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Abstract: Exosomes are nano-sized small extracellular vesicles secreted by cells, carrying 
nucleic acids, proteins, lipids and other bioactive substances to play a role in the body’s 
physiological and pathological processes. Compared to synthetic carriers such as liposomes 
and nanoparticles, the endogeneity and heterogeneity of exosomes give them extensive and 
unique advantages in the field of disease diagnosis and treatment. However, the storage 
stability, low yield, low purity, and weak targeting of exosomes limit its clinical application. 
For this reason, further exploration is needed to optimize the above problems and facilitate 
future functional studies of exosomes. In this paper, the origin, classification, preparation and 
characterization, storage stability and applications of exosome delivery system are summar-
ized and discussed by searching a large number of literatures. 
Keywords: exosomes, extraction and purification, storage stability, biomarkers, targeted 
drug delivery, surface modification

Introduction
Exosomes, with a diameter of about 40–100nm, are biological nanoscale spherical 
lipid bilayer vesicles secreted by cells, floating at a density of 1.13–1.19 g ∙ mL−1 in a 
sucrose density gradient solution.1–5 In 1981, Trams et al6 collectively referred to 
plasma membrane-derived vesicles as exosomes and first proposed the concept of 
“exosomes”, which was regarded as membrane vesicles with 5‘-nucleotide enzyme 
activity that may have physiological functions and originate from the exudation of 
various cell line cultures. The currently defined exosomes (40–100nm) were first 
found in sheep reticulocytes in 1983.7,8 Johnstone et al9 tracked transferrin receptors 
during the maturation of reticulocytes and found that the formation of exosomes is the 
mechanism for the loss of transferrin receptors in mature red blood cells. To distin-
guish them from other types of extracellular vesicles (EVs), they were named 
exosomes. However, it’s worth noting that the term “exosomes”, even if widely 
used, has been suggested to be replaced by the term “small Extracellular Vesicles 
(sEVs)” according to ISEV 2018 guidelines,10 due to methodological difficulties of 
separation. Studies have found that exosomes contain nucleic acids, proteins, lipids, 
cytokines, transcription factor receptors and other bioactive substances.11,12 Among 
them, exosomal protein components are mainly divided into two categories, one is 
the public components, which participate in the process of vesicle formation and 
secretion, that is, exosomes are ubiquitous, including membrane transport and fusion- 
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related proteins (like Rab, GTPases), Heat shock proteins 
(like HSP70, HSP90), four-transmembrane protein super-
family (like CD63,CD81), ESCRT complex-related pro-
teins (like Tsg101, Alix), integrins, etc.; the other one is 
specific components, which are closely related to their 
progenitor cells, that is, cell-specific, such as CD45 and 
MHC-II derived from antigen-presenting cells. With the 
in-depth study of exosomes, its applications are becoming 
more and more widespread. Exosomes can play a role in 
physiological and pathological processes, acting as media-
tors for intercellular communication and material exchange. 
At the same time, exosomes can deliver a variety of bioac-
tive substances and easy-to-deactivate or easily degradable 
ingredients (referring to therapeutic agents that have a short 
retention time in the body when administered alone) 
through multiple pathways and sites, and safely transfer 
them to target cells to participate in regulation, such as 
tissue repair, tumor diagnosis and treatment, and immune 
regulation.5,13 In this review, we mainly focus on the clas-
sification, preparation and characterization of exosomes, 
storage stability, biomarkers, targeted drug delivery systems 
and provide some insights.

Origin and Classification of Exosomes
Formation
The initial endosomes are formed by the invagination of the 
cell membrane in the early stage, and then the bioactive sub-
stances begin to accumulate in the early sorting endosomes 
(ESEs). Then, under the control of the endocytosis sorting 
complex and other related proteins required for transport, the 

early endosomes become late sorting endosomes (LSEs). LSEs 
ultimately form multivesicular bodies (MVBs) after a second 
indentation. After MVBs fuses with the cell membrane, the 
substances inside the cells are released to the outside in the 
form of vesicles. These vesicles are exosomes. The biological 
origin of exosomes is shown in Figure 1. The formation of 
exosomes is diversified. At present, more researches are on 
ESCRT-dependent and ESCRT-independent mechanisms.14–16 

However, it has recently been reported that certain compo-
nents, such as four-transmembrane domain proteins and lipid 
raft, are also involved in the formation of some exosomes.17,18 

Therefore, the exact mechanism remains controversial.

Classification
Exosomes are divided into natural exosomes and engineered 
exosomes based on whether they have been artificially mod-
ified. Ulteriorly, natural exosomes are divided into animal- 
derived exosomes and plant-derived exosomes. Because exo-
somes are produced under normal and tumor conditions, ani-
mal-derived exosomes are further divided into normal 
exosomes and tumor exosomes.

Almost all types of normal cells can produce exosomes, 
like human umbilical vein endothelial cells, mesenchymal 
stem cells (MSC), T cells, B cells, macrophages, dendritic 
cells (DC), natural killer (NK) cells.19–22 For example, 
mesenchymal stem cells (MSCS) are pluripotent stem cells 
capable of self-renewal and multidirectional differentiation. 
MSCs can not only adapt to the tumor microenvironment, 
but also have powerful paracrine activity and secrete a large 
number of exosomes. Studies have demonstrated that 

Figure 1 Biogenesis of exosomes.
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paclitaxel (PTX) -containing exosomes have a significant inhi-
bitory effect on the proliferation of the human pancreatic 
cancer cell line CFPAC-1 in vitro and have the potential to 
act as drug carriers.23 In addition, MSC exosomes have been 
shown to play a role in the development of many diseases. 
They not only participate in the process of tissue repair and 
injury,24,25 and have certain therapeutic effects on cardiovas-
cular diseases (like myocardial infarction)26,27 and neurologi-
cal diseases,28 but also can alleviate liver injury and be used in 
the treatment of liver diseases.29 Macrophages are mononuc-
lear phagocytes, which play a role in inflammation, immune 
regulation, wound healing, and angiogenesis.30 Generally, 
macrophages are widely distributed in the body and can be 
polarized into M1 or M2 macrophages. Research has shown 
that macrophage-derived exosomes can affect the lung tissue 
microenvironment by affecting inflammatory signals and 
immune function.31 In additional, Exo-PTX has a significant 
anti-tumor effect in the Lewis lung cancer metastasis model. 
The macrophage-derived exosomes delivered via the respira-
tory pathway are almost completely co-located with the metas-
tasis of cancer cells, which suggests that exosomes derived 
from macrophages may have specific surface proteins and tend 
to accumulate in the cancer cells preferentially, and the specific 
mechanism remains to be further investigated.32 Exosomes are 
able to inherit many specific biomolecules from parent cells, 
which is one of the reasons for their heterogeneity.33 Not only 
that, there are some differences in the exosomes from different 
sources in terms of yield, contents, function, drug loading. As a 
result, different therapeutic effects may be produced. 
Kanchanapally et al34 used co-incubation to successfully load 
doxorubicin (DOX) onto pancreatic stellate cells (PSCs), pan-
creatic cancer cells (PCCs) and macro-phage-derived exo-
somes. By contrast, exosomes derived from PSCs have the 
highest yield and high drug loading rate, while macrophage- 
derived exosomes have the strongest antitumor activity, indi-
cating the specificity of exosomes from different sources.

