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Abstract: The critical role of the innate immune system has been confirmed in driving local 
and systemic inflammation and the cytokine release storm in severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). This dysregulated immune response is focused on 
interferon (IFN) and complement activation, which are crucial for the development of 
metabolic inflammation, local lung tissue damage, and systemic multi-organ failure. IFNs 
control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict 
distinct steps of viral replication. Therefore, in this review article, we propose the mechanism 
of SARS-CoV-2-associated acute respiratory disease syndrome, and assess treatment 
options by considering IFNs and by targeting IFN-antagonist SARS-CoV-2 virulent gene 
products. Furthermore, we elaborate on the mechanism of the amplified complement- 
mediated inflammatory cytokine storm, and propose an antiviral and immunotherapeutic 
strategy against coronavirus disease 2019 (COVID-19). 
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped novel 
virus with a single-strand RNA (+SSRNA) genome in the subfamily Coronaviridae.1,2 

The virus is a club-shaped spherical virion with spike projections from the virus 
membrane.1,3,4 The organization and expression of the genome are similar for all 
coronaviruses, in which the 16 non-structural proteins (Nsp1–Nsp16), encoded by 
open reading frame (ORF)1a/b at its 5ʹ-terminal, are followed by the structural protein 
spike (S), envelope (E), membrane (M), and nucleocapsid (N), which are encoded by 
another ORF at its 3ʹ-terminal.5 Clinically, patients with SARS-CoV-2 present with 
fever, cough, shortness of breath, and acute respiratory distress syndrome (ARDS).6–8 

However, some patients have been diagnosed positive by real-time reverse- 
transcriptase polymerase chain reaction (RT-PCR) or nucleic acid test results without 
relevant clinical symptoms or who are only minimally symptomatic.9 Current research 
evidence shows that asymptomatic individuals have the same infectivity as those with 
symptomatic infections and can spread the virus efficiently.10 In turn, the emergence of 
these silent transmissions of SARS-CoV-2 has caused difficulties in controlling the 
COVID-19 pandemic.11 Both innate and adaptive immune responses are activated by 
SARS-CoV-2 infection to overcome the problem.12 However, uncontrolled inflamma-
tory innate immune responses may lead to harmful tissue damage. Commonly, the 
symptoms resulted from the consequent infiltration of inflammatory cells and the 
release of proinflammatory cytokines.12 These include interleukin (IL)-1β, IL-6, and 
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IL-8, which are responsible for fever and fibrosis and/or 
plural effusion of the lung, which provoke severe acute 
respiratory syndrome.13,14 In addition, CXCL9 and 
CXCL16, chemoattractants of T cells and/or natural killer 
(NK) cells, CCL8 and CCL2, recruiting monocytes/macro-
phages, CXCL8, and other classic neutrophil chemoattrac-
tants are profoundly elevated. Therefore, we suggest that the 
presence of these cells may be a primary driver of the 
signature pathology observed in coronavirus disease 2019 
(COVID-19) patients. This review describes the interaction 
between SARS-CoV-2 and innate immunity, and discusses 
the escaping mechanism against interferons (IFNs), predo-
minantly Nsps, as well as the pathology of the disease, 
related to exuberant activation of the complement system. 
Therefore, a detailed understanding of the interactions of the 
virus with innate immunity and the immunopathology behind 
COVID-19 could lead to new approaches aimed at improv-
ing immunotherapy for SARS-CoV-2.

Innate Immune Response to SARS-CoV- 
2s,
For effective recognition of viral infection and successive 
activation of an antiviral state, innate immune responses are 
vital and essential host defense mechanisms.15 The innate 
immune response is the first-line inborn host defense mechan-
ism against non-specific pathogens. This innate immunity to 
viruses involves complex interactions between soluble factors 
and cells. These cells understand and sense the foreign 
microbes through the presence of pattern recognition 
receptors (PRRs), commonly named toll-like receptors 
(TLRs). TLRs, a family of sensor proteins, assist the immune 
system in discriminating between “self” and “non-self”.16 The 
TLR detects a specific and conserved microbial domain called 
the pathogen-associated molecular pattern (PAMP), which 
acts as a ligand with elements such as lipids, lipoproteins, 
proteins, RNAs, and DNA of the microbe’s structure.17,18 

