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Abstract: Toll-like receptor 9 (TLR9) is a pattern recognition receptor that is predominantly 
located intracellularly in immune cells, including dendritic cells, macrophages, natural killer 
cells, and other antigen-presenting cells (APC). The primary ligands for TLR9 receptors are 
unmethylated cytidine phosphate guanosine (CpG) oligodinucleotides (ODN). TLR9 ago-
nists induce inflammatory processes that result in the enhanced uptake and killing of 
microorganisms and cancer cells as well as the generation of adaptive immune responses. 
Preclinical studies of TLR9 agonists suggested efficacy both as monotherapy and in combi-
nation with several agents, which led to clinical trials in patients with advanced cancer. In 
these studies, intravenous, intratumoral, and subcutaneous routes of administration have been 
tested; with anti-tumor responses in both treated and untreated metastatic sites. TLR9 agonist 
monotherapy is safe, although efficacy is minimal in advanced cancer patients; conversely, 
combinations appear to be more promising. Several ongoing phase I and II clinical trials are 
evaluating TLR9 agonists in combination with a variety of agents including chemotherapy, 
radiotherapy, targeted therapy, and immunotherapy agents. In this review article, we describe 
the distribution, structure and signaling of TLR9; discuss the results of preclinical studies of 
TLR9 agonists; and review ongoing clinical trials of TLR9 agonists singly and in combina-
tion in patients with advanced solid tumors. 
Keywords: toll-like receptor, TLR, TLR9, CpG, ODN, innate immunity, innate agonist, 
cancer, cancer immunotherapy, dendritic cell

Introduction
The advent of monoclonal antibodies (mAb) targeting inhibitory immune check-
points such as programmed cell death 1 (PD-1) or –ligand 1 (PD-L1) and cytotoxic 
T-lymphocyte-associated protein 4 (CTLA-4) have transformed the management of 
advanced cancers. Anti-PD(L)1 immune checkpoint inhibitors (ICI) singly or in 
combination with anti-CTLA-4 or other agents are approved across multiple indica-
tions in sixteen separate diseases including a histology-agnostic indication in 
patients with microsatellite instability-high (MSI-H) or mismatch repair deficient 
(dMMR) solid tumors.1,2 The hallmark of ICI therapy is the durability of responses 
in a subset of patients as evidenced by progression-free survival (PFS) rates of 
21–29% in melanoma and 22% in non-small cell lung cancer (NSCLC) with anti- 
PD(L)1 singly;3–7 and up to 36% with anti-PD-1/anti-CTLA-4 dual ICI in 
melanoma.8 However, the majority of patients do relapse and the question of how 
to improve outcomes in these patients remains a vexing problem for the field.

Biomarkers associated with an improved outcome to ICI therapy include CD8 
T cell infiltrate (TIL),9,10 interferon (IFN)-γ gene expression signature,11,12 tumor 
mutation burden (TMB),12–14 and PD-L1 expression.15–18 However, not all T cell- 
inflamed tumors respond, and not all tumors are inflamed, underscoring the 
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importance of therapeutic strategies directed at improving 
responses in T cell-uninflamed tumors.18–20 T cell-inflamed 
tumors are characterized by the presence of abundant CD8+ 
T cells, CXCR3-binding chemokines (such as CXCL9 and 
CXCL10) and to a lesser extent, B cells and plasma cells – 
collectively represented by IFN-γ gene expression 
signature.10,11,21,22 Conversely, the tumor microenvironment 
(TME) of T cell-uninflamed tumors is characterized by 
immuno-suppressive cells including regulatory T cells (T 
reg), myeloid-derived suppressor cells (MDSC), tumor-asso-
ciated macrophages (TAM), vascular endothelial cells and 
cancer-associated fibroblasts (CAF).23–26 It remains unclear 
in individual tumors whether the lack of anti-tumor immu-
nity is related to defects at the level of T cell priming/ 
trafficking, other mechanisms mediating tumor-intrinsic 
mechanisms of immune exclusion in TME, or 
a combination of both factors.

Adaptive immune recognition of a diverse array of anti-
gens is mediated by the structural diversity of B and T cell 
receptors – attributable to somatic hypermutation in 
V-region genes, and junctional and combinatorial diversity 
generated during gene rearrangement in B and T cells, 
respectively.27 Conversely, the innate immune system com-
prising complement system, dendritic cells (DC), natural 
killer (NK) cells, macrophages, leucocytes and γδ T cells, 
is an older, evolutionarily conserved system that serves to 
prevent the spread and movement of foreign pathogens.

The concept of microbial pattern recognition was first 
proposed by Charles Janeway Jr. and describes the two 
cardinal features of innate immunity: the ability to distin-
guish non-self infectious molecules conserved across 
microbial species – termed pathogen-associated molecular 
patterns (PAMPs) - from self, and the ability to elicit 
adaptive immune responses against non-self PAMPs.28 

Since the initial description in 1989, multiple pattern 
recognitional receptors (PRR) have been described that 
play critical roles in innate and adaptive immune responses 
including Toll-like receptors (TLR), retinoic acid- 
inducible gene I (RIG-I)-like receptors, nucleotide- 
binding oligomerization domain (NOD)-like receptors, 
and C-type lectin receptors (CLR) recognize and are cri-
tical to the activity of the innate immune system.29,30

The various PRRs recognize different PAMPs, are differ-
entially expressed on immune cells and localize to different 
cellular localities (see Figure 1).31 TLRs mediate innate 
immune responses to a wide variety of distinct PAMPs 
derived from various microorganisms including viruses, 
intra and extra cellular bacteria, and fungi; and are expressed 

on a broad array of immune cells.31 RIG-I-like receptors 
(RLRs) RIG-I, MDA5, and LGP2 are broadly expressed in 
most tissues where they sense viral RNA ligands in the 
cytoplasm and trigger inflammatory and anti-viral innate 
immune responses.32,33 CLRs are expressed by multiple 
innate immune cells particularly DCs and myeloid cells and 
recognize a variety of glycans on pathogens and hence play 
an essential role in anti-fungal immune responses.34 NLRs 
including NOD1 and NOD2 are found in the cytoplasm of 
lymphocytes, macrophages and DCs where they recognize 
peptidoglycan motifs from bacterial cells and cooperate with 
TLR to activate nuclear factor-kappaB (NF-κB) signaling 
and mediate anti-bacterial immune responses.35,36 

Stimulator of interferon genes (STING) is located in the 
endoplasmic reticulum of APCs, endothelial, and epithelial 
cells and is activated when plasma membrane-bound cGAS 
recognizes cytosolic double-stranded DNA. cGAS-STING 
signaling phosphorylates IRF3 leading to IFN-β transcription 
and type I IFN signaling.37,38

Type I and II IFNs are involved in innate and adaptive 
immunity and play an essential role in mediating anti-tumor 
immunity. Type I IFNs – IFN-α and IFN-β - are expressed in 
nucleated cells and enhance tumor antigen expression, stimu-
late dendritic cells (DCs), facilitate CD8+ cell expansion and 
differentiation to memory type cells, apoptosis, and regulate 
T cell activity resulting in tumor regression.39,40 Type II IFN 
(IFN-γ) is mainly expressed in Th1 cells, CD8+ T cells, and 
natural killer (NK) cells. IFN-γ decreases the activity of T reg 
cells, increases MHC I and II expression on DCs, enhances 
antigen presentation, activates proliferation of CD4+ and 
CD8+ T cells, and M1 macrophages.41–43 Through 
a downstream signaling cascade that begins with type I IFN 
induction, type I IFNs potently and rapidly translate signals 
from TLRs into effects on a broad array of tissues.44

