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Abstract: Fluorine-19 (19F) magnetic resonance (MR) molecular imaging is a promising 
noninvasive and quantitative molecular imaging approach with intensive research due to the 
high sensitivity and low endogenous background signal of the 19F atom in vivo. 
Perfluorocarbons (PFCs) have been used as blood substitutes since 1970s. More recently, 
a variety of PFC nanoparticles have been designed for the detection and imaging of 
physiological and pathological changes. These molecular imaging probes have been devel-
oped to label cells, target specific epitopes in tumors, monitor the prognosis and therapy 
efficacy and quantitate characterization of tumors and changes in tumor microenvironment 
noninvasively, therefore, significantly improving the prognosis and therapy efficacy. Herein, 
we discuss the recent development and applications of 19F MR techniques with PFC 
nanoparticles in biomedicine, with particular emphasis on ligand-targeted and quantitative 
19F MR imaging approaches for tumor detection, oxygenation measurement, smart stimulus 
response and therapy efficacy monitoring, et al. 
Keywords: fluorine-19 magnetic resonance imaging, fluorocarbons, nanoparticles, 
molecular imaging, neoplasms

Introduction
Fluorine-19 magnetic resonance (19F MR) molecular imaging is a noninvasive tool 
widely exploited for in vivo applications due to low background signals. Similar to 
1H, 19F has a spin of one-half nucleus and no quadrupolar moment, thereby greatly 
simplifying spectral analysis. The 19F nucleus has a high gyromagnetic ratio and 
a sensitivity of 83%, which is comparable to that of 1H and significantly higher than 
the sensitivity of other typically investigated MR receptive nuclei, such as 31P, 13C, 
and 15N. The natural abundance of 19F is 100%. Endogenous 19F is found primarily 
in bone marrow and teeth as solid fluorides, whereas soft tissues have undetectable 
19F MR signals.1 19F is virtually absent from tissues without endogenous back-
ground signal.2 Finally, in addition to its high sensitivity, 19F nucleus exhibits 
a wide range of chemical shifts (>350 ppm) and it is extremely sensitive to 
relaxation changes, which can provide higher resolution than 1H MRI.3 Thus, 
administered 19F-containing compounds have optimal properties for specifically 
and selectively assessing tissue physiology and pathology in vivo.

Perfluorocarbons (PFCs) are biologically inert, highly stable, non-toxic, non- 
carcinogenic, non-mutagenic, non-teratogenic compounds that can generate 
19F signal and they are not metabolized in the human body.3,4 PFC nanoparticles 
(NPs) have therefore been extensively used as 19F MRI agents in research applications. 
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The strong C-F bond in PFCs is resistant to cleavage by 
endogenous enzymes, and the dense, electron-repelling 
sheath that coats F-chains allows only extremely weak inter-
molecular interactions.5 Due to their relatively large size 
(~250 nm), intravenous administration of PFC NPs is not 
susceptible to glomerular filtration and is instead removed 
from the circulation via the reticuloendothelial system and 
exhalation through respiration.6,7 Thus, PFCs have excellent 
biosafety and exhibit no renal toxicity in animals or human, 
which do not increase kidney burden.8,9 The frequently used 
PFCs are perfluorooctyl bromide (PFOB), perfluoro-15- 
crown-5-ether (PFCE) and perfluoropolyether (PFPE). 
When compared to iodinated or gadolinium-based contrast 
agents, PFC NPs are better suited for patients with kidney 
disease. Research shows that the blood clearance half-life of 
PFCs ranges from three to 42 hours,10 and tissue 
clearance occurs within four (PFOB) to 65 days 
(perfluorotripropylamine),11 thereby allowing sufficient 
time for MR detection. A practical concern persists regarding 
the application of probes in patients with potentially impaired 
renal function. Gadolinium agent as a paramagnetic contrast 
agent for MRI scans is thought to be associated with suscept-
ibility to diseases such as nephrogenic systemic fibrosis.12–14

PFCs also have very good respiratory gas- (oxygen and 
carbon dioxide) carrying capacity and were first proposed 
as oxygen carriers in 1966.15 Over the last decade, PFCs 
have been widely used as oxygen-carrying blood 
substitutes16 and for liquid ventilation in respiratory dis-
eases. Besides their low viscosity, liquid PFCs generally 
have 10–20 times more oxygen solubility than water or 
blood plasma,17 and they were shown to maintain oxygen 
transport and support life for several hours in rats lacking 
erythrocytes.18 Thus, PFCs are excellent candidates for 
protecting tissue from hypoxia and preventing irreversible 
tissue damage.

PFCs exchange oxygen with the surrounding medium 
through free diffusion on a millisecond timescale.19 The 
oxygen solubility of PFCs varies inversely with tempera-
ture, and the amount of oxygen dissolved in any type of 
PFC increases linearly with oxygen partial pressure (pO2). 
To measure tissue oxygenation noninvasively, calibration 
curves can be used to illustrate the relationship between 
19F concentration and pO2.20,21 Mechanistically, since O2 

is a paramagnetic substance, its partial pressure affects the 
longitudinal relaxation rate (R1) of PFC in a linear way as 
follows: R1=A+B*pO2.22 Hence, pO2 corresponds to R1 

and ultimately to longitudinal relaxation time T1 (1/R1). 
As a result, by measuring the 19F T1 value of different 

tumor areas (acquiring a T1 map), we can obtain the 
corresponding pO2.

23–25 Due to these advantages, 
19F MRI has increasingly being utilized in physiological 
molecular imaging and therapeutics.26–28

The smart stimuli-responsive 19F MRI platform using 
PFC-based nanoprobes with exceptional sensitivity and 
off/on-switching is a powerful tool for visualizing 
in vivo enzymatic activity, redox-potential difference, 
and lower pH values.29 By combined various stimuli- 
responsive with theranostic nanoplatforms for sensitive 
19F MRI of biological and pathological situations, stimuli- 
responsive nanoparticles will eventually take advantage of 
specific tumor microenvironmental changes enable early 
accurate diagnosis and therapeutics. This novel technology 
is considered to have the potential to clarify the biomole-
cular networks in animals using the latest molecular ima-
ging techniques.

19F MRI Techniques
Negligible signal background enables high contrast-to- 
noise ratios and improved quantification potential in 
19F MRI. Challenges and future perspectives regarding 
routine 19F imaging for clinical translation of these tech-
niques to patients are specialized coils and hardware for 
acquisition of 19F MR images. To meet these challenges, 
a variety of 19F MR relevant equipment, techniques, and 
sequences have been developed in recent years. Below we 
discuss some of the lessons that can be drawn from these 
advancements in 19F MRI technology.

