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Abstract: Exosomes are a subset of tiny extracellular vesicles manufactured by all cells and 
are present in all body fluids. They are produced actively in tumor cells, which are released 
and utilized to facilitate tumor growth. Their characteristics enable them to assist major 
cancer hallmarks, leveraged by cancer cells in fostering cancer growth and spread while 
implementing ways to escape elimination from the host environment. This review updates on 
the latest progress on the roles of cancer-derived exosomes, of 30–100 nm in size, in 
deregulating paracrine trafficking in the tumor microenvironment and circulation. Thus, 
exosomes are being exploited in diagnostic biomarker development, with its potential in 
clinical applications as therapeutic targets utilized in exosome-based nanoparticle drug 
delivery strategies for cancer therapy. Ongoing studies were retrieved from PubMed® and 
Scopus database and ClinicalTrials.gov registry for review, highlighting how cancer cells 
from entirely different cell lines rely on genetic information carried by their exosomes for 
homotypic and heterotypic intercellular communications in the microenvironment to favor 
proliferation and invasion, while establishing a pre-metastatic niche in welcoming cancer 
cells’ arrival. We will elaborate on the trafficking of tumor-derived exosomes in fostering 
cancer proliferation, invasion, and metastasis in hematopoietic (leukemia and myeloma), 
epithelial (breast cancer), and mesenchymal (soft tissue sarcoma and osteosarcoma) cancers. 
Cancer-derived exosomal trafficking is observed in several types of liquid or solid tumors, 
confirming their role as cancer hallmark enabler. Their enriched genetic signals arising from 
their characteristic DNA, RNA, microRNA, and lncRNA, along with specific gene expres-
sion profiles, protein, or lipid composition carried by the exosomal cargo shed into blood, 
saliva, urine, ascites, and cervicovaginal lavage, are being studied as a diagnostic, prognostic, 
or predictive cancer biomarker. We reveal the latest research efforts in exploiting the use of 
nanoparticles to improve the overall cancer diagnostic capability in the clinic. 
Keywords: tumor-released exosomes, carcinoma-associated fibroblasts, exosome cargo, 
exosome-induced chemoresistance, hallmarks of cancer, tumor-stromal communications

Introduction
There exist six well-researched cancer hallmarks, and they are as follows: (1) sustain-
ing proliferative signaling, (2) evading growth suppressors, (3) enabling replicative 
immortality, (4) activating invasion and metastasis, (5) inducing angiogenesis, and (6) 
resisting cell death. However, two emerging hallmarks were identified and added by 
Hanahan and Weinberg:1,2 (7) deregulating cellular metabolism and (8) avoiding 
immune destruction. Cancer cells typically acquire these core capabilities through 
sustaining selective pressures and adopting alterations in specific and ubiquitous 
cellular function, defined as “enabling characteristics,” to permit cancer hallmark 
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capabilities. Enabling characteristics, which foster cancer 
growth and spread, are typically adopted by cancer cells to 
survive, proliferate, and escape elimination by the host 
environment. In the next-generation review by Hanahan 
and Weinberg on cancer hallmarks’ molecular mechanisms, 
they proposed two enabling characteristics that are present in 
cancer cells across the board, which are genome instability/ 
mutation and tumor-promoting inflammation.1

In this review, we propose pathological trafficking of 
genetic materials carried by cancer-derived exosomes 
(CDE) cargo as a new enabling characteristic that fits the 
proposed criteria (Table 1). This CDE cargo phenomenon 
has been demonstrated to be present in virtually all kinds 
of cancer cell types, fostering the core hallmarks of cancer 
by effective homotypic or heterotypic intercellular (tumor- 
to-microenvironment) communications, which facilitate 
cancer invasion and metastasis as well as evasion from 
immune destruction. The second part of the review is 
dedicated to the updated status of CDE being evaluated 
as a valid diagnostic cancer biomarker in human studies.

This study aims to present a comprehensive overview 
of the roles of CDE in cancer progression and develop-
ment, assimilated from the current literature and transla-
tional cancer research to stimulate cancer biologists, 
scientists, and oncologists who are interested in the invol-
vement of CDE in cancer pathogenesis, cancer microen-
vironment, molecular mechanisms on cancer progression 
and who plan to apply the knowledge in developing more 
effective diagnostic strategies for various types of cancer. 
Ongoing research studies evaluating CDE as a cancer bio-
marker registered in the ClinicalTrials.gov were selected 

to enrich the discussion on the clinical application of CDE 
as a biological cancer marker and to indicate future oppor-
tunities for cross-disciplinary collaborations.

Literature Search
To ensure a comprehensive and unbiased literature review, we 
performed both electronic and manual literature search in the 
PubMed® and Scopus database to retrieve relevant original 
articles. We leveraged the use of PubMed Advanced Search 
Builder, Medical Subject Headings (MeSH), and Boolean 
logic to add terms or combine search terms using connector 
words, such as AND, OR, or NOT, as well as truncate terms. 
We used a controlled vocabulary to produce highly relevant 
search results. The search terms included exosome, exosomal 
cargo, cancer-derived or tumor-derived, cancer biology, pro-
teasome, and cancer biology. Subsequently, we surveyed the 
ClinicalTrials.gov registry for clinical studies conducted in the 
United States and around the world.

Cancer-Derived Exosomes in 
Cancer Biology
The tumor microenvironment (TME) surrounding cancer cells 
is identified to be comprised of cancer-associated fibroblasts, 
blood vessels, nerve fibers, immune cells, other stromal cells, 
and extracellular vesicles containing various kinds of genetic 
signals. Considering all are functional in anticancerous immu-
nosuppressive cells, the TME is known to create a milieu that 
prevents the free spread of the malignant cells.3 The cancer 
cells, however, communicate with the neighboring stromal 
and immune cells, promoting immune evasion, and could 
also activate angiogenesis, tumor innervation, and epithelial- 
mesenchymal transition (EMT), in order to facilitate 
neoplastic growth. Recently, a phenomenon involving tumor- 
infiltrating innervation in the TME has also been proposed as 
a prerequisite for cancer cells of many types such as in 
prostate, gastric, pancreatic, and rectal cancers.4–6 Tumors 
are capable of recruiting nerves via the release of neurotrophic 
factors and axonal guidance molecules, and, with the contri-
bution of CDEs, induction of axonogenesis is initiated, 
whereby the communication between the tumor and poten-
tially innervating nerves work in concert to promote tumor 
innervation.4 Thus, it has been proposed that tumor innerva-
tion with neurite outgrowth (axonogenesis), just like angio-
genesis, might be considered a new emerging hallmark of 
cancer.7–13 Although research has demonstrated that 
angiogenesis is frequently associated with axonogenesis, 
more studies are eagerly required to elucidate the roles of 