Compelling preclinical data suggest that intra-tumoral 
administration of TLR9 agonists improves APC activa-
tion, in particular DCs in tumor-draining lymph nodes 
resulting in proinflammatory cytokine release, increased 
expression of type I IFN genes and T cell priming con-
verting T cell uninflamed TMEs to T cell inflamed ones.45 

Given the importance of type I IFN and CD8+ T cells in 
mediating response to ICI, there has been compelling 
interest in evaluating combinations of innate agonists, 
particularly TLR9 agonists, to augment response to 
ICI.10,46 The efficacy of TLR9 agonists with ICI therapy 
has been investigated in preclinical studies and is currently 
being tested in clinical trials; and represent a promising 
therapeutic strategy to overcome ICI resistance, 
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particularly for T cell uninflamed tumors.47,48 In this 
review article, we describe TLR9 receptor distribution 
and function, describe TLR9 signaling and delineate the 
role of TLR9 agonists in cancer immunotherapy with 
a focus on ongoing clinical trials.

TLR9 Overview: Type and 
Distribution, Structure and Ligands, 
Activation and Signaling Pathways
TLR9 Type and Distribution
TLRs are homologous to the Toll receptor which was first 
identified in Drosophila melanogaster where it forms 
a complex with human nerve growth factor-like cystine 

knot protein Spätzle – the Toll-Spätzle complex – which is 
critical to both embryonic development and the generation 
of immune responses against fungi.49–51 Although structu-
rally related to Drosophila TLR, molecular phylogenetic 
analyses have clarified that vertebrate TLR are highly 
conserved across various species and can be subclassified 
into six major families based on general class of PAMP 
recognized: TLR1 family which includes TLR1, TLR2, 
TLR6 and TLR10 (lipopeptide); TLR3 family [double 
stranded RNA (dsRNA)]; TLR4 family (lipopolysacchar-
ide); TLR5 family (flagellin); TLR7–9 families [TLR7/8 – 
single stranded RNA (ssRNA) and TLR9 – double 
stranded DNA (dsDNA) or heme motifs]. The sixth 
remaining family – which includes TLR11-13 and 

Figure 1 Cellular distribution of various TLR and respective ligands in humans 
Notes: Created with BioRender.com. 
Abbreviations: CpG, cytidine phosphate guanosine; dsRNA, double stranded RNA; LPS, lipopolysaccharide;  ODN, oligodinucleotide; ssRNA, single stranded RNA; TLR, 
Toll-like receptors.
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TLR21-23 subfamilies – is represented in humans only as 
a pseudogene.52,53 Following synthesis within endoplas-
mic reticulum, traffic to Golgi, and proper folding, TLRs 
are either recruited to the cell surface (cell surface TLR) or 
intracellularly to endosomes (endosomal TLR) - 
a distribution that reflects the likelihood of exposure to 
the particular viral and/or bacterial nucleic acids that the 
TLRs sense as illustrated in Figure 1 (see Figure 1).

Cell surface TLRs include TLR1, TLR2, TLR4, TLR5, 
TLR6, whereas intracellular TLRs are localized in the 
endosome and include TLR3, TLR7, TLR8, TLR9, 
TLR10, TLR11, TLR12, and TLR13 – although TLR11, 
TLR12, and TLR13 are not expressed in human tissues.54 

Of the endosomal TLRs, TLR3 recognizes dsRNA, TLR7 
and TLR8 recognize ssRNA while TLR9 recognizes 
dsDNA.55–57 Expression patterns of the endosomal TLRs 
further determine likelihood of encountering and respond-
ing to various PAMPS: TLR3 is expressed ubiquitously; 
TLR7 is expressed in lung, placenta and spleen; TLR8 is 
preferentially expressed in peripheral immune cells and 
lung tissue.58 In humans, TLR9s are predominantly 
expressed by antigen presenting cells (APC) particularly 
B cells, T cells and DCs within immune-cell-rich tissues 
including spleen, lymph node, and bone marrow.59–62 In 
humans, TLR10 is primarily expressed within endosomes 
although its function remains puzzling. Compelling data 
suggest that TLR10 exerts both pro-inflammatory63,64 and 
anti-inflammatory65 effects – former observed in the set-
ting of viral infection, while the latter is mediated through 
a B cell-intrinsic process through antibody-mediated cross-
linking. Overall, the ligand specificity and function of 
TLR10 remain less well characterized.

TLR7, TLR8 and TLR9 are primarily located in intra-
cellular vesicles within the endoplasmic reticulum (ER) 
and translocate to endosomes upon stimulation by 
ligands.66 The release of TLR9 from the ER is controlled 
by several mechanisms including tyrosine-based motifs in 
TLR9 cytoplasmic tail,67–70 and phosphorylation of 
TLR9.71 Key proteins required for TLR9 traffic from ER 
to endosomal compartments include glycoprotein 96 
(gp96),72 UNC93B1,73,74 adapter protein 3 (AP-3),75,76 

a protein associated with TLR4 (PRAT4A),77 and 
Slc15a4.75 The unique localization and trafficking require-
ments of the nucleic acid-sensing TLRs 7–9 serve as 
a regulatory mechanism to limit immune responses to 
host nucleic acids; and indeed, artificial localization of 
TLR9 to cell surface causes autoimmune 
manifestations.78,79 After leaving the ER, TLR9 and 

other nucleic acid-sensing TLRs traffic to the endosomal 
compartment where they are proteolytically processed.

TLR9 Structure and Ligands
Structurally, TLRs are type I transmembrane glycoproteins 
comprising an extracellular N-terminal ligand recognition 
domain, a single transmembrane helix, and an intracellular 
C-terminal cytoplasmic signaling domain.50 TLR extracellu-
lar domains (ECD) comprise repeated leucine-rich repeat 
(LRR) modules that bind PAMPs depending on TLR subtype 
as delineated in TLR9 Type and Distribution.28,80 Each LRR 
module is 20–43 amino acids long and comprises a variable 
part and a highly conserved “LxxLxLxxN” motif where “L” 
is leucine, isoleucine, valine or phenylalanine and “N” is 
asparagine, threonine, serine or cysteine.81,82 LRR modules 
form one or two horseshoe domains wherein the 
“LxxLxLxxN” motifs are located in inner concave surfaces, 
while the variable parts form the outer convex surface. TLR 
receptor structure is characterized by constituent LRR 
motifs, repeat numbers and is flanked by two cysteine clus-
ters including 2–4 cysteine residues across each TLR subtype 
as described in TLR9 Type and Distribution.83 The TLR 
intracellular domain (ICD) comprises ~150 amino acids 
and shares sequence homology with the signaling domains 
of IL-1R super-family, and hence is termed Toll/interleukin-1 
receptor (TIR).84,85 The tertiary structures of TLR1-6 have 
been determined and have previously been summarized in 
other reviews on the topic.83,86

Although TLRs 7–9 bear functional similarly to TLR3 
in that they are localized intracellularly to endosomes and 
recognize nucleic acid PAMPs (see TLR9 Type and 
Distribution), the structures of TLRs 7–9 are markedly 
different from TLR3.83,87–90 The ECDs of TLRs 7–9 com-
prise 25 LRR modules, are heavily glycosylated, contain 
large insertions in LRRs 2, 5 and 8, and contain stretches 
of ~40 amino acid residues between LRRs 14 and 15.86 