As 19F MRI can only trace exogenous fluorinated materi-
als, it is necessary to conduct 1H MRI simultaneously to collect 
anatomical information. Dual-tuned 19F/1H radiofrequency 
(RF) coils for 19F MRI have been developed to address this 
issue and are currently widely used. As the signal-to-noise ratio 
(SNR) can be maximized by tuning the frequency to either 
19F or 1H, this combined approach has significantly improved 
19F imaging technology.30,31 Villavalverde et al designed 
a multi-tuned RF coil based on the high B1 homogeneity of 
birdcage coils to obtain high-quality images with good unifor-
mity and sensitivity for 19F.32 Another study showed that the 
birdcage coil increased the B1 homogeneity, which allowed 
estimation of the minimum detectable 19F atoms number and 
19F content of the NP. The minimum detectable PLGA-PFCE 
concentration was 2.5 mg/mL using the birdcage coil in NP 
solution phantoms imaging and MRS. In addition, due to the 
advantage of increased B1 detection sensitivity and field uni-
formity, the butterfly coil could be used in animal 
experiments.33 This dual-tuned 19F/1H RF coils have been 
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successfully applied in preclinical studies. For instance, 
a 19F/1H RF coil improved the B1 field uniformity without 
reducing sensitivity in MRI of arthritic knee in rabbits.34 More 
recently, an eight-channel transceiver 19F/1H RF coil employed 
to locate and quantify administrated fluorinated materials in the 
knee at 7.0 T showed high sensitivity with an in-plane spatial 
resolution of 1.5 × 1.5 mm2 and slice thickness of 5 mm, 
revealing great translation potential to clinical applications. 
Further technological developments are necessary to promote 
real-time bioavailability studies and quantification of 
19F-containing medicinal compounds in vivo.35

Several MR sequences have been designed to improve 
SNR and the quantification accuracy of 19F MRI.30 PFCE 
has been widely investigated as 19F MRI contrast agent with 
a strong single peak resonance spectrum at −91.8 ppm 
related to CFCl3 without any chemical shift artifact.36 For 
19F compounds with unique spectral properties, fast spin 
echo/rapid acquisition with relaxation enhancement (FSE/ 
RARE) is the most useful sequence.37 Unlike PFCE, many 
PFCs have multiple NMR spectral peaks with 19F MRI 
SNR decreased. PFPE has two major chemical shifts at 
−90.7 and −90.9 ppm used for cellular and molecular 
MRI.38 PFOB (CF3-(CF2)6-CF2Br) is a blood substitute 
used for 19F MRI that exhibits a multi-peak resonance 
spectrum and complex 19F resonances and multiple relaxa-
tion conditions with single 19F resonance peaks for CF2Br 
and CF3 groups and five proximate chemical shift compo-
nents of the CF2 group.39,40 The challenge for multispectral 
compounds with chemical shift artifacts in MRI is that the 
SNR is reduced if only the signal of a single spectrum is 
acquired.38–40 To meet this challenge, Fluorine ultra-fast 
Turbo Spectroscopic Imaging (F-uTSI)41 has also been 
developed to improve SNR without sacrificing sensitivity 
or increasing scan time. Furthermore, F-uTSI can distin-
guish between various 19F compounds based on chemical 
shift differences, thereby allowing for “multi-color” ima-
ging. Another approach of meeting this challenge is to adopt 
a novel pulse sequence, 19F/1H 3D-balanced steady-state 
free precession (bSSFP) to avoid the chemical shift artifacts 
of PFC with multi-resonance spectra40 Notably, the bSSFP 
sequence implemented on a clinical 3 T scanner enabled the 
detection of PFOB labels with higher sensitivity than tradi-
tional techniques. Additionally, by using a 19F chemical 
shift encoding (CSE) approach, Van Heeswijk et al demon-
strated that CSE–bSSFP has higher sensitivity than bSSFP- 
UTE sequences at 3 T.42 The T1 and T2 relaxation time of 
three PFC emulsions commonly used in 19F MRI were 
measured at 3 T, including PFOB, PFCE and PFPE at 

different temperatures. By means of relaxation time for 
each PFC phantom, the optimized parameters repetition 
time (TR) and echo train length (ETL) with longitudinal 
magnetization restoration (LMR) (a −90 “flip-back” pulse) 
off and on in the turbo spin echo (TSE) pulse sequence and 
the optimal flip angle for the bSSFP pulse sequence were 
determined for PFCs.43 Mastropietro et al proposed 
a procedure for optimizing the SNR in RARE sequences, 
which improved sensitivity of 19F MR. In this work the 
optimized RARE parameters (TR, number of echoes, flip 
back pulse) provided a method of improved SNR according 
to measured relaxation time (T1, T2) values at 7 T, which 
might be encountered in vivo and in vitro molecular ima-
ging experiments.37 Theoretical and experimental compar-
isons of spoiled-gradient echo (SPGR), RARE, and SSFP 
pulse sequences were conducted under phantom conditions 
using 19F MRI/MRS at 9.4 T. SSFP yielded the highest 
mean SNR higher than SPGR and RARE using the homo-
geneous birdcage coil, whereas there was no additional 
improvement of 19F signals for NP loading concentration 
beyond 7.5 mg/mL per million cells. In this work, SPGR 
yielded maximal SNR at long TRs and it is recommended to 
use it in combination with appropriate flip angle. 
A detectable limitation of cardiac stem cells was approxi-
mately 500k (10k cells/voxel) in fast 2D acquisitions span-
ning (3–5 min) achieved by the butterfly coil. This method 
of fast and quantitative in vivo cardiac 19F MRI of PFCE- 
labeled progenitor stem cells using SPGR/SSFP and MRS 
acquisitions with a butterfly coil provided evidence for 
preclinical work.33 In another study, the authors developed 
a class of novel 19F chemical exchange saturation transfer 
(CEST) imaging probes, which detected multiple metal ions 
(Mg2+, Ca2+, Zn2+) with a single 19F NMR peak from 
multiple fluorines.44 These imaging probes exhibited high 
sensitivity and specificity for detecting metal ions at low 
concentrations. Schoormans et al introduced an iterative 
sparse deconvolution method to discriminate different 
19F compounds and remove chemical shift artifacts arising 
from multiple resonances at 7 T that was applicable for 
in vivo imaging.45 In addition, studies have shown that 
lanthanide gadolinium ions can increase the relaxation rate 
of 19F. Recently, the influence of gadolinium-functionalized 
PFCE emulsions on 19F R1 and 19F R2 at different magnetic 
field strengths was studied. The results indicated that gado-
linium-functionalized perfluorocarbon emulsions were sui-
table for 19F MRI at current clinical field strengths (1.5–3.0 
T) as gadolinium ions increased the value of 19F R1. 
However, for the emulsions without gadolinium, higher 
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field strengths (6.3–14 T) are favorable for 
19F measurements due to the fact that gadolinium does not 
increases 19F R1, but leads to significantly increasing 19 