Table 1 Criteria for Classification as a Hallmark of Cancer or an 
Enabling Characteristic, According to Hanahan and Weinberg1,2

Hallmark of Cancer

● Essential alterations in cell physiology
● An acquired functional capability that allows cancer cells to survive, 

proliferate, and spread
● These alterations are acquired via distinct mechanisms and at 

various time points during multistep carcinogenesis
● The characteristic should be present in most, if not all, tumor types

Enabling characteristic

● Fosters the acquisition of one or some hallmarks of cancer
● Expedites the acquisition of the hallmarks of cancer
● Can foster multiple hallmark functions
● Should be present in most, if not all, tumor types
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tumor-infiltrating innervation in tumor initiation, growth, and 
spread for this phenomenon to be widely accepted as 
a hallmark of cancer. Recent studies were able to confirm 
that the neurite recruitment/outgrowth and tumor innervation 
were promoted by the release of exosomes in the head and 
neck squamous cell carcinomas model5 and human papillo-
mavirus-positive uterine cervical cancer cell lines.6

The name “tumor-derived exosomes” was coined in 
1981, and this phenomenon has received extensive 
research attention over the past decade.14 Exosomes are 
extracellular, membranous, cup-shaped microvesicles 30 
to 100 nm in size, which are produced by most types of 
cells.15–17 They originate from intracellular multivesicular 
bodies and are released by exocytosis into the extracellular 
microenvironment.18 Exosome typically consists of 
a variety of genetic messengers such as DNA, mRNA, 
microRNA, cytosolic proteins, and lipids.19–23 Exosomal 
markers such as tetraspanin proteins CD63, CD9, and 
CD81 allow sorting, selective recruitment, capturing, or 
profiling of CDEs.24,25 Once the recipient cells internalize 
tumor-derived exosomes, the ensuing biological response 
is determined explicitly by the dedicated trafficking routes, 
the exosomal internalization pathway, and the complex 
surface molecules on the membrane of both the extracel-
lular vesicle and the recipient cell. With the advent of 
theranostic nanotechnologies such as differential ultracen-
trifugation, nanofluidic technology, and the exosome total 
isolation chip (ExoTIC), a size-based extracellular vesicle 
isolation apparatus, researchers nowadays are now able to 
capture nano-sized CDE for further analyses.26–28 The 
latest biosensing technologies, such as afterglow sensors 
with aptamer-based signal amplification, improve the limit 
of detection (LOD) that is nearly two orders of magnitude 
lower than that of fluorescence methods.29 With the advent 
of these sensitive biosensors, the LOD can practically be 
improved to 102 exosomes per milliliter.

These exosomes, particularly those that are tumor- 
derived, act as signal transducers or messengers in the cell- 
cell communication.5,30–33 The recipient cells respond to 
the exosomal contents (such as microRNA) by changing 
their phenotypes. microRNAs are considered an evolutio-
narily conserved family of molecules that bind to comple-
mentary sequences in the 3ʹ-untranslated region (3ʹUTR) 
of their target mRNAs, post-transcriptionally repressing 
gene expression.34 It has been demonstrated that in high- 
grade bladder cancer cell line, TCC-SUP, for example, 
exosomes promoted angiogenesis and migration of both 
cancer and endothelial cells.35 In another study in prostate 

cancer, the malicious CDEs induced differentiation of the 
stromal mesenchymal stem cells toward alpha-smooth 
muscle actin-positive myofibroblasts, which secreted high 
levels of proangiogenic VEGF-A, pro-invasive HGF, 
MMP-1, MMP−3, and MMP−13.36

The role of CDEs as characteristic enablers of cancer 
hallmarks to facilitate organ-specific metastasis has been 
demonstrated by the proof-of-principle study conducted by 
Hoshino et al,37 In their peripheral blood study of mouse 
and human cell lines, they claimed that during the meta-
static cascade, organ-specific metastasis took place not by 
a random process but by somewhat predictable and track-
able events. This happened through distinct integrin expres-
sion patterns contained in the CDEs, a phenomenon that 
now elucidates the mechanism of specific cancer organo-
tropism adequately. The exosomal integrin αvβ5 was asso-
ciated with hepatic metastasis, while exosomal integrins 
α6β4 and α6β1 were linked to lung metastasis.37

In the following sections, we will use three different 
cancer types: hematopoietic, epithelial, and sarcomatous 
malignancies (leukemia/myeloma, breast cancer, soft tis-
sue sarcoma, and osteosarcoma) to prove, using compel-
ling evidence, that cancer cells across the board leverage 
the pathological trafficking of exosomes to promote neo-
plastic growth, facilitate cancer spread through tumor- 
stromal interaction, and evade destruction by the host 
(Figure 1).

Exosomal Trafficking in Leukemia 
Pathogenesis
Although leukemia can reach every part of the host body 
through the ever-reaching blood vessels, recent research 
has reported that leukemic cells also employ paracrine 
exosome trafficking to achieve leukemogenesis, maintain 
leukemic persistence by shaping the leukemic niche and its 
progression, suppress hematopoiesis, modify anti- 
leukemic immunity, and evade destruction by chemother-
apy. Table 2 illustrates these aspects taking acute myeloid 
leukemia (AML) as an example.

Patients with chronic lymphocytic leukemia (CLL) 
have been identified to have decreased T-cell immunity. 
A recent study showed that CLL induced myeloid-derived 
suppressor cells (MDSCs), which, in turn, suppressed 
T-cell activation and induced suppressive regulatory 
T cells (Treg) through exosomal miR-155 transfer.38,39 

This exosome-mediated transfer of microRNAs to mono-
cytes could significantly contribute to CLL-related 
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immune escape via PD-L1 expression. Colleagues from 
the University of Liverpool verified that CLL-derived exo-
somes encapsulate small RNAs, and the encapsulated 
microRNA miR-202-3p enhanced the expression of 
a Hedgehog signaling intermediate.40 An enriching body 
of evidence shows that the TME created by the bone 
marrow significantly favors the survival, growth, and pro-
liferation of leukemic cells. For example, CLL leukemic 
cells can establish their favorable leukemic niche in the 
TME. Paggetti et al have discovered that CLL-derived 

exosomes could affect bone marrow stromal cells in adopt-
ing a cancer-associated fibroblast phenotype, which would 
contribute to a tumor-supportive microenvironment.41 In 
the chronic myeloid leukemia (CML) model, CML- 
derived exosomal paracrine trafficking stimulated bone 
marrow stromal cells to produce interleukin (IL)-8.42,43 

Further, another study demonstrated that exosomes 
released from CML cells affect the endothelium directly 
to modify the neovascularization process.44

