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Background: Cancer diagnosis and treatment during the early stages of disease remain 
extremely challenging clinical tasks. The development of effective multimode contrast agents 
could greatly facilitate the early detection of cancer.
Materials and Methods: We prepared dual-mode contrast agents using a biotin/avidin 
bioamplification system. Through in vivo and in vitro experiments, we verified the imaging 
performance of this contrast agents in both fluorescence and ultrasound and its targeting 
specificity for MDA-MB-231 cells.
Results: The RGD peptide-labelled microbubbles showed excellent targeting of αvβ3 
integrin expressed by MDA-MB-231 cells in vitro and in vivo. The signal intensity and 
time duration of ultrasound imaging using these particles were superior to those obtained 
with a typical ultrasound contrast agent in the clinic. The tumour areas also demonstrated 
high Cy5.5 accumulation by fluorescence imaging.
Conclusion: The results show that this targeted dual-mode imaging system yields out-
standing US/NIRF imaging results, possibly allowing the early clinical diagnosis of cancer.
Keywords: ultrasound, molecular imaging, microbubble, targeting imaging

Introduction
Targeted ultrasound molecular imaging is a valuable tool that is being increasingly 
adapted for clinical applications.1–3 Conventional ultrasound contrast agents 
(UCAs) are typically gas-filled microbubbles (MBs) containing a perfluorinated 
gas in a thin lipid monolayer shell.4–6 UCAs are delivered through blood vessels; 
thus, their size is limited to the diameter of capillaries.7 Most studies report that 
these particles have an average diameter of ~1.5–4 μm, which allows the micro-
bubbles to be well dispersed within the liquid and to produce an acoustic scattering 
signal that is sufficient for effective imaging within several centimetres of tissue 
depth.8–10 In contrast to expensive and time-consuming CT, MRI or PET clinical 
examinations, patients can be administered microbubbles at the bedside, and the 
microbubbles allow the precise localization of lesions within a few minutes of 
administration to guide biopsies, ablation or rapid diagnosis.11–13 However, the low 
sensitivity of ultrasound molecular imaging limits the early detection of lesions, 
which is closely related to the survival rate of cancer patients.14–16 The features of 
near-infrared fluorescence (NIRF), including its deep tissue penetration, low back-
ground fluorescence interference and low biotoxicity, can overcome the limitations 
of ultrasound. Using optical imaging technology, it is possible to precisely visualize 
tumours in vivo and in vitro.17–20Correspondence: Danke Su  
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αvβ3 integrin is highly expressed within the cytoplasm 
of various tumour cells and neovascular endothelial cells, 
and it plays an important role in tumour angiogenesis, 
invasion and metastasis.21,22 The specifically labelled exo-
genous RGD peptide binds to the integrin αVβ3 site after 
entering the body and thus could be used as an indicator 
that reaches the tumour tissue for visualization by various 
imaging methods.23–25 In addition, the selectivity of αVβ3 
integrin targeting microbubbles to angiogenic endothelium 
can be used to monitor tumour development.26–28

To improve the application potential of these novel 
microbubbles, we designed a biotin/avidin bioamplifica-
tion system to prepare US/NIRF dual-mode targeting 
microbubbles.29–32 The targeting system actualizes 
a combination of high specific uptake in tumours and 
low retention in normal tissues, leading to good imaging 
results (see Figure 1). This article describes 1) the pre-
paration of dual-modal targeted RGD-Cy5.5-MBs and 
their performance in vitro and 2) the evaluation of the 
US/fluorescent imaging capabilities of RGD-Cy5.5-MBs 
within tumour areas in tumour-bearing mouse models.

Materials and Methods
Preparation of RGD-Cy5.5-MBs
First, RGDfk antibody powder (GenicBio BioTech Co. 
Ltd., Shanghai, China) was dissolved in 1x PBS to 
a concentration of 2.0 mg/mL, and the solution was 
adjusted to pH 8.3–8.5 with 1 M NaHCO3 (Xian Ruixi 
Biological Technology Co. Ltd., Henan, China). Twenty- 
seven microlitres of biotin (Thermo Scientific, USA) was 
slowly added to 2 mL of RGDfk solution. Then, 1.0 mg 
of Sulfo-Cyanine 5.5 NHS ester (Xian Ruixi Biological 
Technology Co. Ltd., Xian, China) was dissolved in 180 
μL of DMSO (Solarbio Company, Beijing, China) to 
a concentration of 5.5 mg/mL, and 90 μL of this solution 
was slowly added to 2 mL of RGDfk solution. The 
mixture was stirred at room temperature for 5 h and 
protected from light. After the reaction was completed, 
the above solution was subjected to ultrafiltration wash-
ings with 1× PBS overnight, and the RGD-Cy5.5 solution 
preparation was finished. Next, the USphereTM Labeler 
ultrasonic microbubble contrast agent (TRUST Bio- 
sonics Inc., Zhubei City, Hsinchu County) was activated 