F R2.46

The Development of PFC 
Nanoparticles
PFC nanoparticles consist of a PFC core surrounded by 
a lipid monolayer that can be functionalized with a variety 
of agents. Different types of PFCs can be used as a core, 
including perfluorodichlorooctane (PFDCO), perfluorotribu-
tylamine (PFTB), perfluorodecalin (PFDC), PFCE, and 
PFOB. Although PFCE exhibits optimal MRI properties, its 
long retention time in the human body makes it unsuitable for 
repetitive clinical applications.47 On the other hand, a variety 
of other PFCs, including PFOB, are quickly cleared from the 
body through exhalation by the lungs. Furthermore, while 
these compounds may induce chemical shift artifacts when 
19F images are acquired in a conventional manner due to 
signal splitting resulting from 19F nuclei of different magnet-
ism, this problem can be overcome by advanced detection 
methods based on fast chemical shift imaging 
techniques.48,49 Thus, the 19F nucleus in the core of PFC 
NPs offers many favorable magnetic properties and provides 
a very high intrinsic signal level.

The surface of nanoparticles can be covalently or non-
covalently linked to many types of imaging agents for 
molecular imaging and therapy, such as florescent material 
for fluorescence imaging and histology, radionuclides for 
nuclear imaging, iodine for computed tomography (CT) and 
paramagnetic metals (Gd, Fe, Mn) for MRI. Positron emis-
sion tomography (PET) and single photon emission com-
puted tomography (SPECT) have high sensitivity to detect, 
visualize, and quantitatively measure molecular targets in 
the tumor microenvironment. The limitations of PET and 
SPECT are their poor spatial resolution and relatively high 
doses of radiation.50 CT is an imaging technique that offers 
great advantages such as high spatial and density resolution. 
However, CT generally has low sensitivity, specificity and 
temporal resolution visualization of the internal structure of 
soft tissues.51 MRI has many advantages such as no ioniz-
ing radiation, high-sensitivity, high spatial resolution and 
high image contrast. MRI is commonly used in anatomic, 
functional, and molecular imaging.52 In most MR molecu-
lar imaging researches, it is necessary to compare series of 
pre-/post-contrast images to distinguish superparamagnetic 
(eg, iron oxide) or paramagnetic metal (eg, gadolinium) 

contrast from background signals, which can be avoided 
due to the advantage of negligible 19F background signal. 
Gadolinium agent as a paramagnetic contrast agent for MRI 
scans is thought to be associated with susceptibility to 
diseases such as nephrogenic systemic fibrosis and acute 
complement activation found in clinical trials.13,53,54 

A practical concern persists regarding the application of 
probes in patients with impaired renal function and poten-
tial risk of systemic side effects, which calls for great cau-
tion. Superparamagnetic iron oxide (SPIO) particles are 
very sensitive to cell labeling and have been widely used 
to label NSCs in preclinical studies.55 However, due to 
superparamagnetic bloom artifacts, iron oxide tends to 
reduce the resolution of soft tissue. Due to the lack of 
magnetic artifacts of 19F, these artifacts can be avoided 
and the details of tissue and cellular boundary images can 
be preserved.28 In addition, in vivo cell apoptosis or cell 
lysis can liberate the iron, which can be engulfed by micro-
glia or macrophages surrounding the transplanted stem 
cells, leading to false positive signals.56 More recently, 
increasing attention has been paid to PFC labeling for MR 
cell tracking. Furthermore, PFCs can be used as ultrasound 
molecular imaging agents due to their composition, which 
allows detection by mechanical waves at clinically relevant 
imaging frequencies.57,58 These intrinsic properties of 
PFCs, therefore, enable the unambiguous detection of exo-
genously administered PFC NPs and the quantitative mon-
itoring of their biodistribution in vivo with different 
imaging modalities.59,60 Finally, the surface of nanoparti-
cles can also be linked with different molecular ligands or 
drugs for targeted molecular imaging, targeted therapy and 
other applications (Figure 1).61

The Applications of 
Perfluorocarbons-Based 19F MRI in 
Oncology
19F MR has many applications in targeted imaging, measure-
ment of tumor oxygenation, monitoring of drug delivery, cell 
therapy, treatment evaluation, and stimuli-responsive 
imaging26,62-70 which will be introduced in detail as follows. 
Table 1 is a summary of representative studies using 19F MR 
molecular imaging in these applications.

Ligand-Targeted Tumor Imaging
In recent years, targeted paramagnetic PFC NPs have been 
widely used in 19F MRI for the recognition of pathological 
biomarkers, for the detection of changes in expression 
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levels due to disease development, in therapeutic interven-
tions, or in the monitoring of disease recurrence. A variety 
of 19F-based imaging tracers have been introduced, includ-
ing micelles,71 liposomes,72 and emulsions.73 The physi-
cochemical properties of PFC NPs, combined with their 
high surface area, which can incorporate 50 to 500 target-
ing ligands, allow the detection of sparse concentrations of 
cell surface biomarkers. Furthermore, the incorporation of 
large amounts of paramagnetic materials into the nanopar-
ticles was shown to increase the contrast of molecular 
epitopes occurring in very small quantities in vivo.74,75

PFC NPs or nanoemulsions covered with tumor- 
specific ligands have been extensively explored in nonin-
vasive imaging and drug delivery. Most early research on 
MRI using targeted PFC materials was focused on 
1H MRI. For example, in a study with Vx-2 rabbit tumor 
models, the 1H MR signal intensity increased by 56% in 
the αvβ3-integrin-targeted PFC NPs injected group, and 
this signal was significantly reduced by competitive block-
ing with αvβ3-integrin nonparamagnetic nanoparticles.76 

Diou et al modified the capsule morphology of PFOB 
nanocapsules for detecting tumors with 19F MRI, and 
were able to distinguish between passive and active target-
ing after decorating the particles with 600–950 integrin- 
binding RGDS peptide.77 In another study, the dependence 

of neovascular molecular MRI on the relaxation time (R1) 
of αvβ3-integrin-targeted paramagnetic PFC NPs was 
determined. The authors traced the temporal-spatial con-
sistency of angiogenesis assessments in a rabbit Vx2 
tumor model and compared the neovascular contrast 
enhancement obtained with αvβ3-integrin-targeted Gd- 
DOTA-PE and αvβ3-integrin-targeted Gd-DTPA-BOA 
nanoparticles.78 MR neovascular contrast maps of Vx2 
tumors at various time points after implantation revealed 
that surface enhancement is progressive and temporally 
consistent.