Exosomal Trafficking in Multiple Myeloma 
(MM) Pathogenesis
In a murine MM model, the myeloma exosomes were iden-
tified to have a proangiogenic function to enhance the viabi-
lity of bone marrow endothelial cells; besides, an in vivo 
experiment demonstrated that these exosomes increased the 
presence of bone marrow MDSCs and changed their subsets 
to a more tumorigenic profile.55 MM-derived exosomes 
could modify the bone marrow microenvironment to facil-
itate myeloma progression. Conversely, the bone marrow 
stromal cells could, reciprocally, also release certain exo-
somes to be taken up by MDSCs through the STAT3 and 
STAT1 pathways, which leads to increased immunosuppres-
sion, thereby inducing MM expansion.56 Initially, investiga-
tors from the Dana-Farber Cancer Institute demonstrated that 
there were significant differences in microRNA profiling 
between normal and bone marrow mesenchymal stromal 
cell-derived exosomes in MM.57 A recent study in patients 
with MM using small RNA sequencing of circulating exo-
somes from ten patient samples confirms that microRNAs 
are the most predominant small RNAs present in MM 
exosomes.58 Meanwhile, investigators from the Karolinska 
Institute have examined the human bone marrow stromal cell 

Figure 1 Two established enabling characteristics (genome instability or mutation 
and tumor-promoting inflammation): one investigating feature (tumor innervation) 
and one hitherto proposed enabling characteristic, that is, pathological exosome 
trafficking. Enabling characteristics are defined as the capabilities possessed by most 
cancer types to foster and/or expedite the acquisition of one or some core hall-
marks of cancer.

Table 2 Paracrine Exosome Trafficking Employed by Acute Myeloid Leukemia (AML) as an Example and Its Specific Functional 
Outcomes

Leukemogenesis Immunosuppression Suppression of 
Hematopoiesis

Chemotherapy  
Resistance

Leukemic 

Persistence/Progression
AML-derived bone marrow 
mesenchymal stromal cells 

release exosomes that can 

affect gene regulatory 
networks.45

AML-derived exosomes 
carry immunosuppressive 

molecules responsible for 

immune cell 
deregulation.46,47

Blast-derived exosomes remodel 
the bone marrow niche into 

a leukemia growth-permissive 

microenvironment.48,49

Blast-derived exosomes propel 
bone marrow stromal cells to 

generate IL-8, which regulates 

chemo- cytotoxicity.50 

AML cells secrete VEGF/VEGFR- 

containing exosomes that induce 

glycolysis in endothelial cells, 
leading to vascular remodeling 

and chemoresistance.51

May have 
a broader 

role in 

shaping the 
leukemic 

niche.52–54
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line L88 and verified that caspase-3 is activated by the stroma 
cell–released exosomes, which can cleave the anti-apoptotic 
protein Bcl-xL, localized on the outer exosomal membrane. 
Through the cleavage of Bcl-xL, these exosomes could then 
be internalized using plasma cell myeloma, which led to their 
increased proliferation.59

Finally, in another study performed at Tokyo Medical 
University, researchers established a hypoxia-resistant 
MM cell model to mimic the in vivo hypoxic microenvir-
onment induced by the rapid proliferation of MM in the 
bone marrow. Their experiment showed that under nor-
moxic or acute hypoxic settings, the hypoxia-resistant MM 
cells produced more exosomes than the parental cells, and 
the major functional protein in the exosomal cargo was 
identified to be miR-135b. This protein directly suppressed 
factor-inhibiting hypoxia-inducible factor 1 (FIH-1) in 
bone marrow endothelial cells.60 Hence, further studies 
are needed to test if miR-135b could be used as a target 
for therapeutically avert angiogenesis in MM.

Exosomal Trafficking in Breast Cancer 
Pathogenesis
A study using plasma exosomal microRNAs as 
a diagnostic biomarker in breast cancer patients demon-
strated that these molecules have outstanding power to 
distinguish breast cancer patients from normal counter-
parts. Zhai et al used a nucleic acid-functionalized Au 
nanoflare probe, which are known to have the ability to 
directly enter plasma exosomes and generate quantitative 
fluorescent signals for successful in situ detection of exo-
some-located microRNA-1246. At its best cutoff point, the 
in situ detection of the exosomal miRNA-1246 in the 
peripheral blood was able to distinguish 46 breast cancer 
patients from 28 healthy controls with 100% sensitivity 
and 93% specificity.61 Another clinical study on the exo-
somal microRNA signatures of 20 healthy women and 435 
breast cancer patients discovered that 10 miRNAs in the 
entire breast cancer patient cohort, 13 in the HER2- 
positive subgroup (211 patients), and 17 in the triple- 
negative subgroup (224 patients) were significantly 
deregulated in comparison to those in healthy women, 
indicating different underlying aspects of cancer biology 
in different breast cancer types.62 These different exoso-
mal microRNA signatures are associated with the clinico-
pathological features of each subgroup. In addition, 
exosomes that are released by breast cancer cells could 
modify TME through direct suppression of T-cell 

proliferation and inhibition of NK cell cytotoxicity, thus 
dampening the anticancer immune response in pre- 
metastatic organs.63

Another hallmark of cancer is the transfer of chemore-
sistant or hormone-resistant propensity from breast cancer 
stem cells to the daughter cells, explored in the study of 
Santos et al, who demonstrated that miR-155 was upregu-
lated in breast cancer stem cells and chemoresistant cells 
and was involved in the EMT. An enrichment in miR-155 
was noted in exosomes isolated from stem-like breast 
cancer stem and chemoresistant cells. Moreover, the 
experiments demonstrated the capability of the horizontal 
transfer of miR-155 from the chemoresistant cells’ exoso-
mal cargo to the recipient sensitive cells.64 This study 
supports the presence of exosome-mediated chemoresis-
tance and EMT in refractory cancer. Estrogen receptor 
(ER)-positive cancers are found to transition from an 
endocrine sensitive/dormant state to a resistant one, 
acquiring host mitochondrial DNA, which promoted oxi-
dative phosphorylation (OXPHOS) and signaled the tran-
sition from metabolic quiescence toward hormonal therapy 
resistance.65 Further, functional studies have identified 
cancer-associated fibroblast-derived extracellular vesicles 
containing whole genomic mitochondrial DNA in patients 
and xenograft models.

