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Background: Renal fibrosis is a frequently occurring type of chronic kidney disease that 
can cause end-stage renal disease. It has been verified that emodin or HGF can inhibit the 
development of renal fibrosis. However, the antifibrotic effect of emodin in combination with 
HGF remains unclear.
Methods: Cell viability was detected with CCK8. Gene and protein expression in HK2 cells 
was detected by qRT-PCR and Western blot, respectively. Moreover, a unilateral ureteral 
obstruction–induced mouse model of renal fibrosis was established for investigating the 
antifibrotic effect of emodin in combination with HGF in vivo.
Results: HGF notably increased the expression of collagen II in TGFβ-treated HK2 cells. In 
addition, HGF-induced increase in collagen II expression was further enhanced by emodin. 
In contrast, fibronectin, αSMA and Smad2 expression in TGFβ-stimulated HK2 cells was 
significantly inhibited by HGF and further decreased by combination treatment (emodin plus 
HGF). Moreover, we found that combination treatment exhibited better antifibrotic 
effects compared with emodin or HGF in vivo.
Conclusion: These data demonstrated that emodin plus HGF exhibited better antifibrotic 
effects compared with emodin or HGF. As such, emodin in combination with HGF may 
serve as a new possibilty for treatment of renal fibrosis.
Keywords: fibrosis, combination, emodin, TGFβ

Introduction
Renal fibrosis is considered to originate from activation of myofibroblasts in the 
kidney and infiltration of inflammatory cells.1,2 A number of patients with chronic 
kidney disease will deteriorate to end-stage renal disease (ESRD) once renal 
fibrosis occurs. The only effective method is transplantation in that situation.3 

Furthermore, it has been confirmed that chronic kidney disease patients account 
for 10% of the world’s total population.4,5 As such, a new method for cure of renal 
fibrosis is of great significance.

HGF) contains an α-chain and a β-chain. These chains are composed of 
a serine protease–like structure and four kringle domains.6,7 Upregulation of the 
HGF–Met pathway initates dynamic biological responses that help morphogenesis 
(eg, epithelial tubulogenesis) and cells survival.8 Recent reports have indicated 
that HGF has a significant antifibrotic effect.9,10 In addition, Rheum officinale has 
been confirmed to have some bioactivity, including antifibrotic activity.11,12 

Emodin is the major bioactive compound of R. officinale and has strong anti- 
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inflammatory and antioxidant properties.13 It has been 
reported that emodin notably suppresses the development 
of multiple diseases.14,15 Additionally, it has previously 
been verified that emodin can relieve the progression of 
renal fibrosis.16 However, the antifibrotic effect of emo-
din in combination with HGF has not been confirmed yet. 
TGFβ participates in many cellular processes, including 
cell growth, differentiation, apoptosis, and 
homeostasis.17,18 Many studies have indicated that 
TGFβ plays a crucial role in renal fibrosis.19,20 

Yasumura et al verified that TGFβ contributes to the 
occurrence of renal fibrosis.21 In this study, we sought 
to confirm whether emodin can increase the antifibrotic 
effect of HGF, with the purpose of providing new strate-
gies for patients.

Methods
Cell Culture
Human renal tubular endothelial cells (HK2; ATCC, 
Manassas, VA, USA) were cultured in RPMI 1640 med-
ium (Thermo Fisher Scientific, Waltham, MA, USA) sup-
plemented with 10% FBS and 1% penicillin (Thermo 
Fisher Scientific) in an incubator (37°C, 5% CO2). To 
mimic renal fibrosis in vitro, HK2 cells were stimulated 
with TGFβ1 (5 ng/mL; PeproTech, Rocky Hill, NJ, USA) 
for 48 hours.

CCK8 Assays
HK2 cells (5×103 cells/well) were seeded at 37°C over-
night. Then, cells were treated with emodin (10, 20, 40, 
and 60 μM) for 2 days. After that, 10 μL CCK8 reagent 
(Beyotime) per well was added for 2 hours. Finally, cell 
viability was measured with a microplate reader (Bio-Rad 
Laboratories, Benicia, CA, USA) at 450 nm absorbance. 
Standard emodin products (95% purity) were purchased 
from Sigma-Aldrich (St Louis, MO, USA).

Immunofluorescence Staining
HK2 cells were seeded overnight. After 72 hours’ treat-
ment, cells were blocked with 10% FBS for 30 minutes 
and then incubated with antiSmad4 antibody (Abcam, 
Cambridge, MA, USA; 1:1,000) overnight. Then, cells 
were incubated with goat antirabbit IgG (Abcam; 
1:5,000) for 1 hour. After that, the nuclei were stained 
with DAPI (Beyotime) for 5 minutes. Finally, cells were 
observed under microscopy (Olympus CX23, Tokyo, 
Japan).