TLR family members TLR-3, TLR-7, TLR-8, and TLR-9 
are involved exclusively in the membrane’s intracellular com-
partments, such as endosomes, in the recognition of viral 
nucleotides. The TLR signaling cascade is mediated by the 
TIR (toll/IL-1 receptor) domain, which contains an adaptor 
molecule, such as myeloid differentiation primary response 
gene 88 (MyD88), TIR-domain containing adaptor protein 
(TIRAP), or TIR-domain-containing adapter (TRIF).18–20 

The TIR complex plays a role in the inflammatory immune 
response via the production of proinflammatory cytokines, 
type I IFN, and up-regulation of costimulatory 

molecules.21,22 In a small COVID-19 patient cohort, 
levels of IFN-α and IFN-stimulated gene (ISG) were asso-
ciated with viral load as well as disease severity.23 Taking this 
a step further, these studies indicate that severe infections lead 
to high IFN signatures but fail to clear and bring down the viral 
load. In contrast, owing to their virulence gene product, the 
expression and IFN-α/β response are decreased (Figure 1). In 
the same way as SARS-CoV,20 SRAS-CoV-2 uses its spike 
glycoprotein to bind with the angiotensin-converting enzyme- 
2 (ACE2) receptor to gain entry to cells,24 suggesting a similar 
cellular tropism and route of entry. This receptor is expressed 
not only in cardiopulmonary tissues, particularly in type 
I alveolar cells, but also in some hematopoietic cells, including 
monocytes, dendritic cells, and macrophages.19 Prior to the 
translocation of IFN regulator factors (IRF-7) and nuclear 
factor-κB (NF-κB) from the cytoplasm to the nucleus, the 
single-stranded viral RNA should be recognized by TLR-7 
with the following recruited signal transducing adaptor pro-
teins, MyD88, playing a key role. Hence, it promotes the 
expression of type I IFN (primarily IFN-α and IFN-βs), che-
mokines, and inflammatory cytokines (Figure 2).25 The major 
antiviral chemical mediators in the innate immune response 
are IFNs, which act to limit the spread of the virus and enhance 
macrophage phagocytosis of the pathogen, as well as NK cell 
restriction of infected target cells.

Interferon
Interferons are a large family of genetically and functionally 
related proteins. These molecules were discovered in the 1950s 
by Isaacs and Lindemann. They are recognized as essential 
first-line biological protein defense against viral infection in 
mammals.26,27 The term “IFN” was coined to describe 
a special substance, possibly produced by cells, which is 
centrally important in the innate immune response to the 
virus through “interfering” with virus replication, with antiviral 
activity, antiproliferative activity, stimulation of cytotoxic 
T cells and NK cells, and immune modulation.28,29 IFNs are 
divided into three types, named type I, type II, and type III.20 

Type I IFNs are the largest IFN family, including IFN-α (13 
subtypes) encoded at chromosome 9, IFN-β encoded at chro-
mosome 12, IFN-ε, IFN-κ, and IFN-ω.26,30,31 IFN-δ, IFN-τ, 
and IFN-ζ (or limitin) have also been identified as type I IFNs 
in swine, ruminants, and mice, respectively.32 Furthermore, 
four IFN-like cytokines have been reported: limitin (found 
only in mice), IL-28A, IL-28B, and IL-29, found in humans 
and other mammals. Almost all cell types are capable of 
producing IFN-α/β; however, plasmacytoid dendritic cells 
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(pDC) are specialist type I IFN-producing cells, particularly 
producing IFN-α, β, and ω during the course of an infection.

The activation of the IFN system is the most important 
defense for containing the initial stages of a viral infection. 
IFN is mostly produced when TLRs on the cell surface 
(TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, and TLR-10) are 
induced by lipopolysaccharides of Gram-negative bacteria, 
and virion proteins.33 On the other hand, some TLRs are 
anchored to the endosomal membrane (TLR-3, TLR-7, 
TLR-8, and TLR-9), which is stimulated by PAMPs such 
as dsRNA, ssRNA virus, and viral dsDNA. Upon the attach-
ment or binding of viral RNAs to TLR-7/8, it can induce 
genes encoding for inflammatory cytokines and type I IFNs 
via NF-κB and IRF-7 (Figure 3).16,33,34 In addition, cyto-
plasmic viral RNA genomes or viral replicative intermedi-
ates can be recognized by the family of RNA helicases, such 
as retinoic acid-induced gene-I (RIG-I) and melanoma dif-
ferentiation-associated gene-5 (MDA-5), which ultimately 
can control genes encoded for IFN production.35–37 In the 