In a breast cancer cell line, recipient cells treated with 
exosomes from stemness-related breast cancer CXCR4- 
positive cells showed an increase in the same oncogenic 
abilities.66 This experiment has also demonstrated that 
inoculating exosomes derived from CXCR4-positive cells 
into immunocompromised mice can stimulate primary 
tumor proliferation and metastatic potential. The same 
investigators also discovered a “stemness and metastatic” 
signature in the exosomes of patients with worse prog-
noses after comparing exosomal nucleic acid contents.66

Exosomal Trafficking in the Pathogenesis 
of Soft Tissue Sarcoma
In 2013, for the first time, a study has showed that exo-
some-mediated pathogenesis, similar to epithelial carci-
noma and hematopoietic malignancy, was also present in 
Ewing sarcoma.67 Microarray analysis of exosomes shed 
by the Ewing sarcoma cell line revealed that their exoso-
mal content shared a transcriptional signature potentially 
involved in the modification of the surrounding microen-
vironment via G-protein-coupled signaling, neurotransmit-
ter signaling, and stemness.67
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A recently published study used both patient plasma 
samples and cell lines to demonstrate that liposarcoma 
cells secreted miR-25-3p and miR-92a-3p in exosomes. 
Subsequently, it stimulated the secretion of the proinflam-
matory cytokine, interleukin (IL)-6, in tumor-associated 
macrophages through a TLR7/8-dependent mechanism, 
which can ultimately cause liposarcoma progression.68 In 
another study using patient-derived Ewing sarcoma cells, 
miR-34a, an inhibitor of Notch-NFκB signaling, was 
enriched and secreted through exosomes shed by CD99- 
silenced (by small interfering RNA) cells.69 CD99 has 
been identified as a cell surface molecule involved in cell 
differentiation, migration, and death. In Ewing sarcoma 
cells, it is pro-oncogenic due to its effect on the prevention 
of NFκB-mediated neural differentiation and is continu-
ously present at high levels. The horizontal transfer of 
miR-34a through exosomes to recipient cells enhanced 
neural differentiation in Ewing sarcoma.69

Moreover, another study demonstrated that the mem-
brane-type 1 matrix metalloproteinase (MT1-MMP, 
MMP14) was released by exosomes of cultured human 
fibrosarcoma (HT-1080) cells.70 MT1-MMP is a crucial 
metalloproteinase that facilitates tumor invasion by remo-
deling the extracellular matrix. Pathological sarcomatous 
exosomal trafficking carrying MT1-MMP could be detri-
mental to the host by providing a favorable microenviron-
ment for sarcoma.

Exosomal Trafficking in Osteosarcoma 
Pathogenesis
Osteosarcomas are known as malignant mesenchymal- 
derived bone tumors and the most common bone cancers 
in children and adolescents. Emerging evidence has also 
shed light on the exosomal trafficking employed by osteo-
sarcoma cells to shape its supporting TME and facilitate 
growth, as well as hematogenous spread. Among the spe-
cific exosomal contents, miR-148a and miR-21-5p are 
known to help shape the TME.71 The microRNA, miR- 
21, is a common oncological molecule taking part in the 
pathogenesis of various types of malignancies.71–80 Take 
esophageal cancer as an example; it has been demonstrated 
in a human esophageal carcinomas cell line co-cultivation 
experiment that miR-21 in the CDE shuttled from donor 
cells significantly promoted the migration and invasion 
capability of recipient cells by activating c-Jun 
N-terminal kinase signaling pathway.74 A recent multi- 
omics study observed that the progression from localized 

to metastatic osteosarcoma was accompanied by an eleva-
tion of the levels of urokinase plasminogen activator (uPA) 
and uPA receptor in the metastatic cells’ exosomal cargo.81 

The impact of abundant miR-25-3p in the liposarcoma- 
derived exosomes on the surrounding microenvironment 
was similar to what was observed in osteosarcoma cases.82 

Jerez et al conducted a gene ontology analysis of predicted 
targets for the miRNAs present in osteosarcoma-derived 
extracellular vesicles. Their bioinformatics analysis indi-
cated that miRNAs derived from osteosarcoma cell lines 
might regulate metastatic potential by inhibiting a network 
of genes involved in apoptosis and cell adhesion.83 Further 
research is needed to provide more evidence on the details 
and importance of exosomal trafficking in osteosarcoma 
pathogenesis and to determine it as a core hallmark of 
cancer.

Other Molecules (Proteins, Enzymes, 
Receptors, Ligands, or Signaling 
Molecules) That Can Exert Neoplastic 
Functional Activities Carried by 
Exosomes
Certainly, exosomal cargoes are not limited by miRNAs only 
but also by a lot of other candidate molecules such as pro-
teins, lipids, enzymes, signaling molecules, which can exert 
their functional activities far from the exosome-producing 
cells.84 Table 3 demonstrates that CDE cargoes could contain 
basically any purpose-built loaded nano-molecules for its 
ultimately release from the parental cells. It is evident that 
horizontal or paracrine transfer of these molecules, when 
received by the specific recipient cells in the TME or any 
distant metastatic niches, could facilitate the progression, 
invasion, and metastatic spread of cancer cells. Some of 
these exosomal molecules have the potential to serve as 
valid biomarkers, and, thus, there should be worthwhile 
testing for cancer detection and/or diagnosis.

In summary, it is evident that cancer cells from entirely 
different lineages, such as those from leukemia to osteo-
sarcoma, rely on their exosomes to carry the genetic infor-
mation for homotypic and heterotypic intercellular 
communications in the TME (Figure 2). This communica-
tion creates a favorable environment for cell proliferation 
and invasion and further establishes a pre-metastatic niche 
that is readily welcoming for the arrival of cancer cells 
when they carry the correct form of exosomal integrins. 
Therefore, these CDEs and their pathological trafficking 
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Table 3 Representative Exosomal Cargoes Other Than miRNAs (Such as Proteins, Lipids, Signaling Molecules, DNA, Mitochondrial 
DNAs, circRNAs, lncRNAs, Integrin, and Enzyme), Which are Involved in Cancer Progression or in the Interplay in Anticancer 
Immunity or Served as a Biomarker in Various Cancer Types

Exosomal Cargo Cancer Type Functions (Mechanism)/ 
Usage

Measurement Reference 
(First 
Author/ 
Year 
Published)

Proteins associated with cell 
adhesion, extracellular matrix, 

and some signaling molecules 

(EGFR, GRB2, and SRC)

KRAS-activated or EGFR- 
activated NSCLC/two cell 

lines

Abundance differences in 
exosomal protein cargo 

detected between two 

NSCLC cell lines and non- 
cancer cell lines

Triple SILAC quantitative 
proteomic strategy

Clark, D.J./ 
201685

Exosome proteome Four epithelial ovarian 
cancer cell lines

Signaling biology and 
biomarker discovery

Mass spectrometry-based 
proteomics

Sinha, A./ 
201486

Proteins Several mouse breast 

tumor lines with a different 

metastatic propensity

Protein cargo varies 

significantly between 

nonmetastatic and metastatic 
cell-derived exosomes

Comparative proteomic 

analysis

Gangoda, 

L./201787

EGF-like repeats and discoidin 
I-like domain-3 (EDIL-3) protein

Human bladder cancer cell 
lines and urine of patients 

with high-grade bladder 

cancer

Facilitates bladder cancer 
progression; potential for 

therapeutic target

Mass spectrometry analysis Beckham, 
C. J./201435

Epithelial cell adhesion molecule 

(EpCAM) glycoprotein

Pancreatic ductal carcinoma 

(patients)