Despite the recent advances in 19FMR targeted imaging 
with PFC NPs, most studies focus on αvβ3-integrin,77,79,80 

folate receptor (FR)81–85 and vascular endothelial growth fac-
tor receptor 2 (VEGFR2)86,87 as molecular targets to detect 
tumor angiogenesis, proliferation and certain cardiovascular 
disease (Figure 2). 19F MRI of brain tumor angiogenesis with 
integrin-targeted PFC NPs in mice carrying U87 glioblastoma 
achieved a 50% increase in signal in the targeted group.79 

Waters et al used 19F diffusion weighted MR spectroscopy 
(DWS) at 11.7 T to detect angiogenesis in vivo with αvβ3- 
integrin-targeted PFC NPs in an epidermal squamous carcino-
mas mouse model (K14-HPV16). Progressive decay of the 
19F signal with increased diffusion weighting at b-values 
below 1500 s/mm2 was observed in both K14-HPV16 and 

Figure 1 Schematic representation of the contact-facilitated drug delivery mechanism. Reprinted with permission from Zhou H-F, Yan H, Senpan A et al Suppression of 
inflammation in a mouse model of rheumatoid arthritis using targeted lipase-labile fumagillin prodrug nanoparticles. Biomaterials. 2012;33(33):8632–8640.Copyright © 2012 
Elsevier Ltd.61
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control mice, showing that background 19F signal from 
unbound nanoparticles is suppressed in the blood. Whereas 
K14-HPV16 mice maintained a stationary 19F signal at high 
b-values in the ears, indicating profuse binding of PFC NPs to 
angiogenesis, the 19F signal in controls decayed completely at 
high b values (>1500 s/mm2) due to absence of binding. These 
results show that in vivo 19F DWS is useful for specifically 
detecting bound PFC NPs by selectively suppressing back-
ground 19F signal from unbound nanoparticles flowing in 
blood.88 Angiogenesis-targeted PFOB nanoparticles in 
a rabbit Vx2 tumor model revealed heterogeneous areas of 
neovasculature at the tumor rim, as expected, whereas the 

resultant 19F signal overlaid with the 1H MR signal clearly 
elucidated the anatomical colocalization of the heterogeneous 
distribution of the nanoparticles (Figure 2).89 Bae et al synthe-
sized folate-targeting PFC/rhodamine nanoemulsions for MR 
and optical imaging and showed that the nanoprobe was 
successfully delivered into FR-positive tumor xenograft mod-
els of nasopharyngeal carcinoma, with significantly enhanced 
19F signal intensities in the tumor region in MR and fluores-
cence imaging. Folate-PFC/rhodamine nanoprobes therefore 
have excellent tumor-targeting ability and stability in vivo.90

Although EGFR is highly expressed in a variety of malig-
nant tumor cells, including non-small cell lung cancer 

Table 1 Applications of 19F MR in Molecular Imaging

Year Type of PFC Imaging Purposes Models Ref

Cell tracking 2005 perfluoropolyether cell tracking dendritic cells [185]
2007 PFOB and PFCE cell tracking stem/progenitor cells [138]

2008 PFCE cell tracking stem cells [187]
2010 PFPE cell tracking antigen-specific T cells [115]

2014, 

2015

PFPE stroke-damaged brain imaging human neural stem cells 

(hNSCs)

[55,136]

2016 PFPE and PFOB cellular imaging glioma cells [188]

2019 PFCE cell tracking and therapy dendritic cells [189]

2019 PFCE cardiac quantitative imaging progenitor stem cells and 
macrophages

[33]

Non-oncological 
applications

1989 perfluorotributylamine and 
perfluorodecalin

anatomic distribution mice [190]

1992 perfluorotripropylamine organ biodistribution rats [191]
2004 PFCE molecular imaging of fibrin- 

targeted

ex vivo human samples [192]

2009 perfluorooctylbromide tissue factor-targeted drug 
delivery

vascular smooth muscle cells [193]

2011 PFOB inflammation quantitative imaging rats [194]

2012 PFOB ανβ3 integrin targeted rabbits [195]
2013 PFCE intravascular oxygen tension 

evaluation

mice [196]

Oncological 

applications

1987 perfluorotributylamine anti-CEA antibody labeled 
19F imaging

mice [197]

1992 PFOB vascular perfusion volume 
evaluation

mice [198]

1993 perfluorotributylamine oxygen tension and temperature 

measurement

mice and rats [199]

1996 PFOB and perfluoro-15-crown 

-5

blood volume measurement mice [200]

2016, 
2018

PFOB folate receptor-targeted imaging mice [81,201]

2017 PFOB angiopep-2 peptide targeted 

therapy

mice [202]

2017 PFOB hyaluronic acid targeted therapy mice [203]

2018 PFOB orthotopic cancer imaging rabbits [204]

Abbreviations: PFC, perfluorocarbon; PFOB, perfluorooctyl bromide; PFCE, perfluoro-15-crown-5-ether; PEPE, perfluoropolyether.
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(NSCLC),91 head and neck cancer,92 and ovarian cancer,93 

fewer studies have explored the potential of targeting EGFR 
in 19F MRI to detect tumors cells. EGFR is an important 
transduction signal pathway involved in tumor cell growth, 
proliferation, angiogenesis, adhesion, invasion, metastasis and 
apoptosis. Thus, the non-invasive detection of EGFR in tumors 
is critical for early diagnosis and successful cancer treatment. 
For instance, PFC NPs carrying oxygen and the EGFR tyrosine 
kinase inhibitor (EGFR-TKI) erlotinib showed an important 
anti-tumor effect, revealing that PFC NP therapy targeting 
EGFR is a promising therapeutic strategy.94 Thus, EGFR- 
targeted PFC NPs that can simultaneously assess pO2 show 
great potential for tumor detection, monitoring and therapy.

Measurement of Tumor 
Oxygenation
Regional hypoxia is common in solid tumors due to their 
poorly organized vasculature network and high oxygen 

demands of proliferating tumor cells. Growing evidence 
shows that hypoxia promotes tumor angiogenesis, recurrence, 
progression, metastasis,95 and sensitivity to radiotherapy. 
Currently, a wide variety of techniques are available to mea-
sure tumor oxygenation.96 Methods to measure absolute pO2 

include polarographic oxygen electrodes and fluorescence 
quenching fiberoptic probes, as well as electron paramagnetic 
resonance oximetry and 19F relaxometry.95 However, many 
of these approaches are highly invasive or cannot be applied 
to longitudinal studies of oxygen dynamics.