foundation of the innate immune response system, type 
I IFNs are first line of defense against viral infection. 
Immediately after the body encounters a viral infection, 
host cell PRRs, such as TLRs, RLR, Mda5, protein kinase 
R (PKR), and 2′-5′oligoadenylate synthetase (OAS), serve 
in discriminating self from non-self ligands at a cellular 
level, which stimulates the cells to produce and secrete 
IFN. The IFN signaling cascades are initiated upon its 
binding with its receptor, IFRAR1/2, leading to cytoplasmic 
kinase activation that allows the recruitment of JAK-1 and 
TYK, which phosphorylate STAT1 and STAT2, respec-
tively. Both transcription factors then form 
heterodimers with IRF-9, and translocate to act on the IFN- 
stimulated response element (ISRE) and promote the bind-
ing of RNA polymerase II to expressISG.20 After transla-
tion followed by posttranslational modification, the product 
of ISG brings an antiviral effect and immunomodulation, 
and by inhibiting replication it can limit both the spread and 
the load of the virus (Figure 3).

Figure 1 Possible mechanism of SARS-CoV-2 mediated innate immune response at the lung alveolar cell. The SARS-CoV -2 infects alveolar epithelial cells (mainly Alveolar 
epithelial type 1) through ACE2 receptor. Recognition of ssRNA by TLR-7 in the endosomal membrane recruits MyD88 to the receptor, which induces proinflammatory 
cytokines and type I IFNs through MyD88-TRAF6-NIK-IKK-NF-Kb pathway and MyD88-TRAF-6-IRF-7 respectively. The destruction of epithelial cells and the increase of cell 
permeability lead to the release of virus. Phosphorylated IRF-7 and translocate to the nucleus results expression of type I IFN genes and release IFNα/β. IkappaB kinase 
(IKKs) directly phosphorylate the inhibitory IκB family members, which normally sequester NF-κB as inactive form (NF-κB/ IκB) in the cytosol. However, phosphorylation of 
IκBs leads to their polyubiquitination and degradation via ubiquitin proteasome proteolytic mechanism. The activation of the NF-κB pathway results in the induction of 
aberrant inflammatory cytokines and chemokine’s secretion by alveolar cells including IL-6, IL-1β, IL-8, CCL2, CCL8 and CXCL9.
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Interferon as a Treatment Option for COVID-19
IFNs are rapidly secreted and induce a wide range of effects 
that not only act upon innate immune cells but also modulate 
the adaptive immune system. Type I IFNs-α/β are broad- 
spectrum antivirals, both exhibiting direct inhibitory effects 
on viral replication and supporting an immune response to 
clear the viral infection.38 A study conducted in China showed 
that treatment with IFN-α2b (manufactured using recombinant 
DNA technology) with or without Arbidol® (an inhibitor of 
Nsp12 cofactors called Nsp7/8) significantly reduced the dura-
tion of detectable virus in the upper respiratory tract. At the 
same time, IFN-α2b reduced the duration of elevated blood 
levels of the inflammatory markers IL-6 and C-reactive pro-
tein. Surprisingly, from the onset of symptoms, the mean time 
to viral clearance was 27.9, 21.1, and 20.3 days for 
patients treated with Arbidol (umifenovir) alone, IFN-α2b 
alone, and a combination of Arbidol and IFN-α2b, 
respectively.39 Therefore, these research findings illustrate 
that IFN treatment accelerated viral clearance by approxi-
mately 7 days.39,40 Moreover, for better clinical outcomes of 
patients with cytokine storm, the IL-6 receptor inhibitor 

tocilizumab (branded as Actemra), a recombinant human IL- 
6 monoclonal antibody, is useful as a therapeutic adjunct.41,42

Complement Activation in SARS-CoV-2 Infection
The complement system is a key player in innate immunity 
and consists of both soluble factors and cell surface receptors 
that interact to sense and respond against invading 
pathogens.43 It can also act as a bridge between innate and 
adaptive immunity to enhance humoral immunity and T-cell 
function.44 Complements recognize non-self-structures which 
present on the surface of pathogens, and initiate activation of 
zymogens via proteolytic cascades, resulting in inflammation, 
opsonization, and/or cell lysis.45 However, the defensive func-
tion of the complement system can exacerbate immune, 
inflammatory, and degenerative responses in various patholo-
gical conditions. In general, in response to foreign pathogen, 
there are three major complement activation pathways. The 
first one is the classical pathway, characterized by C1q- 
mediated antigen–antibody complexes. The second is the 
lectin pathway, initiated by mannose-binding lectin (MBL), 
which recognizes the microbial surface glycan domain, called 
mannose. Mannose-associated serine protease (MASP) 