Liquid biopsy for EpCAM 

quantification as 
prognostication

High sensitivity enzyme linked 

immunoassay (ELISA)

Giampieri, 

R./201988

Myoferlin Breast and pancreatic 
cancer cell lines

Promotes cancer cell 
migration and invasion

Proteomic analysis Blomme, A./ 
201689

Exosomal lipid profiles Lung cancer/patients’ 
plasma

Lipid profiles successfully 
distinguish early-stage lung 

cancer from healthy subjects

Ultrahigh-resolution Fourier 
transform mass spectrometry 

(UHR-FTMS)

Fan, T.W.M./ 
201890

A total of 162 lipids such as 

diacylglycerol, triacylglycerol, and 

phosphatidylglycerol

Urinary exosomes from 

prostate cancer patients

Potentially be used as 

a prostate cancer biomarker

Flow field-flow fractionation 

and nanoflow liquid 

chromatography-tandem mass 
spectrometry

Yang, J.S./ 

201791

27-Hydroxycholesterol ER+ breast cancer cell line 
(MCF-7)

Possibility of diagnostic value Capillary liquid 
chromatography-mass 

spectrometry

Roberg- 
Larsen, H./ 

201792

Lipid composition of urinary 

exosomes (phosphatidylserine 

18:1/18:1, phosphatidylserine 
18:0–18:2, and lactosylceramide 

d18:1/16:0)

Prostate cancer patients Prostate cancer urinary 

biomarkers

High-throughput mass 

spectrometry quantitative 

lipidomic analysis

Skotland, T./ 

201793

Esophageal cancer related gene-4 

(ECRG4) mRNA (tumor 

suppressor)

Oral squamous cell 

carcinoma patients

Suppresses cell proliferation 

and inhibits cancerous 

growth

Ultracentrifugation method Mao, L./ 

201894

(Continued)
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capabilities should be considered as an emerging enabling 
characteristic for the well-established hallmarks of cancer.

Cancer-Derived Exosomes in 
Biomarker Development
The first half of the review has exemplified the role of 
exosome in specific cancer types. Shifting gear to discuss 
the potential clinical application, this review will examine 
and discuss how we can develop cancer biomarkers based 
on characteristics such as exosomal cargo contents, 

detection methods, and localization of these exosomes in 
peripheral blood, pleural effusions, ascites, or urine. 
Further clinical studies are eagerly awaited to establish 
and validate the usefulness of specific CDE biomarkers 
in the different clinical setting during the cancer manage-
ment. For example, in breast cancer, we can leverage the 
characteristics of exosomal microRNA signatures and exo-
somal nucleic acid contents in assisting in breast cancer 
subtyping or discovering a stemness and metastatic signa-
ture, as mentioned previously. Similarly, in the case of soft 

Table 3 (Continued). 

Exosomal Cargo Cancer Type Functions (Mechanism)/ 
Usage

Measurement Reference 
(First 
Author/ 
Year 
Published)

The signaling molecule, Wnt5b Lung adenocarcinoma cells 

(A549)

Promotes cancer cell 

migration and proliferation

MALDI mass spectrometry 

and electrospray ionization 
mass spectrometry

Harada, T./ 

201795

Double-stranded DNA Chronic myeloid leukemia 
(K-562), colorectal 

carcinoma (HCT116), and 

murine melanoma (B16- 
F10) cell lines

Novel potential biomarker 
for cancer detection as 

a surrogate for tumor tissues

dsDNA-specific shrimp DNase 
and atomic force microscopy 

(AFM)

Thakur, 
B. K./201421

Tumor cell-derived DNA Murine breast cancer cell 
line E0771 post topotecan 

treated

Activate dendritic cells via 
STING signaling

Purified DNA was stained with 
SYBR Gold following agarose 

gel electrophoresis and 

visualized with a UV 
transilluminator

Kitai, Y./ 
201796

Mitochondrial DNA ER+ breast cancer 
xenograft from metastatic 

hormonal therapy-resistant 

patient

Promotes exit from 
dormancy of therapy- 

induced cancer stem-like 

cells

Whole-mtDNA amplification 
and sequencing assays

Sansone, P./ 
201765

Circular RNAs (circRNAs) Liver cancer cells (MHCC- 

LM3)

circRNAs able to bind to 

miRNA; exosome-based 
cancer biomarkers

RNA-seq analyses Li, Y./201522

Long noncoding (lnc) RNA 
ZFAS1

Gastric cancer cell lines Enhances gastric cancer cell 
proliferation and migration

Transmission electron 
microscopy, Nanoparticle 

Tracking Analysis (NTA), and 

Western blot.

Pan, L./ 
201797

Alphavbeta3 integrin Prostate metastatic PC3 

and CWR22Pc cancer cells

Promotes a migratory and 

metastatic phenotype

Nanoparticle Tracking 

Analysis; BCA followed by 
immunoblotting

Singh, A./ 

201698

GSTP1 in exosomes from 
patient’s serum

Anthracycline/taxane-based 
neoadjuvant chemotherapy- 

treated breast cancer

Confers drug resistance Confocal microscopy images; 
Western blot analyses

Yang, S. J./ 
201799
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tissue sarcoma, in recognition of the role of exosomal 
cargo transcriptional signatures or microRNA profiling 
including miR-25-3p, miR-92a-3p, miR-34a, MT1-MMP, 
and MMP-14 playing in the promotion of sarcoma pro-
gression, remodeling extra-sarcomatous matrix to facilitate 
tumor invasion, and establishing a favorable TME for 
sarcoma growth, we can develop a practical analysis to 
investigate these soft tissue sarcoma-derived exosomes in 
assisting diagnosis or monitoring of disease along with the 
treatment milestones for a patient.