Figure 1 Schematic illustration of in-situ imaging and targeted binding mechanism of RGD-Cy5.5-MBs. Abbreviations: RGD, arginine–glycine–aspartate; MB, microbubble.
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by UltraMix™ (TRUST Bio-sonics Inc., Zhubei City, 
Hsinchu County) via a 40 second rapid shock. Then, 
1.0 nmol of RGD-Cy5.5 solution was added to the micro-
bubble solution and thoroughly mixed with a vortex 
oscillator (Qilinbeier Co. Ltd., Haimen, China). The 
mixed solution was incubated at 4°C for a 15-minute 
reaction. Finally, the solution of RGD-Cy 5.5-MBs was 
resuspended in 0.9 mL of deionized water and stored at 
4°C.

Characterization of RGD-Cy5.5-MBs
The size distribution and zeta potential were determined 
by a particle analyser (Beckman, USA), and these results 
were applied to further enhance the properties of the RGD- 
Cy5.5-MBs. Notably, zeta potential was determined in 
PBS solution. All measurements were performed 3 times, 
and representative images are shown. Fluorescent images 
were acquired by using a confocal microscope (Nikon, 
Japan) and analysed by ImageJ software.

Cellular Uptake Study in vitro
Human MDA-MB-231 breast cancer cells were provided 
by the Stem Cell Bank, Chinese Academy of Sciences and 
were maintained in DMEM with 5% FBS and 1% 

penicillin-streptomycin at 37°C with 5% CO2. For the 
cellular uptake study, MDA-MB-231 cells were cultured 
in 35 mm glass-bottom culture dishes (MatTek, USA) with 
2x104 cells mL−1 for 24 h. The medium was then replaced 
by a new medium containing free RGD-Cy5.5-MBs or 
nontargeted MBs. After 2 h of incubation, the cells were 
washed three times with PBS and fixed with 4% parafor-
maldehyde for 20 minutes. DAPI was used to stain the 
nuclei for 5 minutes. Fluorescence images were acquired 
by confocal laser scanning microscopy (TCS SP8, Leica, 
Germany).

Cellular Toxicity Study in vitro
The cellular toxicity of RGD-Cy5.5-MBs in vitro was 
verified by a Cell Counting Kit-8 (CCK8) viability assay. 
MDA-MB-231 cells were cultured in 96-well plates at 
2x103 cells mL−1 for 24 h. Then, the cells were treated 
with 0.1 mL of RGD-Cy5.5-MBs at MB concentrations of 
106, 107, 108 and 109 mL−1. Sonovue at the same con-
centrations was applied as a control. After incubation for 
24 h, 10 μL of CCK8 solution was added to each well, and 
the cells were further incubated for 1 h. A microplate 
reader (Thermo Scientific, USA) was used to evaluate 
the optical absorbance of each well at 450 nm.

Figure 2 The detailed diagrams of the composition in Biotin-Avidin System-based RGD-Cy5.5- MBs. Abbreviations: RGD, arginine–glycine–aspartate; MB, microbubble.
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Ultrasound Imaging in vitro
First, MDA-MB-231 cells were cultured in 6-well plates at 
3x105 cells mL−1 and allowed to grow for 24 h. Then, 
0.2 mL of RGD-Cy5.5-MBs with concentrations of 2x108 

mL−1 and 2x107 mL−1 were added to the wells and incu-
bated with cells for 2 h. PBS solution was used as a blank 
control. Then, the cells were harvested by 0.05% trypsin 
EDTA and resuspended in PBS. The solutions were added 
to agarose gel. Ultrasound images were acquired by 
a Vevo 2100 (Fujifilm Visual Sonics Inc., Canada) ultra-
sound system using a high-frequency linear transducer (7 
MHz, mechanical index [MI] 0.09, dynamic range 50 dB).