Figure 2 Schematic representation of how interferons induce antiviral state in host cells.
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cleaves complement (C)4 and 2. C4 and C2 cleavage products 
form the classical and lectin pathway C3 convertase 
(C4bC2a), which cleaves C3 into C3b and C3a. A second 
molecule of C3b can associate with C4bC2a to form C5 
convertase (C4bC2aC3b) of the classical and lectin 
pathways.45 The third is the alternative pathway, mediated 
by spontaneous cleavage of C3 binding with the pathogen’s 
cell surface components.44–46 While complements play 
a central role in innate immunity and provide abridge with 
the adaptive immune response against pathogens, their over-
activation may cause excessive alveolar air sac infiltration 
byneutrophils, and monocytes secondary to excessive produc-
tion of C3a and C5a (Figure 4). Subsequently, this leads to 
collateral lung injury and exacerbating factors for SARS-CoV- 
associated ARDS. Since SARS-CoV-2 is a new virus, the 
body does not have memory antibodies or specific IgG to 
detect the spike glycoprotein through activation of adaptive 
immunity in the early phase of COVID-19 infection.47,48 

Since SARS-CoV-2 is a respiratory disease, the primary 
antibody secreted might be IgA, which is not reliable for 
activating the classical complement pathway, unless based 
on an aggregated antibody. Instead, the virus may form IgA 
complexes or SARS-CoV–S-N-glycan (N-330) MBL binding 
to activate the lectin complement cascade defense against the 
invading virus in mucosal immunity.49

Overriding activation of complement pathways leads to the 
formation of bioactive molecules, mainly C3a and C5a. C5a is 
the most potent chemoattractant involved in the migration and 
recruitment of inflammatory cells in the activation of phago-
cytic cells and the release of granular enzymes and free 
radicals.50 Since SARS-CoV-2 has a similar identity to SARS- 
CoV, C3a products of the complement cascade exacerbate 
SARS-CoV-associated ARDS.51 A study showed that C3 
knockout mice infected with SARS-CoV had less respiratory 
dysfunction, decreased infiltration of neutrophils and mono-
cytes, and low levels of cytokines and chemokines in both 

Figure 3 Complement pathways and pathology of ARDS. A:lectin(LP) and classical(CP) pathways use C3 as common intermidate. Exuberant activation of complement 
pathways results over production of chemo attractants, C3a and C5a (anaphylatoxins) and promote inflammation. Ecluizumab humanized monoclonal antibody targat aganist 
C5 preventing breakdown into C5a (anaphylatoxin action of complement component) and C5b, which is an integral component of the membrane attack complex(MAC). B: 
Overproduction of C3a and C5a which acts on type I epithelium of the air sack (pulmonary edema and fibrosis or hyaline membrane) as well as the endothelial wall of the 
vasculature (increased vascular permeability), results recruitment of inflammatory cells mainly monocytes and nutrophil, andrelease of many inflammatory cytokines known 
as inflammatory cytokine storm.
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lungs as well as sera. However, they showed similar viral load 
in the lung alveoli.51 SARS-CoV-2-mediated C5a 
triggers inflammatory cell activation and cytokine release. 
This results in epithelial cell degradation and increased vascu-
lar permeability. Together, large numbers of inflammatory 
infiltrates, fluid, and blood cells shift to the alveoli and lung 
pleura, resulting in dyspnea and respiratory insufficiency. 
Many scholars have shown that C5a signaling contributes 
greatly to inflammation and lung damage, and is targeted at 
treating highly pathogenic virus infections. Moreover, recently 
C5aR targeting has shown more promising beneficial effects 
than C5 in small animal models of ARDS by reducing proin-
flammatory cytokines.52–54 In addition, different research out-
put elaborates that C5 is a bottleneck for both the release of C5a 
as an inflammatory mediator and the membrane attack 

complex (MAC) (C5b–C9) as a defense against viral infection. 
Thus, anti-C5a and anti-C5aR only block the effects of C5a 
without affecting the formation of the MAC, thus protecting 
against not only viral infection but also superimposed bacterial 
infections of the lung.55,56 Eculizumab is an anti-C5 antibody; 
however, C5aR antagonists such as MP-435 target the action of 
C5a alone and do not inhibit MAC formation Figure 4).57 

Therefore, receptor antagonists (anti-C5aR) may lessen 
a patient’s susceptibility to bacterial infection, so caution is 
needed when anti-C5 monoclonal antibodies are used.