Although the technology for developing exosome- 
encapsulated therapeutics as targeted drug delivery is still 
in infancy, with the help of improving detection methods, 
rapid application of the analytic tests for specific exosomal 
cargoes for diagnostic purposes has become feasible, facil-
itating exosomal biomarker development. Several charac-
teristics of CDEs, previously discussed in the cancer 
biology section, such as analyzable cancer-specific and 

stage-specific genetic contents in the cargo of CDEs, 
allow us to capture, profile and quantify using the current 
nanoanalytical technology. The phenomenon of pathologi-
cal exosomal trafficking during cancer development and 
progression can be utilized in cancer diagnosis, prognos-
tication, and treatment strategies. Studies have demon-
strated that CDEs containing enriched genetic signals 
involved in cancer initiation and progression are shed by 
cancer cells into the blood, saliva, urine, ascites, and even 
cervicovaginal lavage. In clinical oncology, a cancer bio-
marker can be used for a diagnostic purpose, for example, 
in differentiating cancer from the non-cancer conditions. It 
can also be used for disease monitoring during antineo-
plastic therapy or follow-ups, for prognosticating 
a patient’s survival, and for predicting a tumor response 
after anticancer treatment.

Current sophisticated purification techniques offer an 
opportunity to utilize isolated exosomal cargoes to assist in 

Figure 2 Effects of tumor-derived exosomes and their horizontal paracrine trafficking to impact on the tumor microenvironment. For example, breast cancer-derived 
exosomes modify the TME through the suppression of T-cell proliferation and NK cell cytotoxicity. Also, the exosomal content (eg, miR-1246 or miR-155) might contribute 
to the chemoresistance or hormone-resistance in tumor cells. Exosomes secreted by liposarcoma cells containing miR-25-3p and miR-92a-3p have been found to stimulate 
IL-6 secretion in tumor-associated macrophages, leading to liposarcoma progression. miR-34a in the released exosomes enhances the neural differentiation of Ewing 
sarcoma. Myeloma-derived exosomes could modify the microenvironment, affecting various recipient cells such as bone marrow endothelial cells or myeloid-derived 
suppressor cells. In the case of myeloma, these exosomal cargoes include miR-135b, miR18a, and let7b. After being internalized by recipient cells, miRs could bind to their 
target genes and trigger numerous pathways to facilitate tumor progression.
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Table 4 Published Clinical Studies on Exploiting Exosomes as Diagnostic, Prognostic, or Predictive Biomarkers in Various Types of 
Cancer

Biomarker 
Function

Exosomes/ 
Exosomal Cargo 
Content

Specimen 
Origin

Cancer Type Utilization References (First 
Author, Year)

DIAGNOSTIC

Exosomal lncRNAs Cervicovaginal 

lavage

Uterine cervix Differentiate cervical cancer from normal controls Zhang J, 2016103

ExomiR-1246 Serum Breast 100% sensitivity and 92.9% specificity Zhai LY, 201861

miRNAs from the 

miR-106a-363 cluster

Plasma and 

serum

Breast Serve as potential diagnostic biomarkers Li M, 2018102

Exosomal 

phosphatidylserine

Serum Ovary AUC of 1.0 for predicting malignant against normal Lea J, 2017104

Urinary 3-gene 

expression assay

Urine Men with elevated PSA 

levels

Discriminate between Gleason score (GS)7 and GS6 

prostate cancer and benign disease on initial biopsy

McKiernan J, 

2016;100 McKiernan 

J, 2018105

Exosomal shuttle RNA 

pattern

Urine Clear cell renal cell 

carcinoma

Provide a noninvasive test to diagnose clear cell RCC De Palma G, 2016106

Exosomal miR-25-3p Serum Osteosarcoma Reflect tumor burden Fujiwara T, 2017;82 

Yoshida A, 2018107

Exosomal lncRNA 

PRINS

Serum Multiple myeloma or 

monoclonal 

gammopathies

Differentiate from healthy donors: sensitivity 84.9% 

and specificity 83.3%

Sedlarikova L, 

2018108

Tumor-derived 

exosomal miRNAs

Plasma Early-stage NSCLC Differentiate adenocarcinoma from squamous cell 

carcinoma

Jin X, 2017109

Exosomal microRNA- 

191, - 21, −451a

Serum Pancreas Differentiate cancer and IPMN from normal Goto T, 201872

Exosomal RNA cargo Serum Pancreas Differentiate cancer from healthy controls in blinded 

studies

Ko J, 201727

Exosomal miRNA-21 

and miRNA-181a-5p

Serum Thyroid Differentiate follicular from papillary thyroid cancer Samsonov R, 2016101

Phosphatidylserine- 

expressing CDEs

Blood of 

tumor-bearing 

mice

Early-stage 

malignancies

Detect very early-stage cancers before clinical 

evidence of disease in four mouse models.

Sharma R, 2017110

PROGNOSTIC

Exosomal miR-21 Serum Pediatric 

hepatoblastoma

Predict event-free survival Liu W, 201675

Exosomal cancer stem 

cell-like marker 

CD133

Ascites Pancreas Western blot revealed enhanced expression of 

CD133 in exosomes from pancreatic cancer patients

Sakaue, T. 2019111

Exosomal miR-638 Serum Hepatocellular 

carcinoma

Lower levels of serum exosomal miR-638 associates 

with poor overall survival

Shi M, 2018112

PREDICTIVE

Chimeric GOLM1- 

NAA35 RNA

Saliva Esophageal squamous 

cell carcinoma

Changes in chimeric RNA levels predict PFS after 

chemoradiation.

Lin Y 2019113

(Continued)
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differentiating the type of cancer and high tumor grade 
from low-grade cancer.61,75,100–102 In a recent study, using 
a urinary exosome 3-gene signature obtained from the 
ExoDx Prostate IntelliScore urine exosome assay, the 
investigators can differentiate high-grade (Gleason’s 
score > 7) vs low-grade prostate cancer and benign pro-
static hyperplasia.100 This noninvasive urine testing 
implies that many unnecessary invasive transrectal biop-
sies could be avoided. As was aforementioned in the 
review, in patients with multiple myeloma, serum exoso-
mal miRNAs could add to the risk stratification in identi-
fying newly diagnosed multiple myeloma with particularly 
poor outcomes.58 Table 3 presents the select representa-
tions of exosomal cargo other than miRNAs, namely, 
proteins, lipids, signaling molecules, DNA, mitochondrial 
DNAs, circRNAs, lncRNAs, integrin, and enzyme, which 
potentially serve as a biomarker in various cancer types. 
Laboratory analytic methods to measure these contents in 
the research included triple SILAC quantitative proteomic 
analysis, mass spectrometry (MS)-based proteomic assays, 
lectin blotting, NP-HPLC analysis, ultrahigh-resolution 
Fourier transform MS, shotgun and targeted molecular 
quantitative lipidomic assays, capillary liquid chromato-
graphy-MS, MALDI MS, electrospray ionization MS, 
dsDNA-specific shrimp DNase and atomic force micro-
scopy, RNA-seq analysis, transmission electron micro-
scopy, nanoparticle tracking analysis, etc., depending on 
the study design (Table 3).