Animal Tumour Model
All 4-week-old BALB/c mice were purchased from the 
Laboratory Animal Center of Guangdong Province, and the 
animal experiments were approved by Guangxi Medical 
University Laboratory Animal Center. Animal ethics review 
follows the Guiding Opinions on the Treatment of Laboratory 
Animals issued by the Ministry of Science and Technology of 
the People’s Republic of China and the Laboratory Animal- 
Guideline for Ethical Review of Animal Welfare issued by the 
National Standard GB/T35892-2018 of the People’s Republic 
of China. The right flanks of BALB/c mice were subcuta-
neously injected with MDA-MB-231 cells (2x106 cells in 

Figure 3 Optical microscope images (A) Size distributions (B) Zeta potential (C) of RGD-Cy5.5- MBs (scale bar: 15 μm). Abbreviations: RGD, arginine–glycine–aspartate; 
MB, microbubble.
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Figure 4 (A) Confocal fluorescence images of MB231 cells incubated with RGD-Cy5.5-MBs and non-targeted MBs (scale bar: 50 μm). (B) Cells viability of MB231 cells 
respectively incubated with RGD-Cy5.5- MBs and Sonovue in different concentrations. (C) Ultrasound contrast images of MB231 cells treated with RGD-Cy5.5-MBs in MBs 
concentrations of 2x108 and 2x107 mL−1, PBS as a control. (D) Signal Intensity Rate is calculated by sample/blank, sample represents the ultrasound echo intensity of RGD- 
Cy5.5-MBs, blank represents the ultrasound echo intensity of PBS. 
Abbreviations: MB231, breast cancer cells; RGD, arginine–glycine–aspartate; MB, microbubble; PBS, phosphate buffered saline.
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200 μL per mouse). The tumours were allowed to grow for 
approximately 2 weeks before imaging.

Ultrasound Imaging in vivo
Mice were anaesthetized via 2% isoflurane, and their bodies 
were fixed on a heated pad to maintain body temperature at 37° 
C. RGD-Cy5.5-MBs (2x108 mL−1, 0.2 mL) were injected into 
the mice via the tail vein. Ultrasound examinations were per-
formed using an Aplio 500 (Toshiba Corporation, Japanese) 
and a 7-MHz transducer. Images were acquired in B-mode and 
CEUS-mode. The acoustic focus zone was placed at the centre 
of the tumour with the largest cross-section, and the tissues 
adjacent to the tumour were also imaged. At the end of ima-
ging, a high-power destructive pulse (8.0 MHz, MI 1.8) was 
applied to destroy all microbubbles in the tumour area. The 

same amount of Sonovue (Bracco International B.V., 
Switzerland) was injected into mice to serve as a control. 
Mice pre-treated with αv-integrin antibody were examined to 
verify the targeting of RGD-Cy5.5-MBs.

Fluorescence Imaging in vivo
RGD-Cy5.5-MBs were added into Eppendorf tubes and 
processed by ultrasound scanning using a high-frequency 
linear transducer (7 MHz, mechanical index 0.09), and 
then the fluorescence intensity was measured by 
a fluorescence imaging system. The groups with no ultra-
sound scanning and PBS were used as controls.

A total of 200 μL of RGD-Cy5.5-MBs were injected 
via the tail vein for fluorescence imaging in vivo, and 
nontargeted MBs were used as a control. The FX PRO 

Figure 5 (A) Ultrasound imaging of tumors in vivo at different time after injection of RGD-Cy5.5-MBs. (B) Echo intensity rate as a function of time is calculated by tumor/ 
tissue, tumor represents the echo intensity of the tumor area, tissue represents the echo intensity of the tissue around tumors. (C) Ultrasound imaging of tumors after 
respectively injection of RGD-Cy5.5-MBs, Sonovue and the group of antibody blocking at 6 min. (D) Echo intensity rate in tumor/tissue of the three groups above. 
Abbreviations: RGD, arginine–glycine–aspartate; MB, microbubble.
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in vivo fluorescence imaging system (Bruker, Switzerland) 
was used for scanning. Images of the mice were acquired 
prior to injection. Fluorescence scanning was then per-
formed in 30-minute intervals to record the signal transi-
tions of the tumours. The mice were sacrificed when the 
in vivo fluorescence signal was highly accumulated in the 
tumour area. The main organs and tumours were harvested 
for fluorescence scanning in vitro. Molecular imaging soft-
ware (Bruker, Switzerland) was applied for quantitative 
analysis of the fluorescence intensity.