Also, normal exosomes mentioned above can be wide-
spread in biofluids, such as saliva, plasma, urine, ascites, 
milk and bile. Currently, milk-derived exosomes have been 
successfully developed to deliver the chemotherapeutic drug— 
paclitaxel, and the bioavailability, stability, safety and toxicity 
have been tested to meet standards.35 Similarly, exosomes 
present in biofluids can express certain diagnostic and thera-
peutic properties. For example, in-depth study of circRNAs in 
exosomes present in blood or cerebrospinal fluid can contribute 
to reveal the underlying mechanisms of the development of 
neuropsychiatric disorders36. Furthermore, miRNAs carried 
by serum exosomes can be used for the diagnosis and 

prognosis of spinal cord injury (SCI)37. Likewise, by evaluat-
ing the expression profile of miRNAs in endometrial cancer 
(EC) and urine-derived exosomes from suspected patients, it 
was found that differentially expressed miRNAs can be used as 
biomarkers for EC diagnosis.38

Tumor cells can secrete a large number of exosomes, and 
the specific antigens on their surface can reflect the nature of 
donor cells. Therefore, tumor exosomes have attracted great 
attention in cancer research. Tumor exosomes not only play an 
important role in the process of tumor growth, metastasis, and 
immune regulation,39,40 but also monitor the development of 
diseases41 and serve as diagnostic markers for diseases.42 For 
example, Wu et al43 found that colorectal cancer (CRC) cell- 
derived exosomes overexpressing CAPS1 can enhance the 
migration of normal colonic epithelial FHC cells. Therefore, 
inhibiting the secretion of tumor exosomes is a treatment 
option for patients with metastatic CRC. A study showed that 
TKIs are tyrosine kinase inhibitors targeting BCR-ABL1 p210 
oncoprotein and have significant therapeutic effects on 
Philadelphia chromosome-positive chronic myeloid leukemia 
(Ph+ CML). The tumor exosomes in TKI-treated patients in 
the chronic phase of CML can identify the persistence of 
residual active leukemia cells which cannot be evaluated by 
the current standardized MRD monitoring system, and can be 
used as a new monitoring tool to prevent CML recurrence in 
the future.41

In addition, food-derived exosomes also have good devel-
opment prospects. In recent years, studies have found that 
plant-derived exosome-like nanoparticles (ELN) have similar 
structures to mammalian exosomes. Ginger-derived particles 
can prevent the development of liver-related diseases, and 
ELN derived from grapes, carrots, grapefruit and ginger have 
anti-inflammatory effects and can maintain intestinal 
homeostasis.44–47

At present, exosomes are classified mainly on the basis 
of sources. This classification does not analyze the char-
acteristics and functional applications of various types of 
exosomes in detail. In the future, further subdivisions from 
the aspects of organophilicity, biological distribution and 
immunogenicity may be considered.29

Preparation and Characterization
Isolation
With the in-depth study of exosomes, its potential application 
value has been continuously tapped. Reproducible isolation 
and enrichment of exosomes will help assess their biological 
functions. However, exosomes are heterogeneous in size, 
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content, function and source,33 which makes isolation difficult. 
Moreover, most current isolation technologies cannot comple-
tely separate exosomes from lipoproteins with similar biophy-
sical characteristics and extracellular vesicles derived from 
non-endosomal pathways, resulting in low exosomal purity. 
Therefore, how to efficiently enrich exosomes is a major issue 
currently, which is crucial for downstream analysis of exo-
somes. For different purposes and applications, different iso-
lation methods are selected, among which ultracentrifugation, 
size-based isolation techniques, polymer precipitation, immu-
noaffinity capture techniques are more commonly used.

Ultracentrifugation Techniques
Ultracentrifugation (UC) is currently the most widely used 
isolation technique and is also known as the gold standard for 
exosome extraction and separation. UC mainly harvests the 
required components based on the size and density differences 
of each component in the original solution, so it is suitable for 
the separation of large-dose sample components with signifi-
cant differences in sedimentation coefficient.48 Johnstone et al 
first applied this method to isolate exosomes in tissue culture 
medium of reticulocyte, and the method was optimized by 
Thery et al.9,49 The ultracentrifugation is mainly divided into 
two steps: firstly, a series of continuous low-medium speed 
centrifugation to remove dead cells, cell debris and large-size 
extracellular vesicles, and then to separate exosomes at a 
higher speed with a centrifugal force of 100,000 × g, the 
exosomes were washed with PBS to remove impurities such 
as contaminating proteins. Studies have found that centrifuga-
tion time, centrifugal force, rotor type and parameters all affect 
the yield and purity of target exosomes.48,50 This method does 
not need to label exosomes, which can avoid cross-contamina-
tion, but it is not conducive to downstream analysis due to its 
time consumption, high cost, structural damage, aggregation 
into blocks, and lipoprotein co-separation.11,51

The purpose of density gradient centrifugation is to purify 
exosomes, and it is usually used in combination with ultracen-
trifugation to improve the purity of exosomes. There are two 
main types, one using sucrose as a medium, which is widely 
used in research. However, exosomes and retroviruses are 
extremely similar in terms of size and density, and the sucrose 
density gradient cannot effectively separate the two. At this 
point, Cantin et al.52 found that their sedimentation velocities 
in the iodixanol gradient is significantly different, which 
enabled the successful separation of exosomes from HIV-1- 
infected cells and the harvest of high-purity exosomes. In 
contrast, the density gradient centrifugation has an advantage 
in exosome purity, but the high viscosity of sucrose solution 

will reduce the sedimentation rate of exosomes, resulting in a 
longer time.53

Polymer Precipitation
The method of polymer precipitation usually uses polyethylene 
glycol (PEG) as a medium, and the exosomes are harvested 
under the condition of centrifugation by reducing the solubility 
of the exosomes. This method was originally used to isolate 
viruses.54 Because exosomes and viruses have similar biophy-
sical characteristics, this method is often used in scientific 
research to isolate and purify exosomes. Rider et al.55 com-
pared three technologies of ultracentrifugation, modified poly-
mer co-precipitation (ExtraPEG) and commercially available 
commercial kits, and found that the first two methods are better 
than the commercial method and that ExtraPEG is more cost 
effective, which surpasses ultracentrifugation in terms of purity 
and recovery. The polymer precipitation method is relatively 
easy to operate with short analysis time and is suitable for 
processing large doses of samples. However, the purity and 
recovery rate is relatively low and false positives may be 
generated, and the polymer produced is difficult to remove, 
which is not conducive to subsequent functional experimental 
analysis.

Size-Based Isolation Techniques
This technique mainly refers to ultrafiltration and size 
exclusion chromatography, which separates based on the 
size difference between exosomes and other components 
in biological samples.