One of the advantages of investigating the CDEs as 
either a diagnostic, prognostic, or predictive biomarker is 
that physicians can obtain a specimen for CDE testing from 
a patient via relatively noninvasive methods. The shed CDEs 
into body secretion or discharges such as saliva, ascites, and 
cervicovaginal lavage can now be noninvasively or micro-
invasively assessed. In the past 5 years, clinical studies on 
exploiting CDEs as a clinical biomarker reported some 

promising results in various types of cancer (Table 4). The 
CDE cargo tested include lncRNAs, microRNAs, exosomal 
phosphatidylserine, urinary 3-gene expression profile, shut-
tle RNA pattern, RNA cargo, exosomal cancer stem cell-like 
marker CD133, exosomal EpCAM protein, and exosomal 
glutathione S-transferase P1 (Table 4).

As of this writing, there have been several dozens of 
prospective observational studies being carried out to 
investigate the role of specific exosomal cargo as 
a cancer biomarker in various cancers and their diagnostic 
performance in a particular clinical setting (Table 5).

Rapidly evolving nanotechnologies provide an oppor-
tunity to exploit and engineer exosomes for therapeutic 
purposes, which is gradually becoming a new class of cell- 
free nanomedicine. Therapeutic blockade of the exosome 
biogenesis to halt cancer progression at specific stages of 
the disease could be enticing in the development of cancer 
therapeutics.80,114,115 The potential application of respon-
sive exosome nano-bioconjugates for cancer therapy has 
also been confirmed in a recent study; the nano-bioconju-
gates can actively target tumors through the specific recog-
nition on the surface of tumor cell and abolished signaling 
and improved phagocytosis of macrophages.116 There are 
growing interests in investigating engineered exosomes as 
potential therapeutic vehicles or an active drug delivery 
system.117–123 Making use of the exosomal organotropic 
characteristics, exosomes loaded with therapeutic com-
pounds could be employed to target a recipient cell to 
carry out gene therapy selectively.

The following examples shall illustrate how the 
application of exosomal engineering technology may 
enhance cancer therapeutics. Targeting the immune 
cells in the TME as an adjunct of anticancer treatment 
has been becoming a hot research area. In the application 
of nanomedicine, various forms of nanoparticles- 
bioconjugate exosomes have been synthesized and tested 

Table 4 (Continued). 

Biomarker 
Function

Exosomes/ 
Exosomal Cargo 
Content

Specimen 
Origin

Cancer Type Utilization References (First 
Author, Year)

Exosomal EpCAM 

protein

Plasma Pancreas (on palliative 

chemotherapy)

Exosomal EpCAM increase during treatment was 

associated with better PFS

Giampieri, R. 201988

Exosomal glutathione 

S-transferase P1

Serum Breast (on neoadjuvant 

anthracycline/taxane)

GSTP1 from the PD/SD group was significantly higher 

than those in the PR/CR group

Yang SJ 201799

Abbreviations: AUC, area under the curve; ExomiR, exosomal microRNA; lncRNAs, long noncoding RNAs; IPMN, intraductal papillary mucinous neoplasm; NSCLC, non- 
small cell lung cancer; PSA, prostate-specific antigen; PFS, progression-free survival.
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Table 5 Ongoing Human Studies Investigating Exosomes as a Biomarker in Various Types of Cancer, as Registered in ClinicalTrials.gov

ClinicalTrials. 
gov ID

Phase of 
Study

Cancer Type and Setting Objectives Outcome Measures

Lung Cancer

NCT03542253 Observational 
(Observ.)

Early lung cancer Combined diagnosis of 
computerized tomography and 

exosome

Exosomal micro-A was highly 
expressed in early-stage lung cancer 

tissues

NCT02890849 Prospect. 

cohort observ.

Non-small cell lung cancer Consistency analysis of PD-L1 in 

cancer tissue and plasma exosome

Match rate of PD-L1 protein 

expression in cancer tissue and PD-L1 
mRNA expression in exosome

NCT02921854 Prospect. 
cohort observ.

Non-small cell lung cancer 
after radiotherapy and 

chemotherapy

Detection of circulating biomarkers 
of immunogenic cell death (ICD)

Research to see if exosomal markers 
of anti-tumor immunity can be 

detected in the serum

Breast Cancer

NCT04288141 Prospect. 
cohort observ.

HER2+ breast cancer on 
HER2 targeted therapies

Measure the expression of the 
HER2-HER3 dimer in the blood 

(exosomes)

Compare HER2 expression in blood 
exosomes by protein detection assays; 

correlate with change in HER2-HER3 

dimer expression after HER2-directed 
therapy

NCT03974204 Multicenter 
prospective 

single-arm 

observ.

Breast cancer patients 
suspected of leptomeningeal 

metastasis

Analyses of exosomes in the 
cerebrospinal fluid

Evaluate the use of proteomic profiles 
issued from cerebrospinal fluid 

exosomes

Gastrointestinal Cancer

NCT01779583 Prospect. 

case-control

Advanced gastric cancer on 

first-line chemotherapy

Circulating exosomes as potential 

prognostic and predictive 

biomarkers

Characterization of the molecular 

profile in cancer-derived exosomes

NCT03581435 Prospect. 

case-control

Gallbladder carcinoma Study of circulating exosome 

proteomics

Proteomics studies will be done in 

both tumor tissue and the circulating 
exosome

NCT03102268 Prospect. 
cohort observ.

Cholangiocarcinoma 
patients without any 

anticancer therapy

Characterization of the noncoding 
RNAs in cancer-derived exosomes

Correlation of exosomes-derived 
ncRNAs and time-to-event end-points

NCT02393703 Prospect. 

cohort observ.

Pancreatic cancer Exosome-mediated intercellular 

signaling

Prospective cohort; exosomes 

purification for downstream 

proteomic and RNA sequencing

NCT03821909 Prospect. 

cohort observ.

Patients suspected to have 

pancreatic masses 
undergoing diagnostic 

workup

Endoscopic ultrasound-guided 

portal venous blood sampling

Compare the expression of specific 

exosomal mRNA markers between 
portal venous and peripheral blood

NCT03874559 Prospect. 

cohort observ.

Locally advanced rectal 

cancer on neoadjuvant 

chemoradiation

Characterize exosomal biomarker 

levels

Compare rates of exosomal 

expression before during and after 

chemoradiation therapy with 
pathological response rates

(Continued)
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Table 5 (Continued). 

ClinicalTrials. 
gov ID

Phase of 
Study

Cancer Type and Setting Objectives Outcome Measures

Genitourinary Tract Cancer

NCT04053855 Prospect. 

cohort observ.

Clear cell renal cell 

carcinoma post partial or 

total nephrectomy

Evaluation of urinary exosomes Study CD9+ and CA9+ exosomes by 

electron microscopy technique

NCT04155359 Prospect. 

cohort observ.

