles and human studies. The electronic search was fol-
lowed by extensive hand searching using reference lists from 
the identified articles. The search method was used to 
strengthen existing concepts and to identify study designs 
for upcoming research studies.

Results
Pharmacokinetics of Chloroquine and 
Hydroxychloroquine
This paper presents the current knowledge on chloroquine 
(CQ) and hydroxychloroquine (HCQ) pharmacokinetics 
(PK) with a focus on stereoselectivity of their disposition. 
Both drugs are racemic mixtures, consisting of equal 
amounts of R(-) and S(+)-enantiomers.45 The pharmaco-
kinetics of these two 4-aminoquinolines are similar and 
regulate dosing of the drugs.

Dosing Considerations
CQ is available as chloroquine phosphate, Aralen®. Each 
500-mg tablet of chloroquine phosphate contains 300 mg 
of chloroquine. HCQ is available as hydroxychloroquine 
sulfate, Plaquenil®. Each 200-mg tablet of hydroxychlor-
oquine sulfate contains 155 mg of hydroxychloroquine. 
Doses of both agents are based on ideal body weight 
(IBW). Chloroquine doses are 3.5–4.0 mg/kg/day and 
produce plasma levels of 6 to 9 × 10−7 M/L. Doses of 
hydroxychloroquine are 6.0–6.5 mg/kg/day and produce 
plasma concentrations of 1.4 to 1.5 × 10−6 M/L.46 An 
initial adult dose of chloroquine phosphate for malaria 
therapy is 1 g followed by 500 mg given at 6–8 hours, 
24, and 48 hours. Lupus erythematosus and rheumatoid 
arthritis chloroquine phosphate dosage is 250 mg daily 
with dose reduction after remission.9

Initial adult dose of hydroxychloroquine sulfate is 
800 mg followed by 400 mg given at 6–8 hours, 24, and 
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48 hours. Lupus erythematosus and rheumatoid arthritis 
initial treatment is 400–600 mg of hydroxychloroquine 
sulfate daily for several weeks or months.10

Pediatric dosage of chloroquine and hydroxychloro-
quine is based on body weight. An initial pediatric dose 
of chloroquine phosphate for treatment of malaria is 
16.7 mg/kg followed by 8.3 mg/kg given at 6, 24, and 
48 hours after initial dose. Maximum total dose is 2.5 g.9 

Initial pediatric dose of hydroxychloroquine sulfate for 
treatment of malaria is 12.9 mg/kg followed by 6.4 mg/ 
kg given at 6, 24, and 48 hours after the first dose. 
Maximum total dose is 2 g.10

CQ and HCQ have been used for prophylaxis and 
treatment of malaria in pregnant women without evidence 
of adverse effects on the fetus. Dosing for treatment and 
prophylaxis of uncomplicated malaria is the same in preg-
nant and nonpregnant adults. Due to pregnancy-induced 
physiologic changes, some pharmacokinetic properties of 
the drugs may be altered, suggesting dose adjustments 
may be needed. But data are not sufficient to determine 
an appropriate dosing during pregnancy.9,10

Small amounts of chloroquine and hydroxychloroquine 
excrete into breast milk. The amounts of the drugs are not 
sufficient to harm the infant nor to protect the child from 
malaria. Weekly CQ/HCQ of 500/400 mg may be given 
until breastfeeding is completed.9,10

No information is available on the effect of chloroquine 
and hydroxychloroquine in geriatric patients. But because 
CQ and HCQ are mostly excreted in the urine, elderly 
patients with age-related kidney problems may require cau-
tion and a dose adjustment for the patients. The dose adjust-
ment should be based on the kidney function.