19F MRI can be used to assess pO2 in tissues quantita-
tively, which greatly increases the accuracy of tumor 
detection. As PFC has a high capacity of dissolving O2, 
when a PFC emulsion injected intravenously reaches 
tumor tissues the O2 rapidly interchanges between PFC 
and the surrounding tissue by free diffusion, until equili-
brium is achieved.25,97 Thus, the pO2 of different tumor 
areas can be assessed by measuring the pO2 of the PFC in 

Figure 2 (A) Illustration shows the position of RF coil in the MRI scan. In vivo MRI of mice administered with PLGA-PEG PFOB/ICG (B) or PLGA-PEG-folate PFOB/ICG 
(C) 1H: anatomical images, 19F: 19F MRI SNR map, merge: 1H and 19F merged, T: tumor region, SPL: spleen, K: kidney.  
Notes: Reprinted with permission from Vu-Quang H, Vinding MS, Nielsen T, et al. Theranostic tumor targeted nanoparticles combining drug delivery with dual near infrared 
and 19F magnetic resonance imaging modalities. Nanomedicine. 2016;12(7):1873–1884. Copyright © 2016 Published by Elsevier Inc.81
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the corresponding tissue.22 For given magnetic field and 
temperature, the dissolved O2 has paramagnetic properties 
that affect the relaxation rate (R1) of PFC in linear propor-
tion to pO2.98 Thus, many studies use 19F MR relaxometry 
based on the linear relationship between the R1 of 
19F-spins in PFCs and pO2 to noninvasively measure tis-
sue oxygenation locally or globally.99–101

The noninvasive measurement of pO2 in tissues plays 
a key role in the treatment of tumors. Currently, the treat-
ment efficacy of conventional radiotherapy and che-
motherapy for malignant tumors is not satisfactory, 
largely because prevalent hypoxic areas in the tumor 
may cause resistance to these treatments. Thus, to some 
extent the noninvasive detection of pO2 in tumor tissue can 
play a guiding role in cancer treatment. Furthermore, oxy-
gen content in tumors may be improved, ultimately lead-
ing to a beneficial therapeutic effect. Specifically, as PFC 
has a high capacity to dissolve and carry oxygen to 
tumors, it can change local pO2 and assist in treatment. 
In addition, 19F MRI can reveal changes in pO2 in tumors 
before and after application of PFC, thereby allowing the 
monitoring of its therapeutic effects. Thus, the noninvasive 
quantification of tumor oxygenation not only provides 

unique insights into tumor biology and pathobiology, but 
it may also be important for developing new treatments102 

and monitoring tumor response.103 It is critical to develop 
dynamic methods for direct oxygen mapping.

Quantitative 19F MRI is the most extensively explored 
imaging method for in vivo mapping of tumor oxygenation 
due to the excellent oxygen-carrying capacities of PFCs 
and fast gas-exchange rate with surrounding tissues.97 

Hypoxia-responsive 19F MRI probes with improved 
redox properties and biocompatibility have been synthe-
sized to detect hypoxia.104 Furthermore, as mentioned 
above, the 19F NMR spin-lattice relaxation rates R1 of 
PFC emulsions are highly sensitive to pO2.105 PFCs can 
be administered intravenously or directly by intratumoral 
injection of PFC droplets or emulsions. Finally, tumor 
hypoxia measured with PFC NPs strongly correlates with 
tumor size,106–108 and generally larger tumors possess 
a lower baseline pO2.81

The method of intravenous administration may affect 
the relative spatial distribution of PFC and produce the 
accumulation of PFC in other tissues, such as the liver and 
spleen. In addition, intravenous administration often 
results in lower tissue concentrations of PFC in areas of 

Figure 3 Anatomic images of PFC uptake in an HM-7 xenograft tumor at 9.4 T with a 1H/19F 10-mm surface coil.  
Notes: (A) The 19F density images acquired in the same anatomic locations with 1H density images reveal variable, albeit adequate PFC uptake. (B) A sample image of PFC 
uptake from the second slice in A is highlighted in red. (C) The corresponding KM class map for the slice in B revealed that strong uptake of PFCs occurred in some areas of 
viable tumor, some areas of adipose tissue, and the low-T2 necrosis class. Reproduced with permission from Shi Y, Oeh J, Easthamanderson J et al Mapping in vivo tumor 
oxygenation within viable tumor by 19F-MRI and multispectral analysis. Neoplasia. 2013;15(11):1241–1250. Copyright © 2013 Neoplasia Press, Inc.111
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poor vascularization. SNR of these areas is too low to 
measure pO2 accurately. This technique may bias pO2 

measurements toward regions close to the blood vessels 
and areas with higher perfusion and oxygenation, resulting 
in erroneous overestimation of tumor pO2, which may be 
a major challenge for clinical translation (Figure 3).109–111 

Fast 19F MRI techniques, such as fluorocarbon relaxome-
try using echo planar imaging, have been developed for 
dynamic mapping of tumor pO2 distributions within 
tumors, with 5–10% of tumor volume being observed 
with typical signal.112 19F MR dynamic monitoring of 
tumor oxygenation with intratumoral-injected hexafluoro-
benzene is an important tool to characterize tumor acute 
hypoxia.113,114 Kadayakkara et al successfully measured 
intracellular pO2 ex vivo in labeled glioma cells using 
19F MRI. This pO2 measurement procedure only required 
8 min and had a precision of 1–3 torr at 30–100 individual 
regions across a tumor. In addition, the authors showed 
that cellular oximetry may be used to monitor the efficacy 
of chemotherapy in CNS glioma.115

In summary, 19F MRI-based pO2 mapping with PFCs 
has been successfully performed in animal models using 
clinically achievable field strengths (<7 T). The future 
translation of this technique to humans will significantly 
advance tumor-targeted noninvasive imaging and ulti-
mately improve prognosis and the prediction of patient 
response to therapy.