Urinary bladder cancer 

(UBC) in participants 
presenting with hematuria 

and another cohort of UBC 

patients

To establish the performance 

characteristics of a urine exosome- 
based diagnostic test to identify 

bladder cancer

Results compared to that of 

cystoscopy

NCT04357717 Prospect. 

cohort observ.

Elevated PSA between 2 and 

10 ng/mL and at least one 
prior negative prostate 

biopsy

Correlation of the ExoDx Prostate 

test results with the outcome of 
prostate biopsies in a prior negative 

repeat biopsy patient cohort

Clinical Evaluation of ExoDx™ 

Prostate (IntelliScore)

NCT03911999 Prospect. 

cohort observ.

Prostate cancer Exosomal microRNA in predicting 

the aggressiveness of prostate 

cancer in Hong Kong Chinese 
patients

To compare the differences in miRNA 

expression

NCT03694483 Prospect. 
case-control

Prostate cancer Genetic analysis for the detection of 
prostasomes

Determine the sensitivity and 
specificity of the prostasome 

purification methodology

NCT02702856 Prospective 

(Prospect.) 

cohort observ.

Prostate cancer (for first- 

time biopsy patients in the 

PSA Gray zone of 2.0–10 ng/ 
mL)

Validation of a urinary exosome 

gene signature in men suspicious of 

prostate cancer

Correlate signature with the presence 

or absence of high-grade prostate 

cancer biopsy

NCT03236688 Prospect. 
cohort observ.

Advanced metastatic 
castrate-resistant prostate 

cancer

Detection of ARv7 splice variant 
transcripts from exosomes in 

circulation

Correlate ARv7 status with PSA 
response and correlate non-Arv7 with 

clinical outcomes

NCT04167722 Prospect. 

case-control

Prostate cancer status post 

robotic radical 

prostatectomy

Understanding the role of exosomal 

communication in lean vs obese 

patients

Collecting prostate and fat tissue from 

radical prostatectomy participants for 

culture

Sarcoma

NCT03800121 Prospect. 

cohort observ.

Soft tissue sarcoma Study of exosomes in monitoring 

patients with sarcoma

To quantify circulating exosomes and 

analyze their protein and RNA content

NCT03108677 Prospect. 

case-control

Primary High-Grade 

Osteosarcoma

Study if the profile of circulating 

exosomal RNA can be used as 
a biomarker for lung metastases

Differences in the levels and profiles of 

circulating exosome RNA from 
patients with or without lung 

metastasis

Hematological Cancer

NCT03985696 Prospect. 
cohort observ.

Aggressive non-Hodgkin 
B-cell lymphoma (B-NHL)

Evaluation of peripheral exosomes 
can be used as novel biomarkers in 

B-NHL

Evaluate if a high expression of CD20 
and PD-L1 on exosomes may allow 

tumor cells to evade immunotherapy

(Continued)
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to target specific immune cells in the acidic TME. 
Recent research has demonstrated that anti-tumoral M1 
macrophages-derived exosomes conjugated with CD47 
and SIRPα antibodies effectively reprogrammed the 
macrophages from M2 to M1 phenotype in the 
TME.116 In another study in the living mice, cancer- 
associated fibroblasts in the TME can be specifically 
targeted by activated fibroblasts whose cell membrane 
was coated with semiconducting polymer nanoagents 
aiming to enhance multimodal cancer theranostics.124

MicroRNA-21 is a well-known microRNA that over-
expresses in almost all cancer types, where its upregulation 
promotes cell proliferation, invasion, and metastasis.69–78 

MiR-21 derived from the exosomes of MSCs regulates the 
death and differentiation of neurons in patients with spinal 
cord injury. Recent efforts involve utilizing an exosomal 
transfer of miRNAs or anti-miRNAs to tumor cells as 
a new approach for the therapeutic application of miRNAs 
to combat the most aggressive form of glioma, glioblastoma 
multiforme. Monfared and coworkers recently attempted to 
down-regulate miR-21 expression in glioma cell lines, U87- 
MG and C6, and rat glioblastoma models treated with miR- 
21-sponge exosomes and demonstrated a decline in tumor 
cell proliferation, a dramatic enhancement of apoptotic rate, 
and a significant reduction in tumor volume.125

Conclusion
Cancer-derived exosomal trafficking is observed in almost 
all types of liquid or solid tumors, including leukemia, soft 

tissue sarcoma, and osteosarcoma, which supports its role as 
an enabling characteristic for cancer hallmarks. The cargoes 
carried by CDEs contain enriched genetic signals in the form 
of DNA, RNA, microRNA, lncRNA, protein, lipid composi-
tion, or specific gene expression profiles, which are shed into 
blood, saliva, urine, effusions, ascites, and cervicovaginal 
lavage. There are a growing number of studies that investi-
gate CDE as either a diagnostic, prognostic, or predictive 
nano-biomarker in various kinds of cancer. Out of the pub-
lished clinical studies on exploiting CDE as a cancer bio-
marker, 70% of them were looking at the CDE as 
a diagnostic biomarker. In contrast, the rest of the studies 
were testing the role of CDE as a prognostic or predictive 
biomarker. Not surprisingly, only a few of them have 
reached the state of validation trials. In the near future, we 
shall expect to see more prospective clinical trials to validate 
the performance of these nanoparticle biomarkers aiming to 
improve the overall cancer diagnostic capability in the clinic.
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Table 5 (Continued). 

ClinicalTrials. 
gov ID

Phase of 
Study

Cancer Type and Setting Objectives Outcome Measures

Other Types of Cancer

NCT02862470 Prospect. 

cohort observ.

Newly diagnosed thyroid 

papillary, follicular and 

anaplastic thyroid cancer

Pilot prognostic study via urine 

exosomal biomarkers

Collect urine samples before an 

operation, immediately after surgery, 

postoperative 3, 6, and 12 months.

NCT02147418 Prospect. 

case-control

Human papillomavirus 

(HPV)-positive 
oropharyngeal squamous 

cell carcinoma (OPSCC)

Exosome testing as a screening 

modality for HPV-positive OPSCC

To develop a new test that can detect 

specific HPV proteins in the blood or 
saliva to help improve detection of 

OPSCC

NCT03738319 Prospect. 

case-control

High-grade serous ovarian 

carcinoma (HGSOC)

Analyze the expression of miRNA 

and lncRNA by next-generation 

sequencing

Candidate miRNA/lncRNA will be 

validated as a biomarker for the 

detection and prognosis of HGSOC

NCT03895216 Prospect. 

cohort observ.

Cancer patients with bone 

metastases

To identify deregulated miRNAs 

within the circulating exosomes

Changes in miRNAs content of 

circulating tumor exosomes
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