The optimal dosing of HCQ and CQ for treatment of 
COVID-19 is unknown. Most of the published clinical 
studies had HCQ dosage of 400 mg/5 days or 800 mg on 
the first day and 400 mg for the next 4 days. The latest 
regimen was supported by pharmacokinetic modelling, 
where an oral HCQ sulfate loading dose of 400 mg twice 
daily, followed by a maintenance dose of 200 mg twice 
daily for 4 days was able to achieve treatment efficacy and 
a good safety profile.19 This regimen reached three times 
the potency of CQ phosphate given 500 mg twice daily for 
5 days.19 However, more reliable information is required 
before it can be widely used to treat COVID-19.

Absorption
Oral absorption of chloroquine and hydroxychloroquine in 
humans is efficient. Both drugs have oral bioavailability of 

0.7–0.8.47,48 Although 2-3-fold difference in the absorbed 
fraction of oral doses was reported.49,50 Maximum blood 
concentrations (Cmax) for the oral doses showed significant 
differences between subjects (range 135–422 ng/mL), but 
not within subjects.51,52 Oral bioavailability of chloroquine 
is 52–114%. CQ oral tablets have slightly greater bioavail-
ability than oral solutions, 67–114% vs 52–102%, 
respectively.16 Hydroxychloroquine has oral bioavailability 
of 67–74%.47,53 Antacids may decrease the bioavailability 
of both drugs.54 Oral chloroquine reaches Cmax faster than 
hydroxychloroquine. Time to reach the maximum level 
(Tmax) for CQ was estimated at 30 minutes,16,55–57 while 
Tmax for HCQ was estimated 3.74 hours.47,58 Absorption 
of the R and S enantiomers was not significantly different.47

Distribution
CQ and HCQ have multicompartment disposition in humans 
with wide distribution to the body tissues.48 Highest concen-
trations were found in the melanin-containing cells, the retina 
and the skin. High levels were observed in the liver, spleen, 
kidney, and lung.59 In the blood, concentrations in erythro-
cytes were up to 5 times higher than in plasma.60 Reported 
volumes of distribution were 44,000 L and 65,000 L for HCQ 
and CQ, respectively.16,57,61–63

Plasma protein binding of the drugs ranges between 
50% and 60%.47,64 CQ and HCQ are mostly bound to two 
plasma proteins, albumins and α-1-acid glycoproteins. 
Binding of both compounds to plasma proteins is stereo-
selective. Chloroquine is approximately 60% bound to 
plasma proteins.16,65 Extend of S(+)-chloroquine plasma 
protein binding is greater than binding of R(-)-chloroquine 
(67% vs 35%).66 Binding of hydroxychloroquine to plasma 
proteins is around 50%, which is less than chloroquine 
binding. The S-hydroxychloroquine is 64% bound to 
plasma proteins, while the R-hydroxychloroquine is only 
37% protein bound.47 Following separate administration of 
the individual enantiomers of both drugs, R(-)-isomers 
reach higher and more sustained plasma and ocular concen-
trations than S(+)-forms.16,67,68

Metabolism
Chloroquine and hydroxychloroquine have long half-lives 
and low blood clearance. CQ is rapidly N-desethylated into 
two major metabolites: desethylchloroquine (40%) and bis-
desethylchloroquine (10%).69,70 Desethylchloroquine is the 
pharmacologically active metabolite and further metabo-
lizes to bidesethylchloroquine. CQ is metabolized primarily 
by CYP2C8 and CYP3A4 mediating 80% of the total 
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metabolism of the drug. Other enzymes, CYP3A5 and 
CYP2D6 break down chloroquine to a lesser 
extent.69,71–73 Metabolism of CQ is stereoselective. After 
administration of the individual enantiomers, the concentra-
tion of (R)-chloroquine was 1.3-fold higher compared to 
concentrations of (S)-chloroquine in plasma and 1.8-fold 
higher in the blood in patients with rheumatoid arthritis.74 

Blood concentrations of the active metabolite S(+)- 
desethylchloroquine exceeded those of the R(-)- 
forms.67,75,76