The separation principle of size-exclusion chromatography 
(SEC) is that the macromolecules cannot enter the gel pores 
and that they are eluted along the gaps between the porous gels 
with the mobile phase, while the small molecules remain in the 
gel pores and are finally eluted by the mobile phase. At present, 
qEV separation columns, EVSecond purification columns, and 
Exo-spin exosome purification columns are commercially 
available based on the SEC principle. The application of SEC 
is quick, easy, and low-cost. The isolated exosomes have 
complete structure and uniform size, and their biological char-
acteristics are not significantly adversely affected, but they 
may be doped with other particles of similar size, resulting in 
reduced purity.51

The method of ultrafiltration usually uses ultrafiltration 
membranes with different molecular weight cutoffs 
(MWCO) to selectively separate samples. The usage rate 
of this method is about 20%,56 and it often plays a role in 
assisting separation in exosome research. The ultrafiltra-
tion method usually uses ultrafiltration tubes to separate 
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exosomes with low cost and high enrichment efficiency 
and the activity of exosomes is not affected. However, 
there are problems with low purity and non-specific bind-
ing of exosomes and ultrafiltration membranes to reduce 
the recovery rate.57

Immunoaffinity Chromatography (IAC)
Immunoaffinity chromatography is a separation and purifica-
tion technology based on the specific binding of antibodies and 
ligands to separate desired substances from heterogeneous 
mixtures. The binding efficiency is closely related to the bio-
logical affinity pairs, elution conditions and matrix carriers. In 
principle, the biomarkers (antigens) applied by this method 
should be high-abundance proteins on the surface of exosome 
membranes, such as four-transmembrane protein superfamily, 
ESCRT complex-related proteins. Of course, the target protein 
can be a common component on the surface of exosomes, or 
the unique one that promotes IAC to recognize specific cell- 
derived exosomes. Compared to ultracentrifugation, IAC can 
produce comparable results with less sample volume. It also 
can be used for qualitative and quantitative determination of 
exosomes. It has strong specificity, high sensitivity, high purity 
and high yield, and does not set the upper limit of the starting 
sample volume when based on magnetic beads.16,58,59 For 
example, the enzyme-linked immunosorbent analysis techni-
que based on microplates is used to enrich exosomes in fluids 
such as serum, plasma and urine. Quantitative detection and 
analysis found that the yield of exosomes harvested by this 
method is equivalent to that of ultracentrifugation, but the 
demand of samples is much smaller. The amount of RNA 
extracted from 400 μL plasma is the same as the amount 
obtained by ultracentrifugation of 2.5mL samples, so there 
are certain advantages over ultracentrifugation.60 

Nevertheless, the storage conditions of exosomes obtained by 
immunoaffinity chromatography are relatively harsh and are 
not suitable for large-scale separation of exosomes. The non- 
specific interference adsorption of the matrix will produce 
interfering proteins, making this method difficult to popularize.

Other Isolation Techniques
There are various commercial kits currently on the market 
based on the above traditional isolation technology, like 
exoEasy Maxi kit (QIAGEN), MagCapture™ Exosome 
Isolation Kit PS (Wako) and Minute™ Hi-Efficiency 
Exosome Precipitation Reagent (Invent). Comprehensive ana-
lysis shows that the commercial kit has the advantages of time 
saving, high yield, good integrity and so on. However, due to 
the uneven extraction effect of the current commercial 

exosome extraction kits, there is still no kit that can isolation 
the ideal exosomes from the mixture of samples. At the same 
time, the kit itself is expensive, and the yield and purity of 
exosomes are not high. But with the continuous exploration, 
development and innovation of exosome isolation and purifi-
cation technology, more and more new methods are available 
for researchers to optimize traditional technologies from one or 
more perspectives, which has potential application value.

A recent study has developed a new micro-vortex chip, 
which is integrated with Morpho Menelaus butterfly wings 
modified with lipid nanoprobes to solve the problem of diffi-
culty in effectively separating and purifying extracellular vesi-
cles from biological fluids. When the body fluid passes through 
this chip, the generated micro vortices can enhance the inter-
action force between the extracellular vesicles and butterfly 
wings, and at the same time, the probe is inserted into the 
extracellular vesicles to achieve high-throughput enrichment. 
After testing, it is found that the separation efficiency of this 
technology exceeds 70% and does not affect downstream 
analysis, which has potential application value61. Saliva- 
derived exosomes are separated and purified based on the 
size using a newly developed acoustic fluid platform, which 
combined acoustics with microfluidic technology. The average 
yield of small RNA in exosomes detected by RT-ddPCR using 
this technique is 15 times that of differential centrifugation, and 
studies have found that harvesting exosomes by this technique 
is beneficial for downstream analysis62. In addition, separation 
techniques such as Tangential Flow Filtration,63 Flow field- 
flow fractionation (FIFFF)64 and Deterministic lateral displa-
cement array65 also have good enrichment potential.

Although a variety of methods for the isolation and pur-
ification of exosomes have been developed, there are some 
shortcomings that cannot meet all needs. The combination of 
different isolation methods may be better than the separation 
effect of a single method. Therefore, in order to improve the 
separation efficiency and enrichment, and thus obtain the ideal 
exosomes, many research teams have begun to combine multi-
ple methods to isolate and purify the exosomes to improve the 
yield and purity. For example, by combining ultracentrifuga-
tion and ultrafiltration to extract exosomes crudely, and then 
using magnetic beads to adsorb affinity bodies containing 
colonic epithelial cell-specific A33 antibody by immunoaffi-
nity capture technology to further purify the exosomes. Various 
exosomal proteins associated with colon cancer have been 
identified as potential diagnostic biomarkers.66 To make up 
for the deficiencies of the kit based on polymer precipitation 
method, the research team tried to combine UC with the kit to 
extract exosomes from human serum. The experiment found 
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that this combination scheme can provide better yield and 
quality assurance, suitable for further study with large samples 
to meet the clinical application standard.67 Koh et al.68 com-
bined UC with SEC, which could not only handle large- 
volume of samples, but also effectively eliminate the interfer-
ence of contaminants, so as to draw on each other’s merits. 
This not only reduced the separation time, but also increased 
the yield, which was suitable for enriching exosomes from 
biofluids.

Characterization
The exosome characterization is specific and identical, so 
several characterization indexes are needed to determine 
whether the extracted components are exosomes. 
International Society for Extracellular Vesicles (ISEV) 
proposed10 that two types of proteins (like Transmembrane 
or GPI-anchored proteins associated to plasma membrane and/ 
or endosomes, Cytosolic proteins recovered in EVs) need to be 
evaluated to determine whether the extracted components are 
exosomes and exosomes derived from biological fluids can be 
assessed for their purity by determining the presence or 
absence of certain non-EV structural protein components co- 
separated with EV. In general research, we consider the identi-
fication of isolated exosomes from three levels, including TEM 
identification of exosome morphology, NTA identification of 
exosome size and Western Blot identification of exosome sur-
face protein markers. Exosome characterization methods are 
mainly divided into two types: external characterization 
(mainly morphology and particle size detection) and inclusion 
characterization (like membrane protein, lipid raft). The pur-
pose, advantages and disadvantages of commonly applied 
methods are shown in Table 1.