SARS-CoV-2 Subversion of Innate Immunity
Viruses have evolved a number of strategies to evade the 
immune response.58,59 Even though SARS-CoV-2 and other 
related viruses, such as SARS-CoV and Middle East 

Figure 4 Proposed mechanism of SARS-CoV-2 induced inhibition of IFN production and it signaling during action on target cells. Some SARS-CoV-2 genes act as virulence 
factor that antagonize innate immune response by inhibiting IFN gene expressions such as Nsp16, Nsp3, and ORF9. Other gene components of the SARS virus act as 
inhibitors of INF signaling on different target cells mainly ORF9, ORF3a and Nsp1. 
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respiratory syndrome coronavirus (MERS-CoV), are sensitive 
to the IFN-α/β immune response system, this novel corona-
virus is still highly pathogenic. Recent and previous research 
experience on SARS-CoV showed that the genome contains 
virulence factors that target core molecules to evade the host 
response. One of the major mechanisms used by SARS-CoV-2 
to escape from host innate immunity is encoded COVID-19 
proteins inhibiting IFN production and signaling cascade. 
This allows the virus to replicate, transcribe, and be trans-
mitted. The detailed understanding of the mechanism of hin-
drance of IFN production and actions, promoting COVID-19 
replication and proliferation, is essential in planning therapeu-
tic options and controls against viral infection.

Nsp16 encodes 2′-O-methyltransferase, which can 
methylate the RNA cap at 2ʹ-O-positions.60 The first 
strategies inhibit type I IFN production by viral 
genes encoding for Nsp16 or S-adenosyl-L-methionine 
(Ado Met)-dependent 2ʹ-O-methylase. This involves post-
transcriptional modification of the ssRNA at the 5ʹ- 
terminal and changing 5′-triphosphate groups into methy-
lated 5ʹ-cap-1 formation, and mimicking the host cell’s 
mRNA. Therefore, the viral RNA is capable of mimick-
ing the host RNA and is not detected by MDA-5 and 
TLR-7/8, allowing the virus to escape innate immune 
recognition.61 Yet, any non-self-recognizable RNA (hav-
ing 5′-triphosphate groups) in the cytoplasm can be spe-
cifically recognized by RIG-I or TLR-7/8 or Mda5, which 
then amplify type I IFN production.62,63 In contrast, 
eukaryotic mRNA, which is not recognized by retinoic 
acid-inducible protein I (RIG-I) or MDA-5, usually has 
a 5′-cap structure methylated at the N7 position of the 
capping guanosine residue (cap 0), the resulting ribose-2′- 
O position (cap 1), and sometimes at adjoining residues 
(cap 2) during posttranscriptional modification.64 Also, 
Nsp10 works with Nsp16 to bind to SAM and 
m7GpppA-RNA as substrated for its 2ʹ-O-MTase 
activity.64,65 Thus, eukaryotic mRNA 5′-cap structures 
are known to increase mRNA stability, protecting against 
5′-exonuclease. This facilitates the binding of transla-
tional initiation factor proteins with both 40s and 60s 
ribosomes, and enhances translational efficacy.66

Nsp3 (1922 aa) is the largest multidomain protein 
among all the Nsps of β-CoV. It is cleaved off from 
ORF1a/ORF1ab by the papain-like protease domain or 
PL2pro domain that is within Nsp3 itself.67,68 It is 
a central player during the formation of viral replication 
associated with other Nsps, especially Nsp4 and Nsp6.69 