Cell Tracking
Cell tracking permits the visualization and monitoring of 
cells labeled noninvasively ex vivo or in situ. Recently, 
19F MRI has been utilized to monitor and quantify the 
in vivo biodistribution of immune cells labeled ex vivo 
with PFC NPs.60,70,116-119 For in vivo imaging, systematic 
intravenous injection of relatively large volumes of PFC 
NPs is performed. PFC NPs are engulfed by various sub-
groups of leukocytes, predominantly monocytes, macro-
phages, neutrophils, and dendritic cells (DCs), as part of 
their natural clearance from the body. 19F-labeled leuko-
cytes, often resident in the spleen, are recruited by cytokines 
into inflamed areas and can be monitored via 19F MRI. This 
method has been used in different animal models to visua-
lize myocardial infarction and myocarditis,120,121 

pneumonia,122 atherosclerosis,123 arthritis,124 and tumors 
infiltrated by macrophages.125–127

Constantinides et al demonstrated the ability to in vivo 
track and detect intra-cardiac injections of PFCE-NP- 
labeled cardiac progenitor stem cells (CPCs) at 9.4 

T PFCE-NP label uptake in CPCs are maximized for 
murine cardiac CPC 19F MRI by employing DNA trans-
fection (FuGENE), which could be translatable to the 
clinic.128 In addition, they further used Medium-chain 
length polyhydroxyalkanoates (MCL-PHAs)/polycaprolac-
tone (PCL) blend scaffolds for controlled release of seeded 
CPCs in cardiac tissue engineering (CTE) applications. 
They found that PFCE-labeled CPCs 19F MRI signal and 
visibility could be improved in the double-layered 
scaffolds.126 Ramos et al investigated the time course of 
inflammatory cell recruitment using PFPE and gadoli-
nium-based elastin-specific magnetic resonance contrast 
agent (Gd-ESMA) in vivo in a murine model after post- 
myocardial infarction (MI) using a 3 T clinical scanner. In 
this study, they noninvasively assess and quantify cardiac 
inflammation extracellular matrix (ECM) remodeling of 
the myocardium at the molecular level.129 Another study 
demonstrated the ability to use 19F-MRI cell tracking to 
detect, quantify and track human mesenchymal stem cells 
(hMSC) labeled with Cell Sense in vivo on 3D images at 
9.4 T after grafting. In this study they showed strong linear 
between the number of labeled cells implanted and the real 
cell number by 19F-MRI.130

Noninvasive monitoring of administered T cells labeled 
ex vivo could potentially allow the prediction of patient 
response to immunotherapy. Furthermore, as T cells can 
recognize tumor antigens and migrate to and infiltrate 
tumor tissue,131 they may also be used as a probe to detect 
tumor cells at metastatic sites. Gonzales et al labeled 
splenocytes and ovalbumin (OVA)-specific T cells with 
PFCs in vitro for 19F-MRS/MRI detection in liver, lung, 
and spleen in control and B16 OVA melanoma-bearing 
mice. The authors concluded that non-dividing 
19F-labeled cells appear most promising for 19F MRS/ 
MRI-based cell tracking.132 Clinical 19F MRI cell tracking 
using PFPE nanoparticle labeling was conducted in 
patients with colorectal adenocarcinoma to detect autolo-
gous immunotherapeutic mature dendritic cells.117 PFPE 
was incorporated into non-phagocytic cells without 
adjunctive cationic lipids or causing changes in cellular 
phenotype. Notably, only viable cells were labeled with 
PFPE. This is therefore a promising technique for detect-
ing tumor cells in vivo and, importantly, for monitoring 
adopted cell transfer cancer therapies noninvasively. 
Furthermore, a recent study using 19F MRI to detect 
tumor-associated macrophages (TAM)49 revealed that 
19F-based cell tracking approaches represent TAM density 
more reliably and provide more information than other 
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methods.129 The commercially available PFC-based agents 
include Cell Sense and V-Sense (Celsense, Inc., 
Pittsburgh, USA) used for cell tracking in MRI. These 
types of labelling agents include fluorinated emulsions 
(CS-1000 and VS-1000H) and other fluorescently tagged 
formulations (CS-ATM DM Red, Green, NIR) for ex vivo 
and in situ cell labels.133,134 A recent study showed that it 
is possible to effectively label hMSCs with cell sense 
without affecting cell viability, function or differentiation. 
The bSSFP sequence was used to detect and quantify the 
signal of Cell Sense-labeled hMSC cells in vitro and in -
intramuscular implantation.135 Tennstaedt  et al also 
showed that transgenic hNSCs with stable expression of 
reporter genes Luciferase and GFP were further to be 
labeled with PFPE. This strategy provided a new multi-
modal imaging approach for in vivo application of trans-
genic hNSCs in deep brain implantation studies.55 Neural 
stem cells (NSCs) have labelled with CS-1000 or CS green 
and luciferase expression were implanted in the striatum. 
This study investigated the viability of NSCs in stroke 
animals that underwent focal cerebral ischemia compared 
to healthy one using 19F MRI in combination with biolu-
minescence imaging.136

Fink et al reported 19F MRI as a non-invasive imaging 
method capable of detecting and quantifying PFC-labeled 
DC migration at both 9.4 T and 3 T and suitable for 
therapeutic cell tracking in tumor-bearing mouse models. 
In addition, viability, phenotype, and function of more 
than 90% of DC labeled with PFC remained 
unchanged.137 A detection limit of,10,000 cells for PFOB- 
labeled (bearing 17 fluorine atoms) cells with 19F MRS 
(11.7 T) was found in vitro. For in situ imaging at 1.5 T, 
the injection of 4 million PFCE-labeled stem cells could 
be detected a strong fluorine signal within 7 min. PFCE 
contains 20 equivalent fluorine atoms per molecule that 
allow a detection limit of approximately 2000 PFCE- 
labeled cells with 19F MRS and approximately 6000 
PFCE-labeled cells/voxel in vitro with 19F MRI (11.7 T) 
within 7 min.138 Boehmsturm et al found that human 
neural stem cells (hNSCs) can be labeled with a PFC 
marker as well as detected and measured the number of 
transplanted stem cells in vitro and in vivo after transplan-
tation in the striatum of mouse brain. Related measure-
ments suggested a detection limit of 1000 PFPE-labeled 
(containing more than 40 fluorine atoms per molecule) 
cells/voxel was found in vitro and 10,000 cells/voxel to 
generate significant SNR in vivo at 11.7 T.118

Isoflurane (ISO) is a fluorinated anesthetic commonly 
used in animal models owing to its minimal cardio- 
depressive effects.139 Constantinides et al reported that iso-
flurane exhibited two resonances of 19F atoms correspond to 
the -CF3 and -OCHF2 moieties with chemical shifts of −4 
and −10.3 ppm with respect to the trifluoroacetic acid (TFA) 
resonance at 0 ppm in the NMR spectrum. These peaks are 
close to the resonances of PFCs with chemical shift range of 
−50–86 ppm relative to TFA due to potential spectral over-
laps. PFCE-labeled cells exhibited a single spectral peak at 
−16.25 ppm with respect to TFA in vitro that did not overlap 
with the ISO resonances. ISO effects on PFCE labels are 
minimal but may have more prominent effects on PFPE or 
PFOB.140,141 A study investigated that an efficient imaging 
technique will also minimize any potential 19F signal from 
the use of inhalational isoflurane anesthesia by using help-
ful image acquisition parameters. They use narrow 1.5 kHz 
sinc excitation pulse and shorter TE (eg, TE 1.8 ms), which 
is simultaneously beneficial for detecting signals from both 
cells and isoflurane.130 Thus, the use of ISO still has 
a primary choice for 1H and multinuclear imaging studies.