Recently, some characterization methods developed 
and optimized at home and abroad are available for refer-
ence. For example, Islam et al.74 provided a way to mea-
sure EVs without extensive pretreatment. The NP-TRFIA 
technology uses biotinylated antibodies that specifically 
target four transmembrane proteins and tumor-associated 
antigens to capture EVs from urine and cell supernatants 
directly, and then the performances of two lanthanide- 
based tracers are compared for detection and characteriza-
tion. The signal-to-noise ratio of this method is 2–10 times 
that of the lectin-chelate assay. Compared with Western 
blot and flow cytometry, it simplifies the separation step 
and saves time. At the same time, it can be used to identify 
and evaluate tumor-associated proteins on the surface of 
EVs, and has potential for disease diagnosis and prognosis. 
In addition to marker proteins, specific types of 

phospholipids present in the lipid bilayer may also be a 
potential positive control for characterizing the presence of 
exosomes,75,76 so it may be considered to develop multiple 
markers to characterize exosomes in many ways.

Storage Stability
Exosomes are a promising cell-free therapy, but they can-
not be stored for a long time. Therefore, it is necessary to 
study exosomes preservation technology to protect their 
biological activities and make them convenient for trans-
portation and clinical application. Currently, the applied 
protection techniques mainly include freezing, freeze-dry-
ing and spray-drying.

Cryopreservation
Cryopreservation is a storage method that reduces the tempera-
ture below the temperature required for biochemical reactions 
to maintain the functional stability of the biological particles, 
and is usually applied at the temperature of 4 °C, −80 °C and 
−196 °C. However, this storage method is prone to “frostbite”. 
The “frostbite” described here is mostly related to the imbal-
ance of osmosis during the freezing process and the formation 
of ice crystals inside the biological particles. In order to over-
come this deficiency, one or more antifreezes with appropriate 
concentrations are often added selectively to extend the shelf 
life.77–79

Antifreeze is usually divided into two types of permeability 
and non-permeability. Among them, the permeable antifreeze 
has a small molecular weight and can penetrate the cell mem-
brane into the cell to prevent the formation of ice crystals, such 
as dimethyl sulfoxide and ethylene glycol. Studies have shown 
that from a morphological perspective, direct freezing affects 
the stability of exosomal membranes and promotes their degra-
dation, while DMSO-added exosomes in cryopreservation are 
similar to fresh exosomes. Moreover, in terms of biological 
activity, Short-term cryopreservation (within 2 months) did not 
significantly change the function of exosomes.70 Non-perme-
able antifreeze can form hydrogen bonds with water, usually 
trehalose, sucrose and other carbohydrates. Sugar replaces the 
water molecules around the lipid head group through the 
interaction between the phospholipid head group and the OH 
part of the sugar. The glass matrix of the sugar can prevent the 
aggregation of vesicles and reduce the damage caused by ice 
crystals.80 Considering the safety, the disaccharide antifreeze is 
the best choice for exosomes, among which trehalose is listed 
as the most effective disaccharide antifreeze.81 It is worth 
noting that the appropriate concentration of antifreeze should 
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be examined before use to maintain a balanced state and 
prevent unnecessary injury.

Freeze-Drying
Freeze-drying is a technology that cools materials containing 
moisture in advance and freezes to a solid below freezing 
point, directly sublimates the ice under vacuum and removes 
it in the form of water vapor, thus meeting the storage 
requirements. Freeze-drying technology is mainly divided 
into three stages: pre-freezing stage, sublimation drying 
stage and analytical drying stage. The freeze-dried exosomal 
lyophilized powder can effectively reduce the storage 

conditions. Because it completes the dehydration and drying 
of products under low temperature and vacuum conditions, it 
can maintain its original activity and reduce the damage to 
biological tissues and cell bodies. The material can be easily 
kept in a constant storable state, and can be reconstituted by 
simply adding water. It is a suitable method for preserving 
heat-sensitive materials such as EVs, vaccines, and proteins.

During the freeze-drying process, the molecular struc-
ture of the biomolecule may be destroyed due to the 
freezing and dehydration pressures generated. Therefore, 
it is also necessary to selectively add antifreezes to protect 
the biological material. Charoenviriyakul et al.82 divided 

Table 1 Purpose, Advantages and Disadvantages of Common Exosome Characterization Methods

Methods Purpose Advantages Disadvantages

Electron microscope (Scanning 
electron microscope SEM or 

Transmission electron 

microscope TEM)

Detection of 
exosomal 

morphology

Electron microscope can directly observe the 
morphological structure of exosomes, among 

which SEM can observe the surface structure, 

TEM can observe the internal structure and 
provide the information of particle size 

distribution.69

Due to the complicated operation of TEM 
and higher requirements on sample 

preparation than SEM, it is not suitable for 

rapid measurement of a large number of 
samples.70 SEM’s resolution is lower than 

TEM.

Dynamic light scattering 

technology

Detecting the 

size of exosomes

The lower limit of measurement is 10 nm, 

which is suitable for the determination of 

monodisperse systems.

It is not suitable for measuring complex 

exosome samples with large size range, 

the concentration of exosomes cannot be 
detected, and it is difficult to distinguish 

contaminated proteins from exosomes.

Nanoparticle Tracking Analysis 

Technology (NTA)

Detecting the 

size and 
concentration of 

exosomes

The detection speed is fast and the exosomes 

can be observed in real time. The resolution is 
higher than the flow cytometer, and the lower 

limit of the measurement of fluorescent 

particles can reach 30–40nm.

The operation is complicated and it is 

difficult to distinguish contaminated 
proteins from exosomes. Camera levels 

and detection thresholds will affect the 

quantification of exosomes.71

Western Blot 

(WB)

Detection of the 

expression of 
exosomal 

marker proteins

As one of the classic methods, this technique 

is mature and can qualitatively and 
quantitatively analyze marker proteins. It is 

also easier to analyze exosomes from cell 

culture media.

The operation is complicated and time- 

consuming. The detection of marker 
proteins varies depending on the type of 

parental cell, and it is not suitable for the 

detection of exosomal marker proteins in 
biological fluids.10

Enzyme-linked immunosorbent 
analysis (ELISA)

Detection of the 
expression of 

exosomal 

marker proteins

It has strong specificity and rapid detection, 
can qualitatively and quantitatively analyze 

marker proteins, and is suitable for high- 

throughput analysis.72

The operation is complicated and time- 
consuming. The repeatability is not good 

and there are many interference factors.

Flow Cytometry Detection of 

biomarkers of 
exosomes

This method is capable of high-throughput, 

multi-channel analysis, and the analysis speed 
is fast, and the required sample concentration 

is low.

This technique is time-consuming and 

laborious. The detection limit is 400nm, 
and the particle size of exosomes cannot 

be measured. In addition, due to the 

detection of optical signals, the accuracy 
and resolution are relatively low, and the 

characteristics of polydispersity and low 

refraction limit its application.73
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the exosomes from B16BL6 melanoma into three parts, 
one of which was stored at −80°C, one of which was 
freeze-dried with trehalose added, and one of which was 
freeze-dried directly, and compared the morphology, pro-
tein content and the influence on pharmacokinetics of the 
exosomes. The results show that the addition of trehalose 
can effectively prevent the aggregation of exosomes dur-
ing the freeze-drying process, increase its colloidal stabi-
lity, and do not change the morphology of exosomes. The 
protein content of lyophilized exosomes stored at room 
temperature was similar to that at −80°C, and the effect on 
pharmacokinetics was minimal.