HCQ has similar to chloroquine biotransformation but 
breaks down into more metabolites. HCQ is N-dealkylated 
by CYP3A4 to the two active metabolites desethylhydrox-
ychloroquine, desethylchloroquine and an inactive meta-
bolite bidesethylchloroquine. Other cytochrome P450 
enzymes (CYP2C8, 2D6, and 3A5) are involved in the 
metabolism to a lesser extent.64,77 Biotransformation of 
HCQ is also stereoselective. Several studies have reported 
faster hepatic metabolism of S(+)-enantiomers compared 
to metabolism of R(-)-enantiomers.67,76,78–80 The blood 
and plasma concentrations of R-hydroxychloroquine 
exceeded those of the S-hydroxychloroquine with the 
mean R/S ratio of 2.2 in the blood and 1.6 in the 
plasma.81 The mean blood concentration ratio R/S for 
desethylhydroxychloroquine was 0.45 and for desethyl-
chloroquine was 0.56, indicating stereoselective metabo-
lism of the compound.81

Similar doses of the two drugs produced 11-fold varia-
tions in the blood concentrations in patients with rheuma-
toid arthritis47,63,82,83 and in healthy volunteers,52,64 

suggesting different extend of metabolism among indivi-
duals. Moreover, chloroquine and hydroxychloroquine are 
involved in several metabolic drug–drug interactions 
(DDIs). A CYP3A4 inhibitor, cimetidine increased serum 
concentrations of CQ by 48%.84 Another CYP3A4 inhibi-
tor, ketoconazole reduced the formation of active metabo-
lite desethylchloroquine.71,85

Excretion
Urinary excretion is the main route of elimination for 
chloroquine and hydroxychloroquine.

The 50% of a chloroquine dose is recovered in the 
urine as unchanged drug, with 10% of the dose recovered 
in the urine as its active metabolite desethylchloroquine.16 

The 19% of a CQ dose is recovered in feces.86 Small 
amounts (5%) of the drug eliminate through the skin and 
up to 45% stored in lean tissues.46 Elimination from the 
skin is very slow. CQ remains in the skin longer than 6 

months, a time when the drug is no longer detectable in the 
plasma.87 Chloroquine and active metabolite desethyl-
chloroquine have elimination half-lives of 20 to 60 days 
and may be detected in urine months after a single dose.16 

Chloroquine has a total clearance of 0.35–1L/h/kg.16 Renal 
clearance accounts for half of the total systemic clearance 
and increases by acidification of the urine.87

The renal excretion accounts for 40–50% of HCQ elim-
ination, where only 16–21% is excreted as unchanged 
drug.47 The 24–25% of absorbed dose is excreted in the 
feces, which is greater than CQ feces excretion.46 The 
elimination through the skin and long-term storage in lean 
tissues is identical to those of chloroquine, 5% and 45%, 
respectively.21,46,88 The total clearance of hydroxychloro-
quine is 96 mL/min.47 IV hydroxychloroquine has a half- 
life of 40 days (22.4 days in blood, and 123.5 days in 
plasma).89 The elimination half-life of both drugs is signifi-
cantly longer in patients with chronic renal disease.16,57 In 
anuretic patients, the plasma levels were 70% and 25–30% 
higher for CQ and HCQ, respectively, compared to concen-
trations in subjects with normal kidney function.53 

Enantioselective renal elimination of the medications has 
been demonstrated in patients.66,74 (S)-hydroxychloroquine 
had a mean renal clearance approximately twice that of (R)- 
hydroxychloroquine. In addition, the mean renal clearance 
of active (S)-metabolites was also higher than that of (R)- 
metabolites.81

The main mechanism of renal elimination of the medi-
cations is tubular secretion as renal excretion 7-fold exceeds 
the glomerular filtration rate.57,90 The tubular secretion is an 
active process mediated by membrane proteins. It was 
reported that chloroquine is a substrate and potent compe-
titive inhibitor of multidrug and toxin extrusion protein 1 
(MATE1).91,92 As substrates and/or inhibitors of active 
transport and metabolism, CQ and HCQ may be involved 
in several drug–drug interactions.93–98