SARS-CoV-2 Nsp3 contains 16 domains, namely 

ubiquitin-like domain 1 (Ubl1), hypervariable region 
(HVR) or acidic domain, macrodomain I/II/III (MacI/II/ 
III), domain preceding Ubl2 and PL2pro (DPUP), ubiqui-
tin-like domain 2 (Ubl2), papain-like protease 2 domain 
(PL2pro), nucleic acid binding domain (NAB), beta cor-
onavirus-specific marker domain (βSM), transmembrane 
domain 1 (TM1), Nsp3 ecto-domain (3Ecto), transmem-
brane domain 2 (TM2), amphipathic helix region (AH1), 
and domains specific to Nidoviriales and Coronaviridae 
(Y1 and CoV-Y).68 After Nsp16, Nsp3 acts as the second 
most important virulent gene product, mainly by inhibiting 
RIG-I (cytoplasmic cascade) and TLR-3/7 (endosomal)- 
dependent IFN-α/β production, probably by interaction of 
the papain-like protease (PLP) domain with protein stimu-
lators of IFN gene (STING). PLP of MERS-CoV down- 
regulates the gene encoding for IFN-β via its deubiquiti-
nating activity.70 Moreover, even though the mechanism is 
not yet clear, different scholars have indicated that the PLP 
of SARS-CoV inhibits the host antiviral innate immune 
response by inhibiting phosphorylation, dimerization, and 
nuclear translocation of IRF-7 or -3, likely by forming 
a complex with IRF-3.71,72

Nsp1 is found in the closest portion of the 5ʹ end 
encoded by ORF1a/b. This Nsp is considered as the third 
virulent factor, by inhibiting IFN-β mRNA from being 
translated into the protein product and by promoting 
degradation of overexpressed host endogenous mRNA. 
Its mechanism is to bind with 40s ribosomal subunits 
and cause conformational change (loss of function), and 
prevent 80s formation, resulting in translational inhibi-
tion. Furthermore, the Nsp1–40s ribosomal complex 
induces the modification of 5ʹ-capped mRNA and 
renders the template RNA translationally 
incompetent.64,73,74 Nsp1 also inhibits the action of 
IFN-α/β on its signaling cascade intermediates, mainly 
on the JAK-STAT pathway via blocking its phosphoryla-
tion (Figure 1).72

The SARS-CoV-1 or -2 genome consists of nine unique 
ORFs. Of these, ORF3a is the largest and encodes a protein of 
274 amino acids.75 The 3a protein is part of the virus particle 
and is expressed abundantly in infected cells.76 The major 
virulence of this sectioned viral protein is achieved by down- 
regulation of the expression of the type I IFN receptor 
(IFNAR), leading to a blockade on type I IFN signaling.72,77 

IFNs are known to be crucial regulators of the development of 
Treg cells. In the regulatory immune system of patients with 
COVID-19, Treg cell counts have been shown to correlate 
inversely with disease severity.78
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Non-Structural Protein as 
a Potential Therapeutic Target for 
SARS-CoV-2
The genomes of replicases are involved during viral RNA 
gene expression. They are also considered as virulent gene 
products of the viruses to enable escape from the host immune 
response.70,79 The multidomain Nsp3 (PLP), Nsp5 (3CLpro), 
Nsp12 (the main RNA-dependent RNA polymerase), Nsp16 
(2ʹ-O-methyltransferase), and Nsp13 (ATP-dependent RNA 
helicase) are the most important popular drug targets because 
of their vital biological function (Figure 5).70

Since COVID-19 does not have a confirmed drug option, 
many broad-spectrum antibiotics and antiviral drugs are 
under clinical trial to reduce and treat the virus.80–86 Drugs 
that have shown high binding affinity to Nsp3 include riba-
virin, valganciclovir, thymidine, and levodropropizine. In 
addition, FDA-approved drugs (remdesvir, saquinavir, and 
darunavir) and two small molecules (flavone and coumarin 
derivatives) are potential inhibitors of 3CLpro.87 Moreover, 
antibacterial drugs (lymecyclin, demeclocycline, and chlor-
hexidine) also target3CLpro.79

COVID-19 uses unique 2ʹ-O-methyltransferase (2ʹ- 
O-MTase) as capping machinery of its RNA at the 5ʹ-end. 
As a result of this, the viral genome mimics the host mRNA 
and escapes from innate immune sensing factors, such as 
RIG-I and MDA-5, and type I IFN antiviral activities.61,88,89 

A known HIV inhibitor drug, dolutegravir (DG) showed an 
estimated binding free energy of 9.4 kcal/mol, and inhibits 
2ʹ-O-MTase, while bictegravir conferred an estimated bind-
ing free energy (DG) of 8.4 kcal/mol against 2ʹ-O-MTase. 