Spray-Drying
Spray drying is a technique applied systematically to the 
drying of materials. After the EVs solution is atomized in 
the drying room, the moisture quickly vaporizes in contact 
with the hot air to obtain dry powders. During the process, 
the atomization pressure and outlet temperature are factors 
that affect the stability of exosomes. Compared with lyophi-
lization, spray drying is a continuous process, which can 
realize one-step milling, which is more economical, and is 
expandable and can adjust the particle size of products.79

To date, the best comprehensive storage way is −80 °C 
frozen storage. However, different sources and different 
experimental techniques all affect the temperature selec-
tion of long-term storage stability of exosomes. Studies 
have found that compared with freshly extracted exo-
somes, storage at −80 °C for 4 days will change the 
morphology of exosomes,83 and the biological activity of 
exosomes will be reduced during storage at −80 °C for 28 
days.84 At the same time, some studies have shown that 
milk-derived exosomes are stored at −80 °C for four 
weeks without any change in physical properties, and the 
loading rate of paclitaxel also remains stable.35 Therefore, 
it is urgent to study the storage stability of exosomes from 
multiple perspectives, especially the long-term stability. 
For example, from the perspective of source, drug delivery 
route, application technology and future research direction. 
In short, it is beneficial to carry out subsequent functional 
studies of exosomes, shorten the experimental process and 
expand their application scope.

Applications
Disease Diagnosis
Exosomes are rich in biomarkers for disease diagnosis and 
prognosis. They are mainly applied in cancer and have also 

made some progress in the fields of cardiovascular diseases, 
tuberculosis and central nervous system diseases. The level 
of exosomal microRNAs associated with cardiovascular dis-
eases including miR-499, miR-133, miR-208, miR-192, 
miR-194, miRNA-34a is up-regulated in patients with acute 
myocardial infarction and heart failure,85–88 which provides 
a strong basis for their use as a diagnostic marker. It is 
reported that Dysferlinopathy is a kind of disease caused by 
the lack of dysferlin. Yin’s team89 evaluated the diagnostic 
ability of exosomes in the serum and urine of patients with 
this disease, and found that there is no dysferlin in exosomes 
from patients, which can be distinguished from normal peo-
ple for the diagnosis of Dysferlinopathy. MiR-21, miR-29, 
miR-219, LRP6, REST1, caveolin1 in exosomes are differ-
entially expressed in central nervous system diseases, show-
ing good clinical diagnostic potential.90–93

Liquid biopsy is a minimally invasive, convenient and 
fast diagnostic method in vitro for tumor sampling. Tumor 
exosomes can promote tumor formation in the process of 
normal cell carcinogenesis. They are highly enriched in 
biofluids and can be used for liquid biopsy. Because the 
expression of biologically active substances carried by 
exosomes in healthy people and tumor patients is different, 
the detection of biomarkers that predict cancer in tumor 
exosomes can help improve the specificity and sensitivity 
of early diagnosis of tumors. For example, exosomal pro-
tein CD151 is highly expressed in patients with lung 
cancer,94 miR-1246 and miR-21 are highly enriched in 
exosomes derived from breast cancer cells,95 and miR- 
638 can be used as a diagnostic marker for colorectal 
cancer.96 Exosomal miRNA is the most commonly used 
biomarker with tissue specificity. Studies have found that 
exosomes are rich in miRNA, and the membrane structure 
of exosomes can enhance the stability of miRNA mole-
cules and enhance their potential as disease biomarkers. In 
2016, Exosome Diagnostics launched the world’s first 
cancer diagnostic product-ExoDX Lung (ALK). The pro-
duct is based on exosomal detection technology, which can 
simultaneously detect exosomal RNA and ctDNA, and 
perform real-time screening for EML4-ALK mutations in 
patients with non-small cell lung cancer. According to data 
provided by Exosome Diagnostics, ExoDx Lung (ALK) 
has a sensitivity of 88% and a specificity of 100% in 
detecting non-small cell lung cancer, which can be used 
to assist doctors in determining whether patients are sui-
table for ALK inhibitor targeted therapy, especially for 
those patients who are unable or unwilling to undergo 
tissue biopsy.
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Disease Treatment Through Exosome- 
Targeted Drug Delivery System
Exosomes are small in size, which can effectively avoid the 
phagocytosis of mononuclear macrophages, and can freely 
cross the blood vessel wall and extracellular matrix. The 
expression of CD55 and CD59 on its surface avoids the activa-
tion of opsonin and coagulation factors, so it can be widely 
distributed and stable in the biofluids. Compared to liposomes 
and other nano-delivery systems which are synthesized in 
vitro, exosomes originate from the body, and have better 
biocompatibility and lower immunogenicity in theory. In 
fact, due to the heterogeneity of exosomes, they carry various 
proteins on the surface, which enter the cells in a variety of 
ways after contacting with cells. Among them, receptor- 
mediated endocytosis is one of the main ways of information 
communication between exosomes and target tissues, which 
optimizes the endocytosis process of exosomes and promotes 
the internalization of the encapsulated drug and facilitates the 
continuous and stable transport of the contents in the blood 
with high transport efficiency. Moreover, exosomes have 
strong ability to homing target tissues or cells and penetrate 
biological barriers (like the blood-brain barrier), so they have 
the advantage of natural drug delivery and are promising 
targeted drug carriers, which can be used to deliver genetic 
drugs, traditional Chinese medicine, western medicine, and so 
on.97,98 However, natural exosomes may have problems such 
as weak targeting and susceptible to be quickly cleared in the 
body, resulting in poor treatment effect. At this time, they are 
usually modified to form engineered exosomes. Engineered 
exosomes refer to natural exosomes loaded with therapeutic 
agents or modified. In the following part, the applications of 
targeted delivery system of exosomes will be explained mainly 
from the perspectives of drug loading and surface 
modification.

Type of Drug Loading
Western medicine is one of the therapeutic agents deliv-
ered by exosomes as drug carriers, which can play a role in 
various pathological processes such as cancer and inflam-
mation. The mortality rate of cancer has been high for a 
long time, and it is the goal of research teams at home and 
abroad to develop efficient cancer treatment strategies. 
Doxorubicin is an amphiphilic drug, which can inhibit 
angiogenesis and control tumor growth to play a therapeu-
tic role. It belongs to a broad-spectrum antitumor drug. 
Yang et al.99 used the zebrafish model to examine the 
efficacy of brain endothelial-derived exosomes to deliver 
the anti-tumor drug doxorubicin through the blood-brain 

barrier. The image shows that exosomes successfully 
loaded the drug across the blood-brain barrier, which can 
significantly inhibit the growth of tumors, confirming that 
exosomes can act as a carrier. In addition, anti-cancer 
drugs such as porphyrin,100 tirapazamine,101 docetaxel 
and cisplatin can also exert their effects through exosomes.