Pharmacogenomics of Chloroquine and 
Hydroxychloroquine
Response to drugs is subject to inter-individual variability. 
40–70% of individuals that receive a drug, exhibit lack of 
efficacy, or adverse drug reactions. Up to 30% of the varia-
bility is attributed to genetic polymorphisms.99 Cytochrome 
P450 enzymes are major determinants of drug response. 
They are responsible for approximately 80% of Phase 
I drug metabolism, and 70% of drug clearance.100 The 
human CYP supergene family includes 57 genes, 12 of 
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which are responsible for more than 75% of all drug oxida-
tion reactions.100 The CYP genes are highly polymorphic 
composed of large numbers of single-nucleotide poly-
morphisms (SNPs) and copy number variations. The most 
studied are genes of CYP2D6, 2C9, 2C8, 3A4, and 3A5 
enzymes.101–110 However, drug pharmacokinetics also 
depend on the renal excretion of the medications. MATE1, 
encoded by SLC47A1 gene, has been identified as a major 
efflux transporter involved in the renal excretion of many 
drugs including chloroquine.91,111–115

Pharmacogenomics Informing Chloroquine Malaria 
Pharmacotherapy
Individual variation in drug response is a critical challenge 
in effective drug pharmacotherapy. Both the nature of the 
drug, as well as the dose of the drug, are subjected to 
vary on an individual basis. Genetic polymorphisms in 
metabolizing enzymes influence the pharmacokinetics 
and drug response.116

Plasmodium vivax is the major cause of malaria disease 
outside Africa. The World Health Organization (WHO) 
recommends chloroquine as a component of the treatment 
protocol for uncomplicated P. vivax malaria.117 

Chloroquine is metabolized by the CYP450 isozymes 
2C8, 3A4, 3A5 and 2D6. The CYP2C genes are located 
in a cluster on chromosome 10q24, organized as Cent- 
CYP2C18-CYP2C19-CYP2C9-CYP2C8-Tel.118 The 
CYP2C8 gene is approximately 30 kb in size and includes 
nine exons.119 CYP2C8 is the most divergent with respect 
to its protein sequence. Interindividual variability in chlor-
oquine efficacy was previously reported in Africa and Asia 
and attributed to: P. vivax resistance to chloroquine, non-
compliance, suboptimum dose and drug–drug 
interactions.120 In a study reported in 2016, assessment 
of genetic polymorphisms in chloroquine metabolizing 
enzymes was identified as a need.121 To that end, the 
investigators focused on a cohort consisting of 164 
P. vivax malaria patients followed during malaria treatment 
from 2007 to 2009. The study reported for the first time 
the influence of the CYP2C8 gene on gametocyte clear-
ance rate with patients undergoing chloroquine/primaquine 
malaria treatment. From baseline until the first day of 
treatment, wild-type CYP2C8 homozygous individuals 
achieved greater reduction in gametocytes as compared 
to individuals without this genotype. The results suggested 
that CYP2C8, CYP2C9 and CYP23A5 genetic variants 
influenced chloroquine malaria treatment.

Pharmacogenomics Informing Hydroxychloroquine 
Lupus Pharmacotherapy
Discoid lupus erythematosus is the most common form of 
cutaneous lupus.122 Patients diagnosed with systemic lupus 
erythematosus and rheumatoid arthritis show a positive 
correlation between whole blood hydroxychloroquine 
levels and clinical response.62 HCQ is metabolized to 
N-desethylhydroxychloroquine in the liver.123 The reaction 
is mediated by CYP3A4, CYP2C8, CYP2D6 and CYP3A5 
isoforms.71,123 In a study reported by Lee et al, 194 systemic 
lupus erythematosus patients were genotyped for 4 SNPs in 
CYP3A4*18B, CYP2D6*10, CYP3A5*3.124 The associa-
tion of the respective genotypes with blood hydroxychlor-
oquine and N-desethyl hydroxychloroquine was the focus 
of the investigation. The CYP2D6*10 allelic variants 
were found to be significantly associated with the 
N-desethylhydroxychloroquine/hydroxychloroquine ratio. 
The study demonstrated that this ratio is related to 
CYP2D6 polymorphisms in systemic lupus erythematosus 
patients treated with hydroxychloroquine.