The advantage of 19F MRI in ex vivo-labeled cell 
tracking is the complete absence of background signal 
due to the negligible amount of 19F in the body. Finally, 
19F MRI has strong potential as an accurate quantification 
method of local cell numbers.

Drug Delivery and Therapy Efficacy 
Monitoring
The high 19F signal of PFCs allows the noninvasive quanti-
fication of ligand-bound PFC NPs, which in turn enables 
clinicians to confirm tissue drug concentrations during tar-
geted therapy. Nanoparticles can be engineered to carry 
highly potent drugs and deliver them to specific cell popula-
tions displaying biosignatures of particular diseases. For 
instance, Rapoport et al recently reported novel drug-loaded 
PFC emulsions stabilized by biodegradable amphiphilic 
block copolymers.142–145 PFC emulsions can deliver lipophi-
lic therapeutic agents to solid tumors while simultaneously 
allowing the monitoring of their in vivo biodistribution. 
Furthermore, anti-angiogenic agents have played a critical 
role in the treatment of various types of tumor, including 
solid tumors.146,147 αvβ3-integrin-targeted fumagillin-loaded 
nanoparticles suppressed neovasculature and inhibited tumor 
growth in Vx2 adenocarcinoma models without causing 
organ toxicity or neurocognitive dysfunction.148 Notably, 
therapeutic efficacy for these targeted nanoparticles occurred 
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at systemic doses about 1000-fold lower than those used in 
previous animal studies, and 60-fold lower than doses tested 
clinically for related anti-angiogenic compounds (TNP-470).

19F MRI has been used as a platform for guiding high- 
intensity focused ultrasound (HIFU) tumor ablation by quan-
titatively tracking the accumulation of PFC nanoemulsions 
(PFCNE).149 PFCNE accumulation in the tumor periphery 
was clearly visible and quantifiable, and was confirmed by 
fluorescence imaging. Encapsulated PFCs can also be used 
for image-guided HIFU ablation and indeed, it was shown 
that PFOB can increase HIFU effectiveness.150 Docetaxel- 
loaded PFCE nanodroplets (Doc-nd) developed by Gupta 
et al favored passive accumulation into most tumors due to 
their small particle size, thereby potentially increasing loca-
lized drug concentration.151 A high encapsulation efficiency 
of 93.70% was obtained for Doc-nd, and Docetaxel was 
released in a three-stage release kinetic pattern, with an 
initial release of 30% within an hour, followed by a 50% 
release within 12 hours and a 85% release after three days. 
This study suggests that Doc-nd combined with MR-guided 
focused ultrasound has great potential for treating prostate 
cancer.

Immune cell therapy has become an effective method to 
treat cancer, and NK cells are among the immune cell types 
used in this treatment.152 Recently, Bouchlaka et al had 
labelled human NK cells with PFC and injected them into 
tumors.153 Strikingly, the PFC remained in the tumor up to 8 
days after injections, as detected by 19F MRI. Another study on 
the application of poly(D,L-lactic-co-glycolic acid) (PLGA) 
entrapping PFCE and indocyanine green (ICG) focused on 

19F MRI, fluorescence imaging and photoacoustic imaging 
(PAI), which could be used for detection of metastasis in 
melanoma patients.154 This work showed the potential of 
labeled primary human dendritic cells for cell imaging and 
lymph node detection with PAI and 19F MRI.155 Thus, 19F MRI 
is an effective method of monitoring immune cell therapy.

Stimuli-Responsive 19F MRI
Recently, the development of smart stimuli-responsive 
nanoparticles characterized by the off/on regulation of 
19F MRI signals has attracted much attention. These 
19F MRI probes are suitable for noninvasive visualization 
of enzymatic activity, redox-potential difference, and 
pH.104,156,157 PFC NPs have been used to monitor specific 
biological events in living animals with an off/on 19F MRI 
switch for detecting enzymatic activity based on the para-
magnetic relaxation enhancement effect (PRE) for spin-spin 
relaxation (T2) of 19F MRI signal without endogenous back-
ground signals.158 Because of the large electron spin quan-
tum number, Gd3+ and Mn2+ have a very strong PRE effect 
on the MRI signal of 19F. The shielded 19F MRI signal of 
PFC by the adjacent Gd3+ was triggered to turn on because 
of the cleavage of enzyme (Figure 4).159 Guo et al reported 
PFCE NP for in vivo turn-on 19F MRI sensing the activity of 
phospholipase A2 (PLA2) with low background 
(Figure 5).160 In addition, this off/on 19F MRI switching 
strategy broadly applied to detect the activity of various 
enzymes, such as caspase-1, caspase-3/-7, and matrix 
metalloproteinases.29,161,162

Figure 4 Schematic illustration of intracellular GSH-controlled self-assembly followed by Lgmn-controlled disassembly of 1-NPs, showing respective “off” and “on” 19F NMR 
signals for Lgmn detection, and Lgmn-controlled self-assembly of 2-NPs results in 19F NMR signals “off” inside cells. Reprinted with permission from Yuan Y, Ge S, Sun H, et al. 
Intracellular self-assembly and disassemblyof 19F nanoparticles confer respective “off” and “on” 19FNMR/MRI signals for legumain activity detection in zebrafish. ACSNano. 
2015;9(5):5117–5124. Copyright © 2015, American Chemical Society.159
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Reducing microenvironment plays an important role in 
biological processes and abnormal redox reactions. 
Nakamura et al reported an activatable reduction- 
responsive PFC-encapsulated NP, FLAME-SS-Gd3+ 

(FSG), that can be used for in vivo 19F MRI.163 In the 
presence of the disulfide of FSG, Gd3+ was removed from 
the reduced FSG surface and the subsequent 19F NMR/ 
MRI signal intensity of the encapsulated PFCE would be 
increased. The highly sensitive detection and visualization 
of reducing microenvironment in vivo could provide effec-
tive information about biological functions for monitoring 
the process of disease and evaluating the effect of 
therapy.164–166

Solid tumors have a slightly lower extracellular pH 
(pHe) than the normal tissue environment due to fast 
growing tumor cells, which causes increased glycolysis 
and accumulation of lactic acid as an intrinsic feature of 
the tumor phenotype.167,168 Acidic environments with low 
pH have been used as a trigger for environment-responsive 
tumor imaging. These highly sensitive pH-responsive 
19F probes are a potential smart platform for precise and 
specific detection of tumors.169,170 Zhang et al developed 
a novel pH responsive 19F probes, Mn-LDH@PFPE NP, 

which is activated specifically within the acidic tumor 
environment.171 The 19F MRI signals from NPs are at 
physiological pH 7.4, but activated at extracellular pH 
6.5. In vivo experiments reveal that an intense 19F MR 
signal can be detected in the tumor after injection of NPs. 
pH activated NPs are a potential smart 19F MRI agent for 
recognizing subtle pH differences.172,173