Tumour Immunofluorescence and HE 
Staining
The tissues of organs and tumours were fixed by OCT com-
pound (Sakura Finetek, USA) and cut into frozen slices with 
a cryostat microtome (Leica, Heidelberg, Germany). The αv 

integrin was stained with rabbit monoclonal anti-integrin αv 
antibody (dilution 1:500, Abcam) and Alexa 488-conjugated 
goat anti-rabbit secondary antibody (dilution 1:1000, Abcam). 
The β3 integrin was subsequently stained with mouse mono-
clonal anti-integrin β3 antibody (dilution 1:500, Abcam) and 
Alexa 594-conjugated goat anti-mouse secondary antibody 
(dilution 1:1000, Abcam). Cell nuclei were stained with 
DAPI (Solarbio, Beijing, China). Images were obtained by 
confocal laser scanning microscopy (TCS SP8, Leica, 
Germany).

Results and Discussion
Characterization of RGD-Cy5.5-MBs
To ensure the biosafety of dual-mode contrast agents for appli-
cation, the biotin-avidin system (BAS), which exhibits strong 
biostability, was employed to conjugate RGD-Cy5.5 to MBs to 

Figure 6 (A) Fluorescence imaging in vitro and averaged fluorescence intensity under ultrasound scanning and non-ultrasound scanning, PBS as a control. (B) Fluorescence 
imaging in vivo of mice at pre-injection and post-injection after injection of RGD-Cy5.5-MBs and non-targeted MBs at 0.5, 1.5 and 2.5 hours. (C) The fluorescence images of 
tissues dissected from the mice. (D) Averaged fluorescence intensity of these tissues. 
Abbreviations: RGD, arginine–glycine–aspartate; MB, microbubble; PBS, phosphate buffered saline.
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avoid degradation in the body. Biotin and avidin exhibit the 
greatest degree of noncovalent binding. The binding stability 
between biotin and avidin is strong, specific and not affected by 
reagent concentration, environmental pH or other organic sol-
vents, such as protein denaturants. Furthermore, the RGD 
moiety conjugates with the MBs to realize specific targeted 
accumulation in the tumour area. Specifically, the RGDfk 
motif conjugates with the biotinylated antibody and links 
with Sulfo-Cyanine5.5 NHS ester by an amide reaction. 
Then, the RGD-Cy5.5 and avidin-labelled MBs form 
a globular biotin-avidin complex. The detailed synthesis pro-
cedure of RGD-Cy5.5-MBs is shown in Figure 2.

Optical microscopy images of RGD-Cy5.5-MBs show 
that the microbubbles were spherical, with clear outlines 
and uniform size in the field of view (see Figure 3A). In 
addition, the red fluorescence around the microbubbles 
indicates that Cy5.5 attached to the surface of the RGD- 
Cy5.5-MBs. Dynamic light scattering (DLS) analysis of 
RGD-Cy5.5-MBs (average 1789.9 nm; see Figure 3B) 
revealed narrow peaks. This is similar to the previous 
study concerning targeted RGD-MBs for Hep-2 tumour 
angiogenesis, demonstrating that the microbubbles were 
homogeneously dispersed.33 The average polydispersity 
index was 1.504. Zeta potential was measured to confirm 
the surface charge (average −2.6 mV; see Figure 3C).

In vitro Experiments with 
RGD-Cy5.5-MBs
A confocal laser scanning microscope (CLSM) was used to 
view the cellular uptake of the RGD-Cy5.5-MBs (see Figure 
4A). MDA-MB-231 cells treated with RGD-Cy5.5-MBs dis-
played obvious fluorescence enhancement. As a control, cells 
treated with nontargeted MBs showed minimal fluorescence in 
the cytoplasm, which indicated that the RGD-based targeting 
strategy was effective for enhancing the uptake of MBs by 
MDA-MB-231 cells.24,34

MDA-MB-231 cells were also used to investigate the 
biocompatibility of RGD-Cy5.5-MBs (see Figure 4B). In 
the range of MB concentrations, no significant decrease in 
MDA-MB-231 cell viability was observed. Sonovue is an 
ultrasound contrast agent that exhibits good biosafety and 
is widely used in clinical diagnosis.35,36 The viability of 
cells in the experimental group was slightly lower than 
that of cells treated with Sonovue, although both were 
above 80%. The significantly lower cytotoxicity of RGD- 
Cy5.5-MBs according to the CCK8 results indicates their 
good biocompatibility.