A multicenter observational and pharmacogenetic 
study with 200 discoid lupus erythematosus patients trea-
ted with HCQ was reported by Wahie et al.125 Thirty-nine 
percent of the patients failed to respond to hydroxychlor-
oquine, or developed toxicity. The study showed a trend 
for CYP2C8 variants to be associated with better response.

Discussion
The PK and PD characteristics of chloroquine and hydroxy-
chloroquine need to be evaluated in order to provide safe and 
effective COVID-19 therapy. The pharmacokinetics of chlor-
oquine and hydroxychloroquine are similar. Oral absorption 
of the drugs is comparable with bioavailability values of 
0.7–0.8.47,48 But the two medications have significant varia-
tions in bioavailability between individuals.49,50 Genetic 
polymorphism of CYP enzymes involved in the presystemic 
metabolism can explain at least in part the individual differ-
ences in the oral absorption of the drugs and may reflect the 
variations in blood and tissue concentrations of the drugs in 
COVID-19 patients.

Both CQ and HCQ have wide distribution to the body 
tissues. Plasma protein binding of the drugs varies 
between 50% and 60%.47,64 CQ and HCQ are known to 
be enantioselective in their dispositions. Both medications 
have similar stereoselective patterns of protein binding. S 
(+)-isomers are more bound to plasma proteins than R(-)- 
isomers, suggesting that free plasma concentrations are 
higher for R(-)-forms.45 Such differences in the plasma 
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protein binding can be responsible in part for the varia-
tions in therapeutic response and toxicity of the isomers in 
COVID-19 patients treated with CQ or HCQ, as only free 
drug can interact with receptors and produce therapeutic 
and/or side effects.

Chloroquine and hydroxychloroquine have long half- 
lives. The long half-life can be attributed to extensive tissue 
uptake rather than decreased elimination. Chloroquine is 
N-desethylated into two major metabolites largely by 
CYP3A4 and CYP2C8, while hydroxychloroquine metabo-
lizes into three metabolites primarily by CYP3A4.69,70 

Metabolism of both drugs is stereoselective. The higher 
blood and plasma concentrations of (R)-forms confirm the 
stereoselective metabolism of the medications, where 
S-enantiomers metabolize faster than R-enantiomers.74,81 

As a result, S(+)-isomers have shorter half-life than R(-)- 
isomers. Similar doses of both medications produce large 
(11-fold) variations in the blood concentrations in patients 
with rheumatoid arthritis and in healthy volunteers.47,64,82,83 

Comparable differences in drug levels may be expected in 
COVID-19 patients. The variability can be explained by the 
stereoselective metabolism as well as genetic polymorphism 
of the P-450 enzymes involved in the biotransformation of 
the medications.

Individual variation in drug response is a critical chal-
lenge in effective drug pharmacotherapy. Up to 70% of 
individuals that receive a drug, exhibit lack of efficacy or 
adverse drug reactions, at least partially, due to genetic 
polymorphisms.99 Gene polymorphisms influence metabo-
lism as well as active transport.