Perfluorocarbons-Based 19F MRI in 
Non-Oncological Applications
Molecular Imaging of Thrombus
The use of 19F MRI for thrombus diagnosis dates back 
more than a decade. Thrombus is rich in molecular epi-
topes for targeting, in particular fibrin, thrombin, and in 
some instances, platelets. More recently, noninvasive 
detection of deep venous thrombi and subsequent pulmon-
ary thromboembolism using 19F MRI and α2-antiplasmin 
peptide (α2AP)–targeted PFC nanoemulsions were 
reported.174 In this study, developing thrombi with 
a diameter <0.8 mm could be visualized unequivocally 
in vivo as hot spots in the murine inferior vena cava, via 
the simultaneous acquisition of anatomic matching 1H and 
19F MR images at 9.4 T, with excellent signal-to-noise and 
contrast-to-noise ratios (71±22 and 17±5, respectively). 
Furthermore, α2AP-PFCs were successfully utilized in 
the diagnosis of experimentally induced pulmonary 
thromboembolism.

19F Angiogenesis Imaging
Angiogenesis is a critical process in some tissues, 
including the endometrium, bone growth plates, and 
wound healing, but also in pathologies such as rheuma-
toid arthritis, atherosclerosis, and asthma. In addition, 
abnormal angiogenesis is one of the hallmarks of cancer. 
High-resolution 19F imaging of angiogenesis was first 
used to detect and quantify neovasculature in a rabbit 
model of aortic valve disease with ανβ3-PFC 
nanoparticles.175 Notably, the valves of rabbits treated 
with targeted PFC NPs had 220% more fluorine signal 
than those of rabbits treated with untargeted PFC NPs (p 
< 0.001). Pretreatment of the rabbits with targeted oil- 
based nonsignaling nanoparticles reduced the fluorine 
signal by 42% due to competitive inhibition. Finally, 
integrin-targeted PFC NPs specifically detected early 
angiogenesis in sclerotic aortic valves of cholesterol 
fed rabbits.

Figure 5 In vivo 1H, 19F MRI, and merged images of 1H and 19F MRI for (A) 
a tumor-bearing mouse and (B) a healthy mouse. Adapted from Guo C, Zhang Y, Li 
Y et al 19F MRI nanoprobes for the turn-on detection of phospholipase A2 with 
a low background. Anal. Chem. 2019;91(13):8147–8153. Copyright © 2019 
American Chemical Society.160
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19F MR Imaging in the Lung
Whereas 19F MRI with PFC NPs has been widely used to 
study a variety of diseases, the application of 1H MRI in the 
lung is limited, mainly due to the intrinsically low proton 
density, respiratory motion, and magnetic susceptibility arti-
facts of the air-tissue interfaces. Early neovascular expansion 
in the lungs is very difficult to assess noninvasively in patients, 
in particular quantitatively. However, the addition of an exo-
genous contrast agent makes the visualization of pulmonary 
structure and function possible. PFC materials have the dis-
tinct advantages of high 19F MRI sensitivity,69 excellent oxy-
gen-carrying capacities, lower cost, and the lack of a 
19F background signal within the body. Numerous studies 
have successfully used 19F MR with PFC materials to image 
morphology and function in animal and human lungs.176–178 

For instance, Schmieder et al conducted simultaneous 
19F/1H MR molecular imaging with αvβ3-targeted PFC NPs 
to quantitatively assess neovascular expansion of the bronchial 
arteries following pulmonary artery ligation.178 The authors 
demonstrated that 19F/1H MR molecular imaging with αvβ3- 
targeted PFC NPs provides a means to assess the extent of 
systemic neovascularization in the lung. 19F MRI may also be 
used to quantitate pulmonary inflammation by tracking infil-
trating PFC-loaded monocytes.122 However, a practical con-
cern/limitation relates to the application of fluorinated 
anesthesia gases in animal MRI experiments. Isoflurane (CF3 

CH2ClOCHF2) potentially affects signal from PFC-labeled 
cells due to accumulation predominantly in subcutaneous fat 
regions and potentially from within the lungs after a period of 
gaseous anesthesia. However, to avoid possible false positive 
19F signals from isoflurane, an option is to deliver injectable 
liquid anesthesia via mechanical pump and intraperitoneal 
catheter rather than inhaled anesthetics such as isoflurane.179 

Another option is the use of injectable anesthetics such as 
sodium pentobarbital, ketamine, xylazine, and thiopental in 
order to avoid the 19F signals due to isoflurane for preclinical 
cell tracking and 19F lung imaging.70

Hyperpolarized (HP) helium-3 (3He) and xenon-129 
(129Xe) MRI of the lungs are a noninvasive imaging tech-
nique capable of measuring lung ventilation, gas 
exchange, and lung microstructure in both animals and 
humans.180 HP gas MR also provides functional informa-
tion about respiratory diseases, including chronic obstruc-
tive pulmonary disease, asthma, and cystic fibrosis.181 

Although 129Xe is cheaper than 3He, both 3He and 129Xe 
needs to prepare and process the gases. Thus, an attractive 
and economical alternative to HP gas MRI is functional 

MR imaging using inert fluorinated gases, such as sulfur 
hexafluoride (SF6), hexafluoroethane (C2F6), and perfluor-
opropane (PFP) (C3F8), which are nontoxic and 
abundant.182 Couch et al studied the feasibility of 19F 3D 
UTE for lung imaging of healthy volunteer with inert 
mixture of 79% PFP and 21% O2.183 Inert fluorinated 
gas MRI is a feasible pulmonary imaging technique with 
the potential of clinical transformation.

In 19F MR molecular imaging, nontargeted PFC agents 
have been designed for blood pool imaging and 
perfusion,74,184 cellular labeling and tracking7,185 cellular and 
tissue uptake imaging in inflammation, allograft rejection 
monitoring, among others.59,186

Conclusion
Molecular imaging is a rapidly developing method that 
allows early tumor detection noninvasively and with high 
specificity. PFC NPs have been widely used in 19F MR 
molecular imaging because of their dense fluorine content 
and relatively bio-inert properties. In this article, we 
focused on the applications of 19F MRI in tumor molecular 
imaging. In addition to ligand-targeted imaging and tumor 
oxygenation quantification, PFC NPs have been explored 
for cell tracking, stimuli-responsive imaging and therapeu-
tic drug delivery, as well as for the monitoring of therapy 
efficacy. We believe that 19F MRI will be widely used in 
research and clinical applications in the near future.
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