Reverse-Transcription Quantitative 
Polymerase Chain Reaction
Total RNA was extracted using Trizol reagent (Thermo 
Fisher Scientific). RNA integrity was measured by agar-
ose-gel electrophoresis. Then, cDNA was obtained by 
reverse transcription (PrimeScript first-strand cDNA- 
synthesis kit; Takara, Tokyo, Japan). PCR reactions were 
carried out by SYBR Premix Ex Taq II (Takara) with an 
Applied Biosystems 7500 real-time PCR system(Thermo 
Fisher Scientific). Primers were: collagen II — forward 5ʹ- 
AACCAAGGGAAGCATTACTAC-3ʹ, reverse 5ʹ-GAG 
CAAACTATTCCATAAGCC-3ʹ; fibronectin — forward 
5ʹ-CTTGAAGCCCAGCAACCTAC-3ʹ, reverse 5ʹ- 
ACAGCCCACAGACCACACAT-3ʹ; αSMA — forward 
5ʹ-TTTGAGACGAGGGAGATGGT-3ʹ, reverse 5ʹ- 
GTTCTTGGTTGGAGCGGAT-3ʹ; and GAPDH — for-
ward 5ʹ-GTCCACCGCAAATGCTTCTA-3ʹ, reverse 5ʹ- 
TGCTGTCACCTTCACCGTTC-3ʹ. Amplification condi-
tions were 95°C for 30 seconds, followed by 40 cycles 
of 95°C for 5 seconds and 60°C for 34 seconds. The 
2−ΔΔCt method was used to quantify the data. β-actin was 
used as an internal control.

Western Blot
Cells or renal tissue were lysed using RIPA lysis buffer 
(Beyotime). Protein concentration was quantified using 
a BCA protein-assay kit (Beyotime). Protein (30 μg) was 
separated with 10% SDS-PAGE and then transferred into 
PVDF membranes (Beyotime). After blocking with 5% 
skim milk, the membranes were incubated with primary 
antibodies (anti-collagen II 1:1,000, anti-αSMA 1:1,000; 
anti-fibronectin 1:1,000; anti-Smad2 1:1,000; and anti- 
GAPDH 1:1,000) at 4°C overnight. All primary antibodies 
were purchased from Abcam. Then, membranes were incu-
bated with secondary antibodies (goat antirabbit IgG; 
Abcam, 1:5,000) at room temperature for 1 hour. Protein 
bands were visualized using BeyoECL Plus (Beyotime) and 
measured using IPP Image-Pro Plus software.

Animal Study
The experimental protocol was approved by the Ethics 
Committee for Animal Experimentation of Southwest 
Medical University, and animal study was performed 
according to the Guidelines for Animal Experimentation 
of Southwest Medical University. The ethical approval 
reference number of the study is 20191010.C57BL/6 
SPF class–bred mice (18±2g) were obtained from the 
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Laboratory Animal Center of Southwest Medical 
University with. Mice were housed in a 12-hour light/12- 
hour dark cycle at 22°C–24°C. After 1 week of adaptive 
feeding, mice were divided into groups for the following 
3 weeks: control (n=12, treated with normal saline), uni-
lateral ureteral obstruction (UUO; n=12, treated with 
normal saline) UUO plus 50 mg/kg/day emodin (n=12, 
orally treated with 50 mg/kg/day emodin, emodin dis-
solved in 2 mL normal saline), UUO plus 0.5 μg/kg/day 
HGF (n=12, intravenous injection of 0.5 μg/kg/day HGF, 
HGF dissolved in 1 mL normal saline), and UUO+ HGF 
+ emodin (n=12, injection of 0.5 μg/kg/day HGF and 
orally treated with 50 mg/kg/day emodin). Standard 
HGF was purchased from MedChemExpress (99.36% 
purity, Monmouth Junction, NJ, USA). The dosages of 
HGF and emodin were selected based on previous 
research.22,23 After treatment, the level of creatinine 
(Cr) and blood urea nitrogen (BUN) were examined. 
Kidney tissuewas extracted from each mouse and 

dissected, then symptoms of renal fibrosis was detected 
with H&E and Masson’s trichrome. The severity of fibro-
sis was assessed by calculating the ratio of blue-stained 
scarred areas to total area.