Catalase (CAT) is one of the most effective antioxidants. It 
can inhibit inflammation and protect dopaminergic neurons. It 
can be used to treat neurodegenerative diseases. 
Neurodegenerative diseases are caused by the loss of neurons 
and/or their myelin sheaths and are generally diagnosed based 
on clinical symptoms. The presence of the blood-brain barrier 
(BBB) limits the application of nearly 98% of central nervous 
system disease treatment agents, and clinical application is 
extremely difficult.102 Chronic diseases require long-term 
drug treatment103,104. When investigating the therapeutic effect 
of CAT on Parkinson’s disease, Haney et al.105 found that 
encapsulation of CAT with exosomes can effectively reduce 
oxidative stress and increase the survival rate of neurons in 
both in vivo and in vitro models of PD. At the same time, 
loading CAT on exosomes can maintain its biological activity, 
reduce immunogenicity, prolong blood circulation time, and 
solve its deficiencies of easy inactivation and rapid degrada-
tion, thereby enhancing the therapeutic effect. In summary, 
Exo-CAT preparation is expected to become a general strategy 
for the treatment of neurodegenerative diseases.

Traditional Chinese medicines, including monomeric 
active ingredients and compound preparations, have been 
widely used in the study of exosome delivery systems due 
to its low toxicity and side effects.

Although paclitaxel (PTX) is a widely used antitumor 
drug, which can play a therapeutic role in a variety of 
malignant tumors,35 it is a highly hydrophobic compound 
and has dose-dependent toxic and side effects, so its clin-
ical application is limited.106,107 Recently, studies using 
exosomal delivery of PTX to address this deficiency 
have been widely reported. For example, Wang et al.108 

selected classical activated M1-type macrophage-derived 
exosomes as a carrier to reduce the toxicity of PTX and 
improve its bioavailability. Not only has PTX been suc-
cessfully delivered to tumor tissue of mice, but also by 
activating NF-κB pathway it establishes a pro-inflamma-
tory environment to enhance the therapeutic effect of PTX.

Curcumin is a lipophilic polyphenolic compound. Its low 
solubility, poor stability, fast metabolism, short half-life and 
other defects lead to lower bioavailability, which limits its 
application in the treatment of diseases. Sun et al.109 loaded 
curcumin onto exosomes to form a complex that enhanced its 
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anti-inflammatory activity by improving the solubility, stability 
and bioavailability of curcumin. Mice treated with this com-
plex were able to resist lipopolysaccharide (LPS)-induced 
septic shock. In addition, curcumin also has anti-tumor, anti- 
oxidation, anti-atherosclerosis and other effects.

Exosomes loaded with berry anthocyanins have good 
inhibitory activity against the proliferation of ovarian can-
cer cells.110 Exosomes carrying catalpol can play a neuro-
protective role.111 β-elemene-loaded exosomes can inhibit 
the proliferation and migration of tumor cells and also 
have a certain improvement in drug resistance to cancer 
cells.112,113 In addition, exosomes can also be loaded with 
triptolide114 or the traditional Chinese medicine compound 
Buyanghuanwu Decoction115 to make up for the lack of 
single administration and enhance the therapeutic effect.

Exosomes can also deliver gene therapeutic agents such as 
DNA and RNA and adopt gene therapy strategies. For exam-
ple, oligonucleotides can silence specific genes to treat a vari-
ety of human diseases, including cancer or neurodegenerative 
diseases. Oligonucleotide agent (ONT) is a kind of new drugs 
that prevents the expression of proteins that cause disease 
phenotypes by targeting RNA or DNA, such as delivering 
exosomes loaded with hydrophobic siRNAs (hsiRNAs) 
which target Huntingtin mRNA to the brain is an effective 
treatment for Huntington’s disease and other neurodegenera-
tive diseases116. Similarly, exosomes can carry therapeutic 
RNA to target cells, such as targeting exogenous siRNA to 
monocytes and lymphocytes in human blood cells, which can 
cause MAPK1 gene to silence selectively.117

Route of Administration
The exosome delivery system has various routes of admin-
istration, among which the common routes include intra-
venous injection,118,119 subcutaneous injection,120 

intraperitoneal injection,121,122 intratumoral injection,123 

nasal administration32,105,124,125 and oral administration.35 

Essentially, the route of drug administration is closely 
related to the therapeutic effect of various diseases, and 
different routes of drug administration also affect the bio-
logical distribution and rapid clearance rate of drugs in 
vivo. Therefore, it is necessary to investigate the influence 
of the routes of exosome drug delivery system.

Drug Loading Ways
According to whether the therapeutic agent is directly loaded 
on the exosomes, it is mainly divided into two major drug 
loading types: pre-secretory drug loading and post-secretory 
drug loading. Pre-secretory drug loading means that the 

therapeutic agent originates from or is loaded on the parent 
cell to secrete engineered exosomes. This type of operation is 
simple, but the drug loading efficiency cannot be controlled, 
and the natural physiological function of membrane proteins 
may be damaged. As the name implies, post-secretory drug 
loading refers to the direct addition of therapeutic agents to 
exosomes in a certain way, but exosome aggregation, mem-
brane damage and low yield may exist101,126,127. 
Electroporation and ultrasonic treatment are the most com-
monly used methods of drug loading because of their relative 
convenience and efficiency. The drug loading rate of exosomes 
may be related to the hydrophobicity of drugs, the drug loading 
method, the lipid composition of exosomes, etc.100. Therefore, 
in the actual study, the appropriate drug loading method is 
mainly selected according to the physical or chemical charac-
teristics of the drugs and the common method is shown in 
Figure 2.

The method of gene editing uses genetically modified 
parent cells as the main strategy to integrate the therapeutic 
agent into the corresponding exosomes, and is suitable for 
RNA or proteins that cannot be directly loaded onto exosomes. 
Sterzenbach et al.124 used the L-domain-containing protein 
Ndfp1 to recognize the WW-tagged target protein Cre recom-
binase, thereby loading the target protein into exosomes during 
MVB formation. Flow cytometry showed that the WW tag did 
not affect Cre recombinase activity. Such exosomes can cross 
the blood-brain barrier to deliver bioactive proteins, providing 
a new strategy for the treatment of brain diseases. In another 
study, FAM miR-125a was used to transfect human adipose- 
derived MSCs, and miR-125a overexpressed exosomes were 
obtained. It was found that miR-125a in exosomes plays a key 
role in endothelial cell angiogenesis128. There are also com-
mercial transfection reagents on the market, like HiPerFect 
transfection reagent and Lipofectamine 2000, to load siRNA 
directly into exosomes. However, it is clear that this method is 
relatively inefficient in loading and relatively complicated to 
operate. Therefore, Li et al.129 constructed a CD9-HuR fusion 
protein, in which HuR is an RNA-binding protein located 
inside the exosomes, and selectively enriched the target miR- 
155 into the exosomes. This method does not destroy RNA 
structure, has a strong ability to enrich specific RNAs, signifi-
cantly improves loading efficiency, and is expected to become 
a new strategy for clinical trials of gene delivery in vivo.