In vitro targeted cell ultrasound imaging was performed to 
further verify both the special targeting property of the RGD- 
Cy5.5-MBs and its outstanding contrast in the US. Regarding 
the function of the MBs at a concentration of 2x108 mL−1, the 

Figure 7 (A) Fluorescent imaging of tumor frozen sections from MDA-MB-231 cells–bearing mice injected with RGD-Cy5.5-MBs (scale bar: 50 μm). (B) H&E-stained organ 
slices collected from mice after injection of RGD-Cy5.5-MBs (scale bar: 50 μm). 
Abbreviations: MDA-MB-231, breast cancer cells; RGD, arginine–glycine–aspartate; MB, microbubble; H&E, hematoxylin-eosin.
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images in CEUS-mode of the treated MDA-MB-231 cells 
showed a significant signal increase (see Figure 4C). In addi-
tion, the signal of the cells treated with RGD-Cy5.5-MBs at an 
MB concentration of 2x107 mL−1 was much lower than that of 
the same cells treated with a concentration of 2x108 mL−1. The 
intensity of PBS served as a baseline, and the ultrasound 
intensity ratio of the cells treated with RGD-Cy5.5-MBs at 
2x108 mL−1 was even higher (see Figure 4D).

Ultrasound Contrast Imaging of 
RGD-Cy5.5-MBs
After injection of cRGD-Cy5.5-MBs through the tail vein, the 
ultrasound images showed significant contrast enhancement in 
the tumour tissues (see Figure 5A). The ultrasound intensity 
signal in the tumour reached the highest value at 6 minutes 
after injection. In addition, the lack of signals after microbub-
ble destruction indicated that a high contrast-to-tissue ratio was 
achieved with cRGD-Cy5.5-MBs (see Figure 5B). When the 
peak intensity of the tumour after administration of cRGD- 
Cy5.5-MBs was reached, the tumour-to-tissue signal ratio was 
4-fold higher than that observed by Sonovue administration. 
Furthermore, the specificity of cRGD-Cy5.5-MBs for αvβ3 
integrin in the tumour endothelium was confirmed by pre- 
treatment with αv-integrin antibody (see Figure 5C). The 
tumour-to-tissue signal ratio produced by cRGD-Cy5.5-MBs 
was reduced by 4.45 times after administration of the blocking 
antibody (see Figure 5D).

Fluorescence Imaging of RGD-Cy5.5-MBs 
and Histology
For the in vitro fluorescence intensity of RGD-Cy5.5-MBs, 
there was no obvious difference between the ultrasound- 
treated group and the untreated group, indicating that the dye 
molecule is stable under ultrasound scanning (see Figure 6A).

According to in vivo fluorescence imaging, the fluores-
cence intensity of tumours increased gradually and reached 
a maximum 3 h after RGD-Cy5.5-MB injection (see Figure 
6B). No fluorescence accumulation was observed in the 
tumour area in the mice of the nontargeted MB group adminis-
tered Cy5.5-MBs, which were quickly cleared from the body. 
Additionally, fluorescence images of tissues extracted from the 
mice indicated that Cy5.5 fluorescence was mainly present in 
the kidney and liver (see Figure 6C). The fluorescence intensity 
in mice injected with targeted MBs was 1.8 times higher than 
that in mice injected with the nontargeting version (see 
Figure 6D).

Immunofluorescence staining of tumour sections with anti-
bodies against αv and β3 integrin revealed that αvβ3 integrin 
was significantly expressed in tumour tissues (see Figure 7A). 
The biosafety of RGD-Cy5.5-MBs in vivo was further con-
firmed by HE staining of major organs (ie, heart, liver, spleen, 
lung, and kidney) (see Figure 7B). No histopathological 
damage was observed in the histopathological examination of 
mice treated with RGD-Cy5.5-MBs, and all of the tissue sec-
tions exhibited normal pathological morphology. The results 
above demonstrate that RGD-Cy5.5-MBs did not induce sig-
nificant toxicity to the tissues of major organs in vivo, indicat-
ing good biocompatibility.

Conclusion
We prepared RGD peptide-targeted microbubbles for use 
in ultrasound and fluorescence imaging. The microbub-
bles were validated by examining their diagnostic 
effects on αvβ3 integrin-expressing tumours in MDA- 
MB-231 cell–bearing mice. RGD-Cy5.5-MBs exhibit 
excellent imaging performance and good biocompatibil-
ity in ultrasound/fluorescent imaging. This work is of 
importance for multimode molecular imaging for the 
early detection of cancer.
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