Enzyme-Linked Immunosorbent Assays
At the end of the animal study, mice were killed for 
collection of sera and levels of Cr and BUN measured 
with an ELISA kit (Jiancheng Bioengineering Institute, 
Nanjing, China) according to the manufacturer’s 
instructions.

Statistical Analysis
For each group, at least three independent experiments 
were performed. All data are expressed as means ± SD. 
Comparisons among multiple groups were analyzed 
using one-way ANOVA followed by Tukey’s test. 
P<0.05 was considered statistically significant.

Figure 1 Emodin significantly suppressed the fibrotic effect of TGFβ1 in vitro. (A) HK2 cells were treated with 0, 10, 20, 40, and 60 μM emodin for 48 hours and cell viability 
determined with CCK8 assay. (B) HK2 cells were treated with 5 ng/mL TGFβ1, 5 ng/mL TGFβ1 + 10 μM emodin, or 5 ng/mL TGFβ1 + 20 μM emodin for 48 hours. Then, 
collagen II, fibronectin, and αSMA expression in HK2 cells was detected by Western blot. (C) Relative expression of collagen II was quantified normalized to GAPDH. (D) 
Relative expression of fibronectin was quantified normalized to GAPDH. (E) Relative expression of αSMA was quantified normalized to GAPDH. **P<0.01 vs 0 μM group or 
control; ##P<0.01 vs TGFβ1 group.
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Results
Emodin Significantly Suppressed Fibrotic 
Effect of TGFβ1 In Vitro
For detection of the cytotoxicity of emodin on HK2 cells, 
CCK8 assays were used. As shown in Figure 1A, compared 
to 0 μM, 40 or 60 μM emodin significantly inhibited cell 
viability, while 10 or 20 μM had no significant effect. These 
data demonstrated that ≥40 μM emodin showed obvious 
cytotoxicity. Furthermore, as indicated in Figure 1B–E, the 
expression of collagen II in HK2 cells was notably sup-
pressed by TGFβ1, which was significantly rescued by 20 
μM emodin. In contrast, TGFβ1 markedly activated fibro-
nectin and αSMA in HK2 cells, while TGFβ1-induced 
increase of these two proteins was significantly reversed 
by 20 μM emodin. As we know, fibronectin, collagen II, 
and αSMA are the key markers in fibrosis.24,25 Emodin 10 
μM affected collagen II, fibronectin, and αSMA expression 
to a limited. Therefore, 20 μM emodin was selected for the 

following experiments. These data showed that emodin sig-
nificantly suppressed the fibrotic effect of TGFβ1 in vitro.

HGF Significantly Decreased Fibrotic 
Effect of TGFβ1 in HK2 Cells
To detect protein expression, Western blot was used. As 
demonstrated in Figure 2A–D, TGFβ1 obviously upregu-
lated fibronectin and αSMA and downregulated collagen II 
in HK2 cells. Furthermore, 2, 5, or 10 ng/mL HGF dose- 
dependently activated collagen II and suppressed protein 
levels of fibronectin and αSMA in HK2 cells after TGFβ1 

treatment. Since 10 ng/mL HGF exhibited a better antifi-
brotic effect compared with the other two concentrations, 
10 ng/mL HGF was selected for use in the following 
experiments. For the purpose of confirming this result, RT- 
qPCR was used. As demonstrated in Figure 2E, HGF 
obviously activated collagen II and fibronectin and inacti-
vated αSMA in TGFβ1-stimulated HK2 cells. Taken 

Figure 2 HGF significantly decreased the fibrotic effect of TGFβ1 in HK2 cells. HK2 cells were treated with 5 ng/mL TGFβ1 and then with 2, 5 or 10 ng/mL HGF for 48 
hours. Then, expression of (A and B) collagen II, (A and C) fibronectin and αSMA, and (A and D) in HK2 cells was detected by Western blot. Relative protein expression 
was quantified normalized to GAPDH (E). Collagen II, fibronectin, and αSMA expression in HK2 cells was detected by qPCR. GAPDH was used as an internal control. 
**P<0.01 vs control; #P<0.05 vs TGFβ1 group; ##P<0.01 vs TGFβ1.
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together, all these data revealed that HGF significantly 
suppressed the fibrotic effect of TGFβ1 in HK2 cells.