The insertions arise from the glycan-free ECD surface 
involved in dimerization and hence, likely give rise to 
structures involved in dimerization; while the ~40 residue 
stretches show a high degree of species variability and 
hence, are unlikely involved in dimerization. The TLR9 
(and TLR7 and 8) ECD contains a Z-loop or hinge region 
between LRR14 and LRR15 where proteolytic cleavage 
by a cysteine lysosomal protease occurs to form proteoly-
tically cleaved TLR9 (amino acids 471–1032) that main-
tains the horseshoe shape of the protomer.90–92 Both full 
length and proteolytically cleaved TLR9 (amino acids 
471–1032) are predominantly monomeric in the absence 
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of unmethylated cytidine phosphate guanosine (CpG). 
However, following ligand binding, proteolytically 
cleaved TLR9 dimerizes forming a homodimer.90,91,93

TLR9 preferentially detects unmethylated CpG oligo-
dinucleotides (ODN) with a species-specific preference for 
hexamer CpG motifs (human 5′-GTCGTT-3 vs. murine 5′- 
GACGTT-3) that are less common in vertebrate DNA.94 

There are three major classes of CpG ODNs based on 
different backbones and sequence motifs. Type A CpG 
are characterized by: poly G sequence at 5ʹ end, 3ʹ end 
or both; internal palindromic sequence containing GC 
nucleotides; and a partial phosphorothioate (PS) modified 
backbone.95 Type A CpG preferentially activate plasma-
cytoid DCs (pDC) and NK cells and induce significant 
IFN-α production by pDCs.96–98 Type B CpG are gener-
ally 18–28 nucleotides in length; have a complete PS- 
modified backbone; and contain one or more 6mer CpG 
motifs (5ʹ-PuPyCGPyPu-3ʹ) with the most potent ODNs in 
this class containing three 6mer sequences.61 Type B CpG 
preferentially activate B cells and less so NK cells with no 
effect on DCs.99,100 Type C CpG have features of both 
classes A and B: a complete PS-modified backbone and an 
internal palindromic motif.101 Consequently, the effects of 
type C CpG comprise features of both classes: strong 
direct B cell stimulation, IFN-α production by pDC, APC 
activation and maturation, and indirect NK cell 
activation.102

Besides species-specific ODN sequence preference for 
TLR9 activation, other factors including number and posi-
tion of CpG motifs, nucleotides adjacent to CG dinucleo-
tide, and ODN secondary structure influence ODN potency 
for TLR9 activation in humans.103–106 Separately, when 
considering the effects of TLR9 agonists in primates as 
compared to mice, it is important to consider the differ-
ential distribution and localization of TLR9 receptors in 
humans and mice.107 Synthetic TLR9 agonists, which are 
being used in clinical trials, have structural differences, 
which makes them nuclease resistant and also increases 
their half-life.108 A comprehensive list of synthetic TLR9 
agonists categorized by type, structure and current status 
of clinical evaluation is provided in Table 1.

TLR9 Activation and Signaling Pathways
Activation of TLR9 signaling requires two CpG ODN to 
symmetrically bind to the C-terminal fragment of one 
TLR9 protomer and the CpG-binding groove in the 
N-terminal fragment of another, creating a homodimer.90,91,93 

ODN that bind only to the N-terminal fragment are 

inhibitory;109 while methylated single stranded DNA 
(ssDNA) and dsDNA have a lower affinity for TLR9 and 
induce less TLR9 dimerization.110–112 Given the differential 
immunostimulatory activity of unmethylated and methylated 
CpG ODN, it was initially thought that methylation status of 
CpG ODN represented a means by which vertebrate TLR9 
distinguished between pathogenic bacterial (unmethylated) 
and eukaryotic (methylated) DNA.112 However, it has since 
been shown that while TLR9 can recognize both unmethy-
lated and methylated DNA; the greater immunostimulatory 
activity of unmethylated CpG ODN is secondary to an 
upstream process wherein unmethylated (but not methylated) 
CpG ODN induces TLR9 mobilization to the late endosomal 
compartment in a src-family kinase (SFK)-mediated signal-
ing process, that permits co-localization irrespective of 
methylation status.113,114 Besides CpG ODN, TLR9 may be 
activated by endogenous ligands including heat shock pro-
tein (HSP), surfactant protein A (SP-A), fibronectin, high 
mobility group box 1 (HMGB1), in addition to numerous 
synthetic ligands.60

TLRs differentially recruit specific combinations of one 
or more among four TIR domain-containing adaptors that 
mediate downstream signaling: myeloid differentiation pri-
mary response gene 88 (MyD88), TIR domain-containing 
adaptor-inducing IFN-β (TRIF), TIR-containing adaptor pro-
tein/MyD88-adaptor-like (TIRAP/MAL), or TRIF-related 
adaptor molecule (TRAM).115 All TLR signaling pathways 
culminate in activation of the transcription factor NF-κB – 
either through MyD88-dependent or MyD88-independent 
(or TRIF-dependent) mechanisms.115 MyD88 consists of an 
N-terminal death domain (DD) and a C-terminal TIR 
domain.116 Following TLR activation, MyD88 DD interacts 
with DDs of IL-1 receptor-associated kinase (IRAK) family 
of protein kinases, particularly IRAK1 and IRAK4.117,118 

Following sequential phosphorylation of IRAK1 and 
IRAK4, these dissociate from MyD88 and interact with 
TNF receptor-associated factor 6 (TRAF6), a RING-type 
ubiquitin E3 ligase.119 TRAF6 promotes ubiquitination of 
target proteins, including TRAF6 itself and NF-κB essential 
modifier (NEMO) along with the ubiquitin-conjugating 
enzyme complex Uev1A-Ubc13.120,121 Ubiquitinated 
NEMO and TRAF6 recruit transforming growth factor-β- 
activated kinase-1 (TAK1) and TAK1-binding proteins 
(TABs) to activate either mitogen-activated protein kinase 
(MAPK) (ERK, JNK, p38) pathway or the inhibitor of 
nuclear factor-κB (IκB) kinase (IKK) complex which leads 
to NF-κB signaling.122 Separate from the MyD88-dependent 
pathway, TLR3 and TLR4 in particular can activate NF-κB 
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Table 1 Toll-Like Receptor 9 Agonists Recently or Currently in Development

TLR9 
Agonist

Structure CpG Type ROA Tumor Types Being Evaluated

Cavrotolimod/ 

AST-008 

(Exicure)

SNA with two components: (1) densely packed shell of 

CpG ODN radially oriented around (2) a core 

nanoparticle, which may be solid or hollow which 
facilitates increased cellular uptake

Undisclosed IT Melanoma; MCC; HNSCC; cSCC; 

advanced solid tumors

CMP-001 
(Checkmate)

G10 CpG ODN which forms G-quadruplex that mimics 
retroviral DNA encapsulated within 30 nm VLP comprised 

of capsid proteins derived from Qβbacteriophage known 

as G10

A SC 
IT

Melanoma; NSCLC; CRC

CpG-28 
(University of 

Paris) 

no longer in 
development)

5′-TAAACGTTATAACGTTATGACGTCAT-3′ sequence 
with 3 CpG motifs and a fully phosphorothioate backbone

B Intracerebral 
infusion

Glioma; 
glioblastoma

EnanDIM 
(Mologen AG) 

(no longer in 

development)

Member of the dSLIM family exhibiting a double stem of 28 
base pairs and two loops with 30 nucleotides – each 

containing three CG motifs – that has a linear structure

Undisclosed SC 
IT

Preclinical development

IMO-2055 

(Idera) 
(no longer in 

development)