CYP2D6 the most extensively studied CYP gene meta-
bolizes approximately 25% of all drugs. Genetic poly-
morphisms resulting in increased CYP2D6 metabolic 
capabilities have been linked to decreased treatment 
response with tricyclic antidepressants, increased occur-
rences of respiratory depression and opioid toxicity.101,102 

CYP2C9 deficiency is related to bleeding complications 
with warfarin and other anticoagulants treatment. 
Fifty percent of interindividual variability in dose require-
ments is observed in concert with age, body surface area 
and polymorphisms in VKORC1.103

CYP2C8 is involved in the metabolism of many med-
ications including non-steroidal anti-inflammatory drugs, 
thiazolidinediones, chemotherapy agents, chloroquine and 
hydroxychloroquine. CYP2C8 genotyping should be con-
sidered as a viable option in Africans and Europeans in 
which 19.2% and 17.2% of CYP2C8 alleles, respectively, 
exhibit reduced functionality.104

The CYP3A subfamily is the most abundant of the P-450 
enzymes. CYP3A4 and CYP3A5 metabolize more than half 
of the marketed drugs.105,106 The most common variant of 
CYP3A4 enzyme, CYP3A4*1B has been associated with 
reduced CYP3A4 activity.107 The CYP3A4*1B allelic fre-
quency varies among different ethnic groups, ranging from 
0% in Chinese to 67% in African Americans.108–110 CYP3A5 
is polymorphically expressed in 10–20% in Caucasians, 33% 
in Japanese and 55% in African Americans.109 The primary 
variant is CYP3A5*3, which has been associated with low 
CYP3A5 protein expression and reduced metabolic activity. 
The CYP3A5*3 allele frequency varies from approximately 
50% in African Americans to 90% in Caucasians.109 Other 
allelic variants have been reported for both CYP3A4 and 
CYP3A5. However, the variants occur at relatively low 
allelic frequencies and their functional significance has not 
been verified and validated.

Determination of CYP3A, CYP2C8 and CYP2D6 poly-
morphism and, therefore, activity is important to establish 
safe and efficient dosing of chloroquine and hydroxychlor-
oquine for treatment of COVID-19 patients. A recent study 
reported for the first time the influence of the CYP2C8 gene 
on clearance in patients with chloroquine/primaquine 
therapy.121 Wild-type CYP2C8 homozygous individuals 
achieved greater reduction in gametocytes as compared to 
individuals without this genotype.121 Another study demon-
strated CYP2D6 polymorphisms in systemic lupus erythe-
matosus patients treated with hydroxychloroquine. 
CYP2D6*10 allelic variants were found to be significantly 
associated with altered metabolism of HCQ.124 A study with 
200 lupus erythematosus patients treated with hydroxychlor-
oquine demonstrated 39% of the patients failed to respond to 
the therapy or developed toxicity.125 Similar trend was 
observed in a recent clinical trial with COVID-patients trea-
ted with hydroxychloroquine.43 Additionally, the study with 
200 lupus erythematosus patients showed a trend for 
CYP2C8 variants to be associated with better response.125 

Overall, the results suggest that CYP2C8, CYP2D6 and 
CYP3A genetic polymorphisms may influence chloroquine 
and hydroxychloroquine pharmacokinetics and COVID-19 
patients treated with the same dose of CQ or HCQ may 
exhibit lack of efficacy or adverse reactions. The variability 
in therapeutic response may require dose adjustment of CQ/ 
HCQ in treatment of COVID-19 patients.

Urinary excretion is the primary route of elimination 
for chloroquine and hydroxychloroquine. The 50% of 
a CQ dose is recovered in the urine as unchanged drug, 
while only 16–21% of an HCQ dose is renally excreted as 
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unchanged drug.16,47 However, a greater fraction of 
absorbed HCQ dose excretes in the feces compared to 
the fraction of CQ dose. The elimination half-lives of 
both medications are significantly longer in patients with 
chronic renal disease.16,57 This finding recommends that 
the two drugs should be used with caution in patients with 
renal impairment, as kidney dysfunction may lead to 
greater drug retention and higher risk of adverse effects. 
Renal elimination of both compounds is stereoselective, 
(S)-isomers have a mean renal clearance approximately 
twice that of (R)-isomers.81