There are two forms of co-incubation. One is to co- 
incubate the therapeutic agent with parental cells to dis-
perse the therapeutic agent or to load part of the therapeu-
tic agent in the cytoplasm into the secreted exosomes by 
means of endocytosis by parental cells. The other is that 
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exosomes and therapeutic agents are directly co-incubated 
and mixed under appropriate conditions. Their loading 
efficiency mainly depends on the concentration gradient 
of the drug in the solution and its hydrophobicity. The 
hydrophobic drugs with high concentration usually have 
relatively high loading efficiency.105 The method is easy to 
operate, highly reproducible, and does not affect the integ-
rity of exosome membrane structure, but the loading effi-
ciency is low, and a large number of therapeutic agents are 
needed. It is also necessary to investigate whether the 
therapeutic agents have toxic side effects on parental 
cells and affect the stability by changing the surface charge 
of exosomes.

Electroporation is to expose the suspension of exosomes 
and therapeutic agents to the electric field. The exosome mem-
branes will produce temporary pores under a short high-vol-
tage pulse, so the therapeutic agents will penetrate into the 
exosomes. Electroporation is a relatively mature method, 
which is simple and time-saving, and can be used to load 
nucleotides, doxorubicin and other drugs into exosomes130. 
The exosomal concentration will affect the efficiency of elec-
troporation. Wahlgren et al.117 used exosomes from peripheral 
blood as carriers to deliver therapeutic siRNA by electropora-
tion. In the experiment, the effects of exosomal concentration, 

siRNA concentration and electroporation parameters on the 
efficiency of electroporation were investigated. It was found 
that changes in siRNA and capacitance did not affect the 
electroporation efficiency, and the electroporation efficiency 
was the highest when the exosome concentration was within 
the range of 0.25–1 mg/mL. However, this method also has 
disadvantages, such as destroying the integrity of the mem-
brane structure, reducing the loading efficiency and low load-
ing rate. The use of high-voltage pulses will cause exosomes to 
aggregate. At the same time, this method may destroy the 
protein structure and affect its activity, which limits its 
application.

Sonication is highly efficient in drug loading and can 
sustainably release drugs, especially hydrophobic drugs, 
and can prevent protease destruction. However, this method 
may lead to aggregation of exosomes and affect their immune 
activity, which not only requires high requirements on the 
instrument, but also may damage the plasma membrane 
structure of exosomes and cause drug leakage, resulting in 
unsatisfactory drug loading. Sonication may alter the high 
rigidity of the membrane, and recombination of exosomal 
membranes results in high loading efficiency and sustained 
drug release. Kim et al.32 compared the loading rates of the 
three loading methods of co-incubation, electroporation and 

Figure 2 Common drug loading ways of exosomes.
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sonication, and the results showed that the load capacity of 
exosomes treated by sonication was the highest, confirming 
the above hypothesis. Similarly, Salarpour et al.131 investi-
gated the effects of 37 ° C co-incubation and sonication on the 
encapsulation efficiency of PTX (hydrophobic drugs), and 
found that the loading of sonication (9.21 ± 0.41 ng/μg) was 
higher than that of co-incubation (7.40 ± 0.37 ng/μg), which 
gave similar results to Kim.

Extrusion usually uses an extruder to achieve drug loading 
of exosomes. During the extrusion process, the exosomal 
membrane is broken and violently mixed with therapeutic 
agents.132 The method of extrusion can obtain higher drug 
loading. For example, compared with co-incubation and 
freeze-thaw cycles, exosomes loaded with catalase (CAT) by 
extrusion have the highest encapsulation rate and show strong 
catalytic activity. Therefore, such exosomes provide the most 
effective neuroprotective effect, which is due to the remodeling 
of exosomal membranes by extrusion so that CAT diffuses 
through the relatively tight and highly structured lipid bilayer, 
thus resulting in a high encapsulation rate.105 However, it may 
damage the plasma membrane structure of exosomes and 
cause drug leakage. Whether cytotoxicity will be produced 
remains to be studied.

The freeze-thaw cycle is a physical and chemical pro-
cess that simply mixes exosomes with drugs and freezes at 
−80 ° C or liquid nitrogen, and then thaws at room 
temperature.132,133 The drug loading capacity of the 
freeze-thaw cycle is usually lower than that of sonication 
and extrusion. Exosomes may aggregate and cause an 
increase in size. In addition, proteins are also easily 
degraded to affect biological activity.

In the process of the Saponin-assisted treatment, sapo-
nin is an effective permeabilizing agent for the cytoplas-
mic membrane. It selectively forms a complex with 
cholesterol bound to exosomal membranes to form a por-
ous structure on the membrane surface, which promotes 
the incorporation of therapeutic agents. Studies have found 
that saponin-treated exosomes loaded with ProBA [meso- 
Tetra(4-carboxyphenyl) porphine] have a high drug load-
ing rate, and the drug intake is about 8%, which is sig-
nificantly higher than that of free drugs (2%), so it can be 
shown that saponin-assisted treatment enhances the load-
ing of porphyrins in exosomes without affecting the drug 
delivery capacity.100 However, saponins are a class of 
surfactants that are hemolytic in vivo, so the concentration 
of saponins needs to be limited, and exosomes should be 
washed and purified immediately after co- 
incubation.132,134

In summary, the above methods do not allow the com-
bination of therapeutic agents with different properties to 
be loaded simultaneously, whether the pre-secretory load-
ing or the post-secretory loading. Lee et al.101 applied 
liposomes to the surface modification of extracellular vesi-
cles. MFL (membrane-fused liposomes) can effectively 
co-load a lipophilic drug (Paclitaxel) and a hydrophilic 
drug (Tirapazamine) into extracellular vesicles simulta-
neously, without affecting the original functional expres-
sion of membrane proteins. Thus, it can be considered as a 
general strategy. In short, no matter which method is 
adopted in practical application, factors such as drug prop-
erties, drug loading, efficiency, damage to exosome mem-
branes, and influence on subsequent experiments should be 
considered comprehensively to find the best method.

Surface Modification
Surface modification is the process of treating exosomal sur-
face proteins as anchoring devices or affinity tags, and modify-
ing the protein or peptide components that meet the 
requirements to the particle surface by certain means. Natural 
exosomes need to be superficially modified if they are unable 
to effectively deliver drugs or targeted applications due to their 
inadequacy, such as poor stability and rapid elimination.29 One 
of the biggest advantages of exosomes is endogenous, which 
can avoid causing adverse manifestations such as immune 
response. However, the efficiency of exosomal delivery is 
affected by parental cells and receptor cells. The yield of 
exosomes from different sources is significantly different, 
and natural exosomes have the problem with poor-targeting. 
In order to meet the experimental needs, surface modification 
to manufacture engineered exosomes is a way of practical 
application value. Surface functionalization of exosomes with 
targeted ligands can help them be selectively delivered to target 
cells and enable exosomes to reach standards in terms of yield 
and targeted therapy, so as to achieve precise treatment of 
exosomes and accelerate the clinical application of exosomes.

In order to precisely target therapeutic drugs to the 
lesion, the methods commonly used in recent years include 
chemical linking of targeting peptides, modification of 
exosomal membranes or progenitor cells by genetic engi-
neering, magnetic nanoparticle technology, electrostatic 
interaction and post-insertion. Applications of partial sur-
face modification exosomes are listed in Table 2.