Phosphorothioate sequence with two CpG ODN, 

synthetic immunostimulatory motifs and two 5′ ends for 
increased metabolic stability

B SC 

IT

Melanoma; NSCLC; CRC; 

HNSCC; and refractory solid 
tumors

IMO-2125/ 

tilsotolimod) 

(Idera)

Phosphorothioate sequence with three CpG ODN B IT Melanoma; CRC

MGN1703/ 

Lefitolimod 
(Mologen AG) 

(no longer in 

development)

Member of the dSLIM family exhibiting a double stem of 28 

base pairs and two loops with 30 nucleotides – each 
containing three CG motifs – that is dumbbell-shaped and 

covalently-closed

Undisclosed SC 

IT

Melanoma; CRC; RCC; advanced 

solid tumors

NZ-TLR9 

(LIDDS)

Undisclosed TLR9 structure encapsulated within a calcium 

sulfate excipient (NanoZolid) that permits slow release 
depot

Undisclosed Undisclosed Preclinical development

PF-3512676 
(Pfizer) 

(no longer in 

development)

Phosphorothioate backbone with one or more CpG 
dinucleotides

B SC 
IV 

IT

Melanoma; NSCLC; MF; CLL; 
CTCL; NHL

SD-101 

(Dynavax) 
(no longer in 

development)

30 nucleotide phosphorothioate sequence with multiple 

CpG motifs and internal palindromic sequences

C SC 

IT

Melanoma; lymphoma; HNSCC; 

prostate cancer; breast cancer; 
refractory solid tumors

S-540956 

(Shionogi)

Undisclosed Undisclosed Undisclosed Preclinical development

Abbreviations: CLL, chronic lymphocytic leukemia; CRC, colorectal cancer; cSCC, cutaneous squamous cell carcinoma; CTCL, cutaneous T cell lymphoma; dSLIM, 
double-stem loop immunomodulator; HNSCC, head and neck squamous cell cancer; IT, intra tumoral; IV, intravenous; MCC, Merkel cell carcinoma; MF, mycosis fungoides; 
N/A, not applicable; NHL, non-Hodgkin Lymphoma; NSCLC, non-small cell lung cancer; ODN, oligodeoxynucleotide; RCC, renal cell carcinoma; ROA, route of 
administration; SC, subcutaneous; SNA, spherical nucleic acid; VLP, virus-like particle.
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signaling through a TRIF-dependent pathway mediated 
through either TRAF6 or receptor interacting protein 1 
(RIP1).123–125 TRIF directly binds to TRAF6 via its TRAF6- 
binding motifs.124,126 TRAF6 then activates NF-κB signaling 
via a TAK1-dependent mechanism similar to what occurs in 
the MyD88-dependent pathway.124 TAK1-deficient mice 
demonstrate impaired NF-κB and MAPK activation in 
response to multiple TLR ligands underscoring the impor-
tance of TAK1 in mediating NF-κB and MAPK activation 
through either MyD88-dependent or TRIF-dependent 
pathways.127,128

TLR signaling is homeostatically regulated by 
a number of mechanisms, failure of which results in auto-
immunity and/or inflammatory diseases. The MyD88- 
dependent pathway can be inhibited by ST2825, SOCS1, 
and Cbl-b; while the TRIF-dependent pathway is sup-
pressed by SARM and TAG.129,130 Aside from these, 
other molecules can directly inhibit binding of MyD88 or 
TRIF with TLRs or downstream molecules including 
TRAF3, TRAF6 and TAK1 – summarized in detail 
elsewhere.131 Finally, NF-κB signaling can directly be 
directly suppressed by cl-3, IκBNS, Nurr1, ATF3, and/or 
PDLIM2.132

B cells and pDC constitutively express TLR7 and 
TLR9 and produce large amounts of type I IFNs fol-
lowing exposure to cognate ligands ssRNA and CpG 
ODN, respectively. TLR9 (along with TLR7) signal via 
the MyD88-dependent pathway. While activation of 
MAPK and NF-κB signaling via a TAK1-dependent 
process, type I IFN production is mediated by IRF7 
that is phosphorylated in the cytoplasm but subse-
quently translocates into the nucleus.133,134 The critical 
role played by IRF7 in response to TLR7/TLR9 signal-
ing is underscored by the inability of IRF7-deficient 
(but not IRF3-deficient) mice to produce normal 
amounts of IFN-α in response to TLR7/TLR9 
ligands.135 The TLR9 signaling pathway and pDC acti-
vation are illustrated in Figure 2. 

TLR9 activation on DCs and pDCs, in particular, 
prompts the secretion of large quantities of type I IFNs, 
which has direct (tumor cell inhibition) and indirect (anti- 
tumor immune responses) effects on cancer cells, most 
pronounced in the early stages of the anti-tumor immune 
response. Type I IFN production in the tumor facilitates 
antigen cross-presentation by DC, which subsequently 
migrates to the tumor-draining lymph nodes where they 
cross-prime naive CD8+ T cells, further amplifying anti- 
tumor immune responses.136,137 This results in DC 

maturation (with expression of CD80 and CD86), 
increased MHC class I expression, and secretion of IL-12 
leading to a Th1 skew.46,138,139

Preclinical and Clinical Studies of 
TLR9 Agonists
Preclinical Studies of TLR9 Agonists
The systemic and local use of TLR9 agonists as mono-
therapy and in combination with chemotherapy, radiation, 
targeted therapy, and immunotherapy have been explored 
in several preclinical models with promising therapeutic 
potential. In syngeneic models in multiple tumors includ-
ing breast cancer, lung cancer, melanoma, colon, cervical, 
pancreatic cancer and lymphoma, TLR9 agonists inhibited 
tumor growth singly and in combination with chemother-
apy, and targeted therapy including EGFR and Her-2/neu 
directed therapies.140–143 Across these various studies, 
TLR9 agonists were administered topically, subcuta-
neously, intratumorally or systemically; although subcuta-
neously and intra-tumoral administration resulted in 
greater tumor retention compared to intravenous adminis-
tration. Intra-tumoral injections typically induced tumor 
rejection, and in some instances, potent abscopal effects 
in distant non-treated tumors were also observed.

Given the immunomodulatory role of radiation therapy 
(RT), several preclinical studies have evaluated the com-
bination of TLR9 agonists and RT and demonstrated 
synergy in immunocompetent murine tumor 
models.144,145 In these studies, mice were able to reject 
tumor rechallenge demonstrating evidence of immunolo-
gical memory. The anti-tumor effects of RT and TLR9 
agonist combination therapy were abrogated in nude 
mice suggest that immune cells mediated these 
effects.146,147 Using a LLC model, Zhang et al demon-
strated that RT/TLR9 combination led to a more potent 
tumor-specific humoral response compared to either TLR9 
or RT singly.146 Further, the treatment was still effective in 
B cell-deficient mice although less so than in non-deficient 
mice, suggesting that although not critical, B cells were at 
least partly responsible for the anti-tumor effects 
observed.146

A major barrier limiting the effect of anti-PD(L)1 and/or 
anti-CTLA-4 ICI in tumors is the lack of spontaneous tumor- 
infiltrating T cells and defective IFN-α production in the 
tumor microenvironment (TME) in non-inflamed 
tumors.12,46 Preclinically, TLR9 agonists are potent adju-
vants of cancer vaccines with strong immunostimulatory 
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effects. TLR9 agonists in combination with peptide vaccines 
increase antigen-specific T cells in multiple tumors including 
melanoma, NSCLC, breast cancer, and sarcoma.148–151 