Moreover, natural ligand (SAM) analogues, namely trabo-
denoson, binodenoson, and regadenoson, may be potent 
inhibitors of the substrate-binding pockets of Nsp16.86,89

Nsp1 inhibits host gene expression via targeting the 40s 
ribosomal subunit, which induces host mRNA degradation 
and IFN-dependent signaling. Therefore, Nsp1 is 
a promising drug target, and its inhibition would make 
SARS-CoV more susceptible to the host’s antiviral defenses. 
This implies that the innate immune activities via type I IFN 
would become free of being inhibited by Nsp1 and work 
actively against the virus.90,91

The other protein that is most conserved in SARS-CoV-2 
is RNA-dependent RNA polymerase (Nsp12), which is parti-
cularly involved in low-fidelity replication and transcription at 
the time of viral priming.92,93 In addition, Nsp7 and Nsp8 
complexes act as cosubstrates to promote the binding of 
Nsp12 to RNA and boost enzyme activity at the time of 
transcription.79,92 The other potential alternative COVID-19 
broad-spectrum antiviral drug therapy, Arbidol (an indole 
derivative), also targets Nsp7/8 complex and blocks viral 
replication by inhibiting SARS-CoV-2 fusion to the host 
cell.79,80

Remdesvir (RDV) is a nucleoside analogue and shows the 
most promising broad-spectrum antiviral activity in SARS- 
CoV-2.41 This drug was originally developed by Gilead 
Sciences (USA) for treating Ebola virus disease. Subsequent 
studies showed that RDV is a monophosphoramidate prodrug 
that has metabolized into C-adenosine nucleoside analogue by 
targeting RNA-dependent RNA polymerase (RdRp) as a chain 
terminator.80,85,94–96 Similarly, favipiravir is a guanine 

Figure 5 Therapeutic targets of non-structural proteins of SARS-CoV-2.
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analogue, also used as an inhibitor of RNA-dependent RNA 
polymerase, but it has been less approved than remdesvir 
(Table 1).79,97

The other multifunctional non-structural protein is Nsp13 
(helicase), for unwinding of dsDNA as well as RNA from 
5ʹ–3ʹ polarity, coupled with NTP (ATP) as an energy 
source.98,99 Because this SARS-CoV helicase enzyme is 
absolutely necessary for subsequent viral replication and 
proliferation, it is thought to be an attractive target of anti- 
SARS-CoV-2 drugs. Lopinavir (known as a protease inhibi-
tor of HIV infection) possibly targets Nsp3b/3c and helicase, 
with ritonavir being used to increase the half-life of lopinavir 
via inhibition of cytochrome 450 (Table 1).94,97 Collectively, 
targeting the Nsp of the novel coronavirus helps to boost the 
innate immune recognition ability as well as the activity of 
the type I IFN antiviral signaling cascade.

Conclusions and Future Directions
In innate immunity, IFNs are key players against viral infec-
tion; however, SARS-CoV-2 infecting cells must overcome 
the IFN-mediated antiviral response to replicate and propa-
gate to new host cells. Because of different evasion mechan-
isms of the SARS-CoV-2 genome, containing virulent 
accessory as well as non-structural gene products, such as 
Nsp16, Nsp3, Nsp1 ORF3a, and ORF9, designing drugs that 
inhibit these gene products is vital for boosting the action of 
IFNs against COVID-19. Dysregulated complement systems 
are the most likely cause of the pathogenesis of ARDS or 
cytokine storms in COVID-19. We have much research 
evidence to show that anti-C5a and/or C5aR antibody can 
provide promising therapeutic options by reducing 

histopathological injury of lung alveoli and decreasing 
inflammatory cytokines. Furthermore, we suggest IFN-α2b 
and Arbidol as potential therapeutic options to reduce the 
viral load as well as its pathological sequelae. SARS-CoV-2 
induces an inflammatory cytokine storm linked with an 
exuberant elevation of C5a and downregulation of IFNα/β 
secretion, and its action is associated with the disease sever-
ity. Therefore, it is reasonable to hypothesize that blocking 
of C5aR, IL-6, and virulent Nsp of SARS-CoV-2 might be 
an effective therapeutic avenue for COVID-19-mediated 
ARDS and its complications.

Abbreviations
C, complement; Nsp, non-structural protein; ORF, open 
reading frame; IL-6, interleukin-6; MERS, Middle East 
respiratory syndrome; SARS, severe acute respiratory syn-
drome; COVID-19, coronavirus disease 2019.
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