Combination Treatment Exhibited 
Significant Suppressive Effect on Renal 
Fibrosis In Vitro Through Inactivation of  
TGFβ1 Pathway
To investigate gene expression in vitro, RT-qPCR was used. 
As shown in Figure 3A, the expression of collagen II in 
TGFβ1-stimulated HK2 cells was notably upregulated by 
HGF and further increased by emodin. In contrast, HGF 
notably inhibited the expressions of αSMA and fibronectin 
in TGFβ1-treated HK2 cells. As expected, the inhibitory 
effect of HGF on αSMA and fibronectin was further 
enhanced in the presence of emodin (Figure 3A). 
Additionally, protein expression of fibronectin, αSMA, and 
p-Smad2 in TGFβ1-treated HK2 cells was significantly 
decreased by HGF and/or emodin (Figure 3B–F). In con-
trast, TGFβ1-induced decrease of collagen II in HK2 cells 
was notably reversed by HGF and/or emodin. Consistently, 
the combination of HGF with emodin exhibited better effect 
on protein expressions compared with either treatment alone 
(Figure 3B–F). Also, data on Smad4 staining revealed that 

TGFβ1-induced upregulation of Smad4 expression in 
nuclei of HK2 cells was significantly decreased by HGF 
and/or emodin (Figure 3G). To sum up, combination treat-
ment exhibited a significant suppressive effect on renal 
fibrosis in vitro via inactivation of the TGFβ1 pathway.

Emodin in Combination with HGF 
Significantly Attenuated Symptoms of 
UUO-Induced Mouse Renal Fibrosis In Vivo
To investigate the antifibrotic effect of emodin in combina-
tion with HGF in vivo, a UUO mice model was established. 
The results revealed that HGF or emodin notably suppressed 
renal fibrosis in UUO-treated mice. Moreover, renal fibrosis 
in UUO-treated mice was further attenuated by combination 
treatment (Figure 4A). Renal fibrosis symptoms were sig-
nificantly induced by UUO treatment, which was obviously 
attenuated by emodin, HGF, or combination treatment 
(Figure 4B). Fibrosis area was significantly upregulated in 
UUO-treated mice and significantly downregulated by emo-
din or HGF alone. Consistently, combination treatment 
showed more significant antifibrotic effects than emodin- 
or HGF-alone treatment (Figure 4C). ELISA data demon-
strated that HGF and/or emodin notably inhibited levels of 
Cr and BUN in sera of HFD-treated mice (Figure 4D and E). 

Figure 3 Combination of emodin with HGF suppressed TGFβ1-induced renal fibrosis via inhibition of the TGFβ1-signaling pathway. (A) After 48 hours’ incubation, αSMA, 
collagen II, and fibronectin expression in HK2 cells was investigated with RT-qPCR. GAPDH was used as a loading control. (B) Protein expression of collagen II, fibronectin, 
αSMA, p-Smad2, and Smad2 in HK2 cells was detected by Western blot. Relative protein expression of (C) collagen II, (D) fibronectin, (E) αSMA, and (F) p-Smad2 was 
quantified by normalizing to GAPDH. (G) Smad4 expression in HK2 cells was detected by immunofluorescence staining. **P<0.01 vs control group; #P<0.05 vs TGFβ1 

group; ##P<0.01 vs TGFβ1 group; ^^P<0.01 vs TGFβ1 + HGF group.
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Altogether, combination of emodin with HGF exhibited 
more significant antirenal fibrosis effect in vivo than emo-
din- or HGF-alone treatment.

Combination of Emodin with HGF 
Suppressed Progression of Renal 
Fibrosis via Inactivation of TGFβ1 

Pathway In Vivo
Finally, to confirm the mechanism by which emodin in com-
bination with HGF relieved renal fibrosis symptoms, collagen 
II, αSMA, and p-Smad2 expression in mice was detected. As 
shown in Figure 5A–D, emodin or HGF significantly inacti-
vated αSMA and p-Smad2 in tissue of UUO-treated mice. 
Moreover, combination treatment further decreased expres-
sion of these two protein. In contrast, protein level of collagen 
II in tissue of UUO-treated mice was greatly upregulated by 
HGF and/or emodin. Taken together, combination of emodin 
with HGF attenuated symptoms of renal fibrosis via inactiva-
tion of the TGFβ1 pathway in vivo.

Discussion
In this research, we sought to detect the antifibrotic effect of 
combination treatment. It has been confirmed that transplan-
tation of HGF-transgenic mesothelial cell sheets show ther-
apeutic effects on renal fibrosis26 and can be used as an 
antifibrotic agent.27 The present study verified that HGF 
suppressed the progression of renal fibrosis at different con-
centrations. Emodin has already been confirmed to be able to 
be used for the treatment of multiple diseases.22,28 In addi-
tion, recent reports have revealed that emodin plays an inhi-
bitory role in neuropathy and hepatopathy.16,29 Some natural 
properties showantifibrotic ability.30,31 Our research was 
consistent with these studies, further confirming that emodin 
can be considered an antifibrotic agent. Briefly, our findings 
strongly confirm that combination treatment shows more 
significant antifibrotic effects than HGF or emodin alone.