These antigen-specific T cells are detectable ex vivo, produce 
IFN-γ, and are lytic.148 Several lines of evidence suggest that 
TLR9 agonists in combination with ICI may enhance anti- 

tumor T cell responses and augment clinical benefits as 
compared with either agent singly. Firstly, TLR9 agonists 
expand antigen-specific CD8+ T cells that upregulate PD-1 
expression.152,153 Secondly, TLR9 agonists in combination 
with anti-PD-1 ICI transform the TME, increasing CD8+ 
T cells, NK cells, DCs, and B cells even in PD-1 non- 

Figure 2 TLR and TLR9 cellular location and downstream signaling 
Notes: Created with BioRender.com. 
Abbreviations: AP-1, activator protein 1; IRF, interferon regulatory factor; IKK, IκB kinase; MAPK, mitogen activated protein kinase; MyD88, myeloid differentiation 
primary response 88; NFκB, nuclear factor kappa beta; SARM1, sterile α and TIR motif containing 1; TAK1, transforming growth factor-β-activated kinase-1; TLR, toll-like 
receptor; TRIF, TIR domain-containing adaptor-inducing IFN, beta; TRAF6, TNF receptor-associated factor 6 (TRAF6); TRAM, TRIF-related adaptor molecule; TIRAP/MAL, 
TIR-containing adaptor protein/MyD88-adaptor-like.
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responding tumors.153,154 Thus, TLR9 agonists, particularly 
in combination with ICI, offer a promising therapeutic agent 
to circumvent the lack of IFN-α production observed in 
uninflamed tumors, which are poorly T cell-infiltrated and 
often fail to respond to immune checkpoint blockade.

TLR9 agonists have demonstrated potent synergy with 
anti-PD-1 and/or anti-CTLA-4 ICI in multiple models 
including melanoma,153,155 lung cancer,156 HPV positive 
oropharyngeal cancer,157 head and neck squamous cell 
carcinoma,158 breast cancer,153 colorectal cancer,153 and 
lymphoma.159 Using two separate melanoma models of 
diametric immunogenicity, Reilley et al demonstrated the 
importance of intra-tumoral therapy and TME-centric 
immune activation in mediating responses to TLR9 ago-
nist and anti-PD-1/anti-CTLA-4 ICI.155 In immunogenic 
B16/OVA melanoma, TLR9 agonist monotherapy resulted 
in tumor regression in treated and untreated tumors asso-
ciated with increased infiltration of tumor antigen-specific 
T cells, reduced T regs and proinflammatory cytokines.155 

Conversely, in non-immunogenic B16/F10 melanoma, 
while intra-tumoral TLR9 agonist combined with anti-PD 
-1 or anti-CTLA-4 ICI resulted in regression of treated 
tumors, untreated tumors did not respond; although this 
was overcome partially by a more potent anti-CTLA-4 
antibody and TLR9 agonist, underscoring the importance 
of the relative potency of these agents in mediating their 
effects. The antitumor effects of CpG/IL-10 combination 

were abrogated in germ-free (GF) or antibiotic-treated 
mice as a result of the failure of tumor-infiltrating myeloid 
cells to produce inflammatory cytokines such as TNF and 
IL12 – linking intestinal microbiota composition to the 
outcome of TLR9 agonism, an adding the composition of 
the gut microbiome as another dimension affecting the 
outcome of TLR9 agonism and ICI.160,161

In summary, TLR9 agonists result in secretion of 
proinflammatory cytokines, chemokines such as monocyte 
chemoattractant protein-1 (MCP-1), IFN-γ-inducible 10  
protein (IP-10), activation of pDCs, NK cells and Th1 
polarization. TLR9 agonists have demonstrated single 
agent activity and immunological memory in immunocom-
petent murine models, primarily with intra-tumoral rather 
than systemic/subcutaneous drug administration. 
Synergies observed with RT and with immunotherapies 
in particular anti-PD-1 and/or anti-CTLA-4 ICI argued 
for further studies in humans. Below we summarize the 
safety and efficacy data for TLR9 agonists in advanced 
solid malignancies.

Clinical Trials Evaluating TLR9 Agonists in 
Solid Tumors: Safety
TLR9 agonists have been evaluated in a plethora of clinical 
trials singly and in combination with chemotherapy, radio-
therapy, and immunotherapy. Select monotherapy and 

Table 2 Clinical Trials of TLR9 Agonists as Monotherapy

TLR9 Agonist Study 
Phase

Histology ROA Safety Efficacy

PF-3512676 (CPG 

7909)163

Phase I Advanced BCC or 

melanoma

SC 0.01 to 2.5 mg, every 2 weeks 1 grade 3 event ORR (BCC): 1 CR (1/5, 

20%), 4 PR (80%) 
ORR (melanoma): 1 CR (1/5, 

20%)

PF-3512676 (CPG 

7909)164

Phase I CTCL SC 0.08–0.36mg/kg, weekly 9/28 (32%) grade 

≥3 events

32% per CAILS

PF-3512676 (CPG 

7909)165

Phase I Advanced RCC SC 0.08–0.81mg/kg, weekly 6/40 (15%) grade 

≥3 events

ORR: 5% (2/39)

MGN1703166 Phase I All solid tumors, 

testing

SC 0.25–60mg, twice weekly 2 grade 3 events ORR: 0% 

25% (6/24) SD

CMP-001167 Phase I Advanced metastatic 

melanoma

IT 5–10mg weekly for 7 weeks, 

then q3 weekly

Not reported ORR 22% (5/23)

PF-3512676 (CPG 

7909)168

Phase II Advanced metastatic 

melanoma

SC 0.08–0.81mg/kg, weekly 5/20 (20%) grade 

≥3 events

ORR: 10% (2/20) 

SD rate: 15% (3/20)

Abbreviations: BCC, basal cell carcinoma; CAILS, Composite Assessment of Index Lesion Severity; CTCL, cutaneous T cell lymphoma; CR, complete response; ORR, 
overall response rate; PR, partial response; ROA, route of administration; RCC, renal cell carcinoma; SD, stable disease.
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Table 3 Clinical Trials of TLR9 Agonists in Combination Trials

TLR9 
Agonist

Study 
Phase

Histology Combination Agent ROA Efficacy

PF-3512676 

(CPG 7909)173

II Advanced metastatic melanoma MART-1 (26–35, 27L), gp100 

(209–217, 210M), and tyrosinase 

(368–376, 370D) vaccine with GM- 
CSF

SC 1.8mg 

every 2 weeks

ORR 9% (2/22) 

SD rate 36% (8/ 

22)

PF-3512676 
(CPG 7909)176

II/III Advanced metastatic melanoma PF-3512676 ± DTIC 850mg/m2 SC 10mg vs 
40mg weekly

ORR: 
PF-3512676 

10mg 2% 

PF-3512676 
40mg 0% 

PF-3512676 

40mg + DTIC 
16% 

DTIC 8%

PF-3512676 

(CPG 7909)177

III Advanced chemotherapy-naïve 

NSCLC

Carboplatin AUC6 with paclitaxel 

200mg/m2 ± PF-3512676

SC 0.2mg/kg 

every 2 weeks

ORR: 

Carboplatin/ 
paclitaxel 23% 

Carboplatin/ 

paclitaxel + PF- 
3512676 28% 

Median OS: 

Carboplatin/ 
paclitaxel 9.8 

months 

Carboplatin/ 
paclitaxel + PF- 

3512676 10.0 

months

PF-3512676 

(CPG 7909)178

II Advanced chemotherapy-naïve 

NSCLC

Carboplatin AUC 6 or cisplatin 75mg/ 

m2 with paclitaxel 175mg/m2 or 
docetaxel 75mg/m2 

± PF-3512676

SC 0.2mg/kg 

every 2 weeks

ORR: 

Chemotherapy 
11% 

Chemotherapy + 

PF-3512676 19% 
Median OS: 

Chemotherapy 

6.8 months 
Chemotherapy + 

PF-3512676 12.3 

months

IMO-2055179 IB Advanced chemotherapy- 

refractory NSCLC

Erlotinib 150mg daily + bevacizumab 

15mg/kg q3 + IMO-2055

SC 

0.08–0.48 mg/ 
kg weekly

ORR 15% (5/33)

(Continued)
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Table 3 (Continued). 