The main mechanism of renal elimination of the med-
ications is tubular secretion.57,90 However, the molecular 
mechanisms of the renal tubular secretion remain mostly 
unidentified. It was reported that chloroquine is a substrate 
and potent inhibitor of the MATE1 transporter.91 Given the 
similarity in structure between CQ and HCQ, it is possible 
to propose that HCQ is also a substrate for MATE1. 
MATE1 is a proton-substrate antiporter expressed in the 
kidney and liver that facilitates the export of organic 
cations, such as metformin, paraquat, and oxaliplatin into 
urine and bile.92 Genetic polymorphisms of MATE1 may 
alter the pharmacokinetics and pharmacodynamics of the 
medications, as drug transporters are key determinants of 
elimination of the drugs. MATE1, encoded by the 
SLC47A1 gene, has been identified as a major efflux 
transporter involved in the renal excretion of 
chloroquine.91 Functional SNP of MATE1 (rs2289669 
G>A) was associated with increased glucose-lowering 
activity of metformin through slowing renal excretion of 
the anti-diabetic drug.111,112 The allele frequency ranges 
from 10.4% in African Americans to 49% in Mexican 
Americans.113 Other SNPs may also alter transport activity 
of MATE1 and lead to changed elimination of the corre-
sponding drugs.114,115 Genetic polymorphisms of MATE1 
can affect renal elimination of CQ and HCQ and, there-
fore, may require dose adjustment based on pharmacoge-
nomic profiles of COVID-19 patients.

Indeed, the active transporters and CYP enzyme poly-
morphisms may explain the variations in blood concentra-
tions, therapeutic responses and severity of adverse effects 
of chloroquine and hydroxychloroquine. Despite the evi-
dence of the influence of genetic polymorphisms on the 
pharmacokinetics of chloroquine and hydroxychloroquine, 
no large pharmacogenomics studies have been conducted 
to provide guidance on the use, dosing, and duration of the 
therapy in COVID-19 patients.

Additionally, chloroquine and hydroxychloroquine are 
involved in several DDIs. Cimetidine and ketoconazole, 
CYP3A4 inhibitors increased serum concentrations of 
CQ.71,84 Predictably, cimetidine and ketoconazole may 
also increase HCQ blood concentrations by inhibition 
metabolism of the drug. Co-administration of CQ and 
HCQ with moderate and strong CYP3A4 (boceprevir, 
cobicistat, azole anti-fungal agents, macrolide antibiotics, 
etc.), CYP2C8 (gemfibrozil, clopidogrel, deferasirox, teri-
flunomide) and MATE1 inhibitors may result in increased 
plasma concentrations, longer half-life, exaggerated ther-
apeutic effect and the toxicity of chloroquine and 
hydroxychloroquine.85 Significant drug interactions with 
chloroquine and hydroxychloroquine that should be 
avoided or require additional monitoring include digoxin, 
antiepileptics, antacids, cyclosporine, amiodarone, azithro-
mycin, moxifloxacin, insulin and other antidiabetic agents, 
tamoxifen, and praziquantel.32,33 With the currently known 
or potential DDIs, the use of chloroquine and hydroxy-
chloroquine with other drug therapy requires consideration 
for patient safety in COVID-19 patients.

Conclusions
Limited pharmacogenomic studies have been performed 
investigating the inter-patient variability of chloroquine 
and hydroxychloroquine in both malaria and lupus patient 
populations. Moreover, data to support the use of hydro-
xychloroquine and chloroquine for COVID-19 are limited 
and inconclusive. The off-label use of chloroquine and 
hydroxychloroquine to treat COVID-19 must be used 
with caution given the toxicities: cardiac, retinal and cuta-
neous severe adverse effects. Well-designed randomized 
trials incorporating pharmacogenomics need to be per-
formed in a timely manner to achieve safe and effective 
dosing and to reduce severity of adverse effects.

Abbreviations
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