Combination treatment exhibited significant antifibrotic 
effects via inactivating fibronectin and αSMA and activating 
collagen II. Previous research has indicated that fibronectin 
plays a crucial role in fibrosis.32 Moreover, Notch3 

Figure 4 Emodin in combination with HGF notably attenuated UUO-induced renal fibrosis of mice in vivo. (A) H&E staining of mouse-kidney tissue in control, UUO, UUO plus 
50 mg/kg emodin, UUO plus 0.5 μg/kg HGF, and UUO + emodin + HGF. (B) Masson staining of mouse-kidney tissue in control, UUO, UUO plus 50 mg/kg emodin, UUO plus 0.5 μg/ 
kg HGF, and UUO + emodin + HGF group. (C) Fibrosis area in mice was quantified. (D) Levels of creatinine in sera of mice were detected with ELISA. (E) Levels of BUN in sera of 
mice were detected with ELISA. **P<0.01 vs control group; #P<0.05 vs UUO group; ##P<0.01 vs UUO group; ^^P<0.01 vs UUO + 0.5 μg/kg HGF group.
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relieves symptom of cardiac fibrosis via downregulation of 
αSMA.25 Collagen II has been regarded as being downregu-
lated during the progression of fibrosis.33 Consistent with 
these data, emodin in combination with HGF suppressed the 
development of renal fibrosis via decreasing fibronectin and 
αSMA and upregulating collagen II in vitro. αSMA plays key 

roles in epithelial–mesenchymal transition (EMT).34–36 In this 
study, the findings indicated that HGF can inactivate αSMA. 
Emodin significantly enhanced the suppressive effect of HGF 
on this protein. These data are similar to a recent report, 
suggesting that HGF and/or emodin exhibit antifibrotic 
effects via suppression of the EMT process.

Figure 5 Emodin in combination with HGF inhibited renal fibrosis in vivo by suppression of TGFβ1 pathway. (A) Protein expression of collagen II, αSMA, Smad2, and 
p-Smad2 in kidney tissues of mice was measured by Western blot. Relative protein expression of (B) collagen II, (C) αSMA, and (D) p-Smad2 were quantified by normalizing 
to GAPDH. **P<0.01 vs control group; ##P<0.01 vs UUO group; ^^P<0.01 vs TGFβ1 + HGF group.
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TGFβ1 signaling has been confirmed to be involved in 
fibrosis,37,38 and is activated persistently in fibrosis.39,40 

Smad4 is at the core of the TGFβ1-signaling pathway.41 In 
addition, it has been verified that TGFβ1 can upregulate 
Smad2, which can affect this signaling pathway, resulting in 
fibrosis.42 In the current research, combination treatment 
further inhibited the expression of p-Smad2 in HK2 cells after 
TGFβ1 treatment compared with HGF or emodin alone. Based 
on these data, the mechanism underlying the antifibrotic 
effects of emodin in combination with HGF was closely 
correlated with inactivation of TGFβ1 pathways. In recent 
research, emodin relieved the severity of fibrosis via down-
regulation of TGFβ1–Smad signaling.43 Additionally, emodin 
relieved fibrosis symptoms via inactivation of TGFβ1–Smad 
signaling.44 Our study was consistent with these results. Also, 
our study revealed that αSMA was notably activated in HK2 
cells after TGFβ1 treatment. Sisto et al revealed that activation 
of TGFβ1 signaling can contribute to the upregulation of EMT 
in Sjögren’s syndrome.45 Consistently, our findings suggested 
that TGFβ1 signaling upregulated EMT in fibrosis. To sum up, 
emodin has the potential ability to downregulate fibrosis by 
inhibiting TGFβ1–Smad signaling. Frankly speaking, our 
research has paid attention only to the effect of emodin in 
combination with HGF on the TGFβ1 pathway so far. We will 
detect the effect of combination treatment on other signaling 
pathways in future. We have revealed that emodin in combina-
tion with HGF shows significantly antifibrotic effects via inac-
tivation of TGFβ1 signaling. Therefore, the combination of 
emodin with HGF can be used as an effective tool in the 
treatment of renal fibrosis.
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