TLR9 
Agonist

Study 
Phase

Histology Combination Agent ROA Efficacy

PF-3512676 

(CPG 7909)180

II Advanced recurrent EGFR mutant 

NSCLC

Erlotinib 150mg daily ± PF-3512676 SC 0.2mg/kg 

weekly

ORR: 

Erlotinib 5% (1/ 
21) 

Erlotinib + PF- 

3512676 10% (2/ 
22) 

Median PFS: 

Erlotinib 1.7 
months 

Erlotinib + PF- 

3512676 1.6 
months 

Median OS: 

Erlotinib 4.7 
months 

Erlotinib + PF- 

3512676 6.4 
months

PF-3512676 
(CPG 7909)181

I Advanced chemotherapy-naïve 
NSCLC Japanese patients

Carboplatin AUC6 with paclitaxel 
200mg/m2 and PF-3512676

SC 0.1 vs 
0.2mg/kg every 

2 weeks

ORR 8% (1/12) 
SD rate 25% (3/ 

12)

PF-3512676 

(CPG 7909)182

III Advanced chemotherapy-naïve 

NSCLC

Cisplatin 75mg/m2 with gemcitabine 

1250mg/m2 ± PF-3512676

SC 0.2mg/kg 

weekly

ORR: 

Chemotherapy 

31% 
Chemotherapy + 

PF-3512676 32% 

Median PFS: 
Chemotherapy 

5.1 months 

Chemotherapy + 
PF-3512676 5.1 

months 

Median OS: 
Chemotherapy 

10.7 months 

Chemotherapy + 
PF-3512676 11.0 

months

IMO-2055183 IB Advanced chemotherapy- 

refractory CRC

FOLFIRI/cetuximab with escalating 

doses of IMO-2055

SC 

0.16–0.48mg/ 

kg weekly

ORR 14% (2/14)

PF-3512676 

(CPG 7909)186

I Advanced melanoma and other 

solid tumors

Tremelimumab 6.0, 10.0, or 15.0 mg/ 

kg every 12 weeks with escalating 
doses of PF-3512676

SC 

0.05–0.15mg/ 
kg weekly

ORR 12.5% (2/ 

16)

(Continued)
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combination trials are summarized in Tables 2 and 3 respec-
tively (see Tables 2 and 3). Of note, in dose-escalation studies 
of TLR9 agonists, incidence of adverse events (AE) did not 
increase in a dose-dependent fashion; and maximal tolerated 

dose (MTD) was typically not achieved. Class-related AEs 
included flu-like symptoms, were generally of low-severity, 
with a low incidence (3–10%) of grade 3/4 events and tended 
to peak between third and sixth doses.

Table 3 (Continued). 

TLR9 
Agonist

Study 
Phase

Histology Combination Agent ROA Efficacy

Lefitolimod 

(MGN1703)189

II open- 

label

ES SCLC following response (CR/ 

PR) to 1L platinum-based 
chemotherapy

Cycle 5 and 6 of platinum-based 

chemotherapy ± lefitolimod 
(MGN1703)

SC 60mg twice 

weekly

ORR: 

Chemotherapy 
8% 

Chemotherapy + 

MGN1703 12% 
Median PFS: 

Chemotherapy 

4.0 months 
Chemotherapy + 

MGN1703 3.2 

months 
Median OS: 

Chemotherapy 

9.7 months 
Chemotherapy + 

MGN1703 10.0 

months

Lefitolimod 

(MGN1703)190

II blinded, 

placebo- 
controlled

CRC following disease control 

(CR/PR/SD) to 1L platinum-based 
chemotherapy ± bevacizumab

Lefitolimod (MGN1703) or placebo SC 60mg twice 

weekly

Median PFS: 

Placebo 2.6 
months 

MGN1703 2.8 

months 
Median OS: 

Placebo 15.1 

months 
MGN1703 22.6 

months

SD-101154 Phase Ib Advanced metastatic PD-1 

refractory and PD-1 naïve 

melanoma

Pembrolizumab 200mg q3w with IT 

SD-101

IT 1, 2, 4, 8mg 

weekly

ORR (PD-1 

naïve) 100% (7/7) 

ORR (PD-1 
refractory) 17% 

(2/12)

CMP-001167 Phase Ib Advanced metastatic PD-1 

refractory melanoma

Pembrolizumab 200mg q3w with IT 

CMP-001

IT 5 or 10mg 

weekly for 7 

weeks then 
q3w

ORR (CMP-001 

dose-escalation) 

23% (10/44) 
ORR (1st 

expansion) 15% 

(10/69) 
ORR (2nd 

expansion) 26% 

(8/31)

Abbreviations: AUC, area under curve; DTIC, dacarbazine; ES SCLC, extensive-stage small cell lung cancer; IT, intratumoral; PFS, progression-free survival; ORR, overall 
response rate; OS, overall survival; Q3W, every 3 weeks; SC, subcutaneous; SD, stable disease.
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Cytokine release syndrome (CRS) is a severe AE that 
can occur after TLR9 agonist injections and is related to 
IFN-induced cytokine and chemokine release. CRS, as 
observed with TLR9 agonists, is graded and managed simi-
larly as chimeric antigen receptor-T cell therapy-related 
CRS. As CRS symptoms can appear rapidly, patients treated 
in TLR9 agonist studies are typically monitored for 4–6 
hours following TLR9 agonist administration. CRS prophy-
laxis with low-dose corticosteroids is not typically man-
dated; although corticosteroid prophylaxis is recommended 
for patients who experienced Grade 3 and 4 toxicity with 
prior injections or with concomitant adrenal insufficiency. 
Other class-specific AEs include injection site reactions with 
subcutaneous and intra-tumoral injection of drugs.

Studies of TLR9 agonists in combination with che-
motherapy, targeted therapy, radiation, vaccines and other 
immunotherapy agents have generally not been associated 
with higher than expected AEs with one exception. IMO- 
2055 was studied in combination with 5FU/Cisplatin/ 
Cetuximab in recurrent/metastatic HNSCC in a phase IB 
trial that was terminated early due to the higher rate of 
observed toxicities.162 All patients in the study experi-
enced at least one adverse effect at any grade, and 92% 
had Grade 3 and greater AEs, with 31% considered related 
to IMO-2055 including injection site reactions, QT pro-
longation, bacteremia, and sepsis. TLR9 agonists have 
been studied in combination with various ICI including 
anti-PD-(L)1 and/or anti-CTLA-4 inhibitors with no sig-
nificant additional AEs aside from class-specific flu-like 
symptoms and injection site reactions. Of note, TLR9/ICI 
combinations do not appear to be associated with 
increased frequency of immune-related adverse events 
(irAEs) in comparison to ICI monotherapy.