There is no doubt that surface-modified exosomes have 
certain advantages, but engineering exosomes also have certain 
limitations. First, surface modification of exosomes cannot 
change the structure and surface molecules of exosomes, 
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while chemically linked targeting peptides have the potential to 
alter the surface structure of exosomes. Furthermore, the opera-
tion of genetically modified parental cells is complex, and the 
transfection efficiency is low, which is easy to affect the 
original biological activity of membrane proteins. When exo-
somes are modified with virus-derived proteins (or peptides), it 
is necessary to evaluate whether there is an adverse reaction to 
themselves. In addition, cationic nanomaterials used in elec-
trostatic interactions may cause cytotoxicity and the loading 
efficiency is relatively low.

Based on the limitations of the popular surface modifica-
tion methods currently, professor Yin’s team screened out the 
phage CP05 coupled targeting molecules (M12, RVG, SP94) 
to form a chimeric peptide, and then combined them with 

CD63 on the exosomal surface to capture exosomes from 
different sources. The method has a high modification effi-
ciency. Not only is the amount of exosomes caught large, but 
also the targeting can be enhanced, so that the modified exo-
somes can be enriched respectively in muscle, brain and sub-
cutaneous tumors. CP05-modified exosomes have not changed 
significantly in their physiological characteristics, have not 
changed the structure and surface molecules of exosomes, 
and are expected to be used for rapid detection of clinical 
cancer and effective carriers for therapeutic drugs.139 In addi-
tion, Tamura et al.140 used cationized amylopectin to modify 
the exosomes to make them have the ability to target the 
asialoglycoprotein receptor of hepatocytes, which helps to 
achieve precise treatment of exosomes and enhance treatment 

Table 2 Application Examples of Surface Modification

Surface 
Modification 
Methods

Targeting Method Drug Loading Targeted Tissues and 
Applications

Ref.

Genetic 

Engineering

Dendritic cells (DCs) are genetically modified to express 

fusion proteins containing the membrane protein 
Lamp2b and RVG peptides, and engineered exosomes 

are harvested from the cells.

siRNA 

(Electroporation)

Targeting the central nervous system 

(neurons, microglia, 
oligodendrocytes) to treat 

Alzheimer’s disease

[126]

Chemical 

reaction 

combined with 
post-insertion

c (RGDyK) is a tumor-targeting peptide. DSPE-PEG 

2000-cRGDyK is prepared by chemical reaction. The 

ligand is spontaneously inserted into the exosomal lipid 
bilayer through hydrophobic interactions and combined 

to obtain the targeted exosomes.

PTX 

(Co-incubation)

It can penetrate the blood-brain 

barrier, target glioblastomas, and 

significantly 
reduce the activity of cancer cells.

[135]

Genetic 

Engineering

Donor cells are engineered to express the 

transmembrane domain of the platelet-derived growth 
factor receptor fused to the GE11 peptide to achieve 

targeting, thereby assimilating exosomes from this 

source.

let-7a miRNA 

(Transfection)

Targeting breast cancer tissues 

expressing EGFR to treat breast 
cancer

[136]

Genetic 

Engineering

Engineered mouse immature dendritic cells expressing 

Lamp2b fused to iRGD peptide to produce tumor- 
targeted exosomes.

DOX 

(Electroporation)

It targets tumor tissues, inhibits the 

growth of tumor, and has good 
antitumor activity.

[119]

Chemical 
reaction

Extracellular vesicles containing azide lipids were firstly 
prepared and then conjugated to the targeted peptide 

using a copper-free catalytic click chemistry.

PTX, TPZ 
(Loaded on 

liposomes)

Targeting tumor cells [101]

Electrostatic 

interaction

The complex formed by a cationic lipid and a pH- 

sensitive fusion peptide binds exosomes through 

electrostatic interaction to target the receptor cell 
membrane.

Dextran, Saponin 

(Electroporation)

Targeting the receptor’s cell 

membrane to enhance cell uptake 

and cytoplasmic release of exosomes

[137]

Magnetic 
nanoparticle 

technology

The SPMN-Tf conjugates were co-incubated with pre- 
dialyzed serum to form SMNC-Exo through interaction 

with the Tf-Tf receptor. After drug loading, SMNC-Exos 

were concentrated in the tumor region in the presence 
of an external magnetic field.

DOX 
(Co-incubation)

Targeting mouse subcutaneous H22 
cells to inhibit the growth of tumor

[138]
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effect. Lee et al.101 also optimized the method of chemically 
linking and targeting peptides. The parent cells were treated 
with azide-MFL to generate azide-EVs, which were then 
linked with the tumor-targeting peptide conjugate DBCO- 
CGKPK through a biological orthogonal reaction. In this pro-
cess, DBCO- CGKPK uses copper-free catalytic click chem-
istry to connect. Such engineered EVs can be used to load 
therapeutic agents internally and externally can be modified 
with multiple functions. Exogenous incorporation of MFL for 
surface modification does not affect membrane proteins that 
play a decisive role in the biological function of EVs.

Engineered exosomes do not have absolute advantages 
in drug delivery applications. Some studies have found 
that the same loading method is used to load cholesterol- 
modified siRNA to prepare engineered exosomes and 
anionic fusion liposomes respectively to compare their 
delivery capabilities. Engineered exosomes cannot func-
tionally deliver relevant small RNAs, while anionic fusion 
liposomes can induce siRNA-mediated knockout of target 
genes.141 Therefore, when considering whether to apply 
engineered exosomes, it is necessary to combine with the 
actual situation and have a deep understanding of the 
molecular transfer mechanism and specificity, and blind 
application should be avoided by all means.

Conclusions
Compared with liposomes, nanoparticles, microspheres, 
microemulsions and other synthetic drug loading systems, 
the endogeneity of exosomes is a natural and unique advan-
tage. The superiority of exosomes makes it an important med-
ium for cell-to-cell communication, and it plays unique 
biological functions in regulating the normal life activities 
and in the diagnosis and treatment of diseases. Exosomes, as 
current research hotspots, have received extensive attention 
from researchers at home and abroad. However, the detection 
technologies for the diagnosis and prognosis of diseases using 
exosomal contents as markers have not been perfected. 
Whether exosomes can be used clinically as soon as possible 
depends largely on the results of optimization and improve-
ment of the existing exosome problems. How to improve the 
yield and purity of exosomes is the top priority, which has 
always been the bottleneck limiting its transformation applica-
tion. Studies in recent years have shown that the appropriate 
combination of several methods to extract and purify exo-
somes can effectively improve the above problems, and how 
to combine them to achieve the best results remains to be 
further studied. Secondly, the secretion mechanism and fusion 
mechanism of exosomes are still unclear. The impact of 

exosome heterogeneity on drug loading efficiency needs to 
be further revealed. Exosome loading capacity and methods 
for enhancing targeting also need to be optimized and 
improved. Carry out all-round and multi-field researches to 
analyze its biological functions and lay the foundation for 
subsequent pharmacokinetics, toxicology research, and clini-
cal testing, which will help to better understand the state of the 
body and diagnose and treat diseases in the future.
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