Clinical Trials Evaluating TLR9 Agonists in 
Solid Tumors: Efficacy
When used as monotherapy in advanced solid tumors, 
TLR9 agonists including PF-3512676 (CPG 7909) and 
MGN1703 did not reveal any clinically meaningful effi-
cacy results in advanced solid tumors and chronic leuke-
mias with CMP-001 being a rare exception albeit in 
a small number of patients (see Table 2).163–168 CpG-28 
is a CpG ODN administered via intra-cerebral infusion to 
facilitate maximal brain penetration that was evaluated in 
treatment-refractory high-grade gliomas and glioblastomas 
(GBM) with minimal toxicity and preliminary evidence of 
efficacy in a difficult patient population in phase I and II 

trials.169,170 However, in a randomized trial of standard 
chemoradiotherapy with or without CpG-28 injected into 
surgical cavity post tumor removal, the addition of CpG- 
28 did not improve survival.171 Phase I single agent data 
for motolimod (VTX2337), lefitolimod (MGN1703), tilso-
tolimod (IMO-2125), and SD-101 have not been 
published.

Intra-tumoral vaccination with CpG in combination 
with peptide vaccination resulted in increased tumor- 
antigen specific CD8+ T cells in multiple tumors including 
melanoma, NSCLC, breast cancer and sarcoma.172–174 

These tumor-antigen specific CD8+ T cells were detectable 
ex vivo, produced IFN-γ and were lytic; and CpG adminis-
tration expanded tumor-antigen specific clonotypes and 
primed non-TA-reactive CD8+ T cells resulting in expan-
sion of novel clonotypes.148,175 However, while results of 
local CpG in combination with peptide vaccination treat-
ments were promising in melanoma,173 systemic adminis-
tration of CpG in combination with chemotherapy did not 
result in clinical responses in melanoma (PF-3512676),176 

NSCLC (PF-3512676 and IMO-2055),177–182 and colorec-
tal cancer (IMO-2055).183

Combinations with radiation have been evaluated in 
indolent lymphomas and mycosis fungoides.172,184,185 In 
mycosis fungoides, PF-3512676 combined with in situ 
vaccination with RT produced meaningful responses in 
distant lesions along with significant reductions in T regs 
intratumorally.184 In patients with treatment-naive indolent 
lymphomas, intra-tumoral SD-101 in combination with 
low-dose RT was well tolerated. Responses were observed 
in both treated and untreated lesions, and were associated 
with increases in CD8+ and CD4+ effector T cells.185

While it is clear that CpG administration strongly 
induces tumor-specific CD8+ T cell responses, objective 
responses are rare and T cell responses are not sustained – 
suggesting that augmentation of T cell trafficking with 
anti-PD-1 and/or anti-CTLA-4 ICI may be additive. As 
delineated above, in preclinical models, intra-tumoral 
(rather than systemic) TLR9/ICI combinations are effica-
cious with evidence of increased tumor-specific CD8+ 
T cells and reduced T regs. A phase I study of PF- 
3512676 with CTLA-4 inhibitor tremelimumab demon-
strated few responses (2/17, 6%) in heavily pre-treated 
melanoma albeit with a high rate of toxicity that precluded 
further development.186

Below we describe the current state of development for 
some of the TLR9 agonists in advanced testing, with 
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a focus on combinations with ICIs in various solid tumors, 
summarized in Table 3 (see Table 3).

Lefitolimod (MGN1703)
Lefitolimod (MGN1703) is a synthetic type C TLR9 agonist 
of the double-stem loop immunomodulators (dSLIM) family 
comprising a covalently closed dumbbell-shaped structure 
with a middle 28 base pair section flanked by two 30 
nucleotides single-stranded loops at either end.187,188 

Following a promising phase I study in advanced malignan-
cies, lefitolimod (MGN1703) was rapidly advanced into the 
maintenance setting in two phase II trials in extensive-stage 
small cell lung cancer (IMPULSE) and metastatic colorectal 
cancer after front line chemotherapy.189,190 While primary 
endpoint of improved overall/progression-free survival was 
not met in the intent-to-treat arm in either study, improved 
pharmacodynamic and efficacy signals in subgroup analyses 
prompted a phase III trial of subcutaneous lefitolimod 
(MGN1703) as maintenance therapy compared with stan-
dard maintenance regimens in patients with metastatic CRC 
who had achieved tumor reduction with induction therapy 
(IMPALA, NCT02077868). Negative results have been 
reported and the further development of this agent is uncer-
tain at this time.

Tilsotolimod (IMO-2125)
Tilsotolimod (IMO-2125) is a type B TLR9 agonist 
containing a PS backbone with the sequence 5′- 
TCG*AACG*TTCG*-X-G*CT TG*CAAG*CT-5′ 
where G* represents 2′-deoxy-7-deaza-guanosine and 
X is a glycerol linker.191 Tilsotolimod (IMO-2125) is 
being evaluated in multiple solid tumors with the devel-
opment in advanced melanoma being furthest along. 
ILLUMINATE-204 is a multi-center, phase 1/2 trial in 
patients with anti-PD-1 refractory advanced melanoma 
wherein escalating doses of tilsotolimod (IMO-2125) 
was studied with either ipilimumab or pembrolizumab 
in the phase I portion; after which tilsotolimod (IMO- 
2125) 8mg in combination with ipilimumab was studied 
in phase II portion. In 49 evaluable anti-PD1 refractory 
melanoma patients, investigators reported objective 
response rates (ORR) of 22% with 71% disease control 
rate and 48% grade 3/4 treatment-related adverse events 
(TRAE), although the frequency of irAE was not signif-
icantly increased.192 The combination of tilsotolimod 
(IMO-2125) and ipilimumab is being evaluated in 
a pivotal phase III trial (ILLUMINATE-301) in anti-PD 
-1 refractory advanced melanoma compared to 

ipilimumab; while a separate study (ILLUMINATE- 
206) is studying tilsotolimod (IMO-2125) with ipilimu-
mab/nivolumab in microsatellite-stable colorectal cancer.

SD-101
SD-101 is a type C TLR9 agonist that induces large 
quantities of type I IFNs.153 In combination with RT in 
treatment-naive B cell lymphoma, SD-101 was well toler-
ated and demonstrated abscopal responses.185 When stu-
died in PD-1 naïve and PD-1 relapsed/refractory 
melanoma in combination with anti-PD-1 ICI pembrolizu-
mab, ORR with SD-101/pembrolizumab was 78% in treat-
ment-naïve and 15% in PD-1 relapsed/refractory 
melanoma; while induction of IFN-responsive genes and 
significant increases of inflammatory cells including CD8+ 
T cells were observed in circulating leucocytes and in 
tumors, respectively.154

CMP-001
CMP-001 is a type A CpG composed of (i) a virus-like particle 
(VLP) comprising capsid proteins derived from bacteriophage 
Qb, which encapsulate (ii) CpG ODN G10 which I a 30- 
nucleotide strand, flanked by 10 guanines on either end 
designed to induce high levels of type I IFN production. 
CMP-001 was designed to be taken up by pDC via anti-Qb 
antibodies that bind to FCR-γ on pDC facilitating uptake and 
enabling antigen cross-presentation to T cells and other effector 
cells. Following CMP-001 injection intratumorally, anti-Qb 
antibodies are rapidly generated. These anti-Qb antibodies 
facilitate opsonization of CMP-001 by pDC in a FcRγ- 
dependent fashion that promotes pDC uptake, IFN-α induction 
and are critical to anti-tumor efficacy.159 Although subcuta-
neous dosing of CMP-001 is being explored in several studies, 
it is unclear whether this mode of drug delivery results in anti- 
Qb antibody generation and CMP-001 opsonization to the 
degree observed with intra-tumoral therapy. In the CMP-001- 
001 study in PD-1 relapsed/refractory melanoma, intra- 
tumoral CMP-001 with pembrolizumab resulted in ORR of 
25%. Side effects were class-specific including flu-like symp-
toms (7%), hypotension (6%), hypertension (5%), AST/ALT 
elevation (2–3%), injection site reactions (27%); and majority 
were grade 1–2. Median duration of response was not reached 
(>17 months) with similar responses in treated and non-treated 
sites.193 The preliminary results of CMP-001 combination with 
atezolizumab and radiation therapy showed no responses in 
advanced NSCLC.194

Pre-clinically, compelling data suggest that neoadjuvant 
immunotherapy (compared with adjuvant immunotherapy) 
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results in greater tumor-specific immune responses and 
improved eradication of distant metastases following pri-
mary tumor resection in orthotopic murine models of mela-
noma and breast carcinoma.195,196 Separately, in a sub- 
analysis of patients treated in CMP-001-001 study, high 
fraction of baseline lymph node tumor burden was 
a favorable feature associated with longer PFS.197 

Compared to post-operative adjuvant therapy, neoadjuvant 
therapy permits an in vivo assessment of tumor biology, and 
represents the ideal scenario for studying predictive biomar-
kers and intermediate end points that might predict long-term 
clinical outcomes. These observations prompted evaluation 
of neoadjuvant CMP-001 with nivolumab in high-risk stage 
III melanoma prior to definitive surgery; wherein the primary 
endpoint of the study was the rate of major pathologic 
response (MPR) as assessed using recently developed 
criteria.198–200 In this study, patients received intra-tumoral 
CMP-001 and nivolumab for 7 weeks pre-operatively. 
Following definitive surgery, patients continued nivolumab 
and subcutaneous CMP-001 every 4 weeks post-operatively 
for 12 months. In a cohort of 20 patients, 75% MPR rate was 
observed – significantly better than what has been reported 
with neoadjuvant pembrolizumab monotherapy and similar 
to what has been reported with neoadjuvant ipilimumab/ 
nivolumab.201–205 This has prompted a randomized phase II 
study of the combination compared to pembrolizumab mono-
therapy (EA6194) and a phase II/III study of the combination 
against anti-PD(L)1 ICI in PD-1 naïve metastatic melanoma 
(CMP-001-010).

NZ-TLR
NanoZolid® technology represents a novel approach of 
creating controlled-release products using cold isostatic 
pressing to encapsulate active substances in a highly 
dense calcium sulfate microstructure. This technology 
has been used to generate depot-formulations of anti- 
androgens for use in prostate cancer.206 NZ-TLR is 
a TLR9 agonist with an undisclosed TLR9 structure 
encapsulated within a calcium sulfate excipient 
(NanoZolid) that permits slow release depot formulation 
following intra-tumoral dosing obviating the need for fre-
quent dosing. Preclinical data in syngeneic tumor models 
have been reported but not published with plans for first-in 
-human clinical trials in 2021.

Cavrotolimod (AST-008)
Spherical nucleic acids (SNAs) are a unique class of 
nanomaterial comprised of an inorganic nanoparticle 

core that acts as a scaffold for the assembly and orienta-
tion of an outer nucleic acid shell. SNA technology con-
fers properties that distinguish SNAs from linear DNA or 
RNA counterparts including increased cellular uptake, 
improved pharmacokinetics, and biodistribution.207 

Cavrotolimod (AST-008) is a novel SNA configuration 
of TLR9 with undisclosed structure that is currently 
being tested singly and in combination with pembrolizu-
mab in patients with advanced Merkel cell carcinoma and 
cutaneous squamous cell carcinoma. Preclinical data sug-
gested that intra-tumoral cavrotolimod (AST-008) acti-
vated immune cells and elicited a Th1 type cytokine 
response. Early data from a phase I study suggested that 
cavrotolimod (AST-008) was safe and well tolerated with 
no dose-limiting AEs noted. Dose-dependent increases in 
NK cells and CD8 T cells peripherally were observed 
intra-tumoral cavrotolimod (AST-008) singly with 
pembrolizumab.207

Conclusions
TLR9 agonists are well tolerated as monotherapy and do not 
appear to increase the toxicity of chemotherapeutic, targeted, 
radiation, and other immunotherapy agents as part of combi-
nation therapy. The main adverse effects are injection site 
reactions and flu-like symptoms, of mild to moderate severity 
and typically well managed with symptomatic treatment – 
and have resulted in treatment discontinuation in only a small 
number of patients in clinical trials.

In preclinical studies, TLR9 agonists demonstrated effi-
cacy singly and in combination with a variety of agents. 
Intra-tumoral and subcutaneous routes of administration 
showed better local and distant responses in comparison to 
intravenous routes. In clinical trials, single-agent TLR9 ago-
nist therapy for advanced solid tumors did not demonstrate 
significant efficacy, especially with an intravenous route of 
administration. While combinations with chemotherapy and 
targeted therapy yielded disappointing results, combinations 
with RT in indolent lymphomas have been promising. 
However, the greatest excitement has been reserved for the 
combinations of TLR9 agonists with ICI. Tilsotolimod 
(IMO-2125), SD-101 and CMP-001 all demonstrated effi-
cacy in PD-1 relapsed/refractory melanoma in small non- 
randomized phase II studies. Pivotal trials testing these 
agents against active comparators in advanced PD-1 
relapsed/refractory melanoma are either ongoing (tilsotoli-
mod/IMO-2125 – ILLUMINATE-301) or planned (CMP- 
001 - CMP-001-010).
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Separately, the unusual response rate observed with 
CMP-001 in combination with nivolumab in a small phase 
II neoadjuvant trial raises several questions: do neoadjuvant 
pathological responses translate into durable relapse-free 
survival; is the response rate in this setting predictive of 
what may be seen in PD-1 naïve metastatic melanoma; and 
is the neoadjuvant setting with its limited tumor burden and 
nodal involvement the ideal setting wherein to evalu-
ate innate agonists in melanoma and other cancers?

TLR9 agonists augment antigen presentation to APC, and 
promote T cell trafficking to create a T cell inflamed TME 
resulting in an increased response rate of ICI therapy. 
However, several questions remain. What is the ideal ICI 
partner for augmenting the benefit of innate agonists in general 
and TLR9 agonists in particular: anti-PD-1, anti-CTLA-4, 
combination of anti-PD-1/anti-CTLA-4 or other? Are TLR9 
agonists enough to convert T cell uninflamed tumors to 
inflamed tumors; or are combinations with other innate immu-
nostimulants such as RIG-I, STING agonists required? While 
accessibility of tumors has limited the scope of intra-tumoral 
injections, could recent advancements in image-guided proce-
dures provide an opportunity to target visceral metastatic 
lesions? Could advances in structural chemistry permit depot 
formulations that maintain efficacy with fewer injections? 
How best can TLR9 agonists be combined with RT, and 
possibly newer modalities including alpha-emitters?208 

Ongoing clinical trials will help to answer some questions 
while elucidating biomarkers of resistance and response with 
the eventual goal of broadening the use of TLR9 agonists in 
solid tumors.
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