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Purpose: Malic enzyme 1 (ME1) catalyzes malate to pyruvate and thus promotes glyco
lysis. Its function in breast cancer remains to be fully clarified. The aim of this work was to 
investigate the prognostic value of ME1 and its possible mechanism in breast cancer.
Methods: We evaluated ME1 expression in 220 early breast cancer patients with tissue 
microarray-based immunohistochemistry and explored the relationships between ME1 
expression and clinicopathological features. Survival analyses were further performed to 
determine its prognostic value. The public database was used to confirm tissue microarray 
results. Further, cell proliferation, migration, invasion ability and reactive oxygen species 
(ROS) were examined in breast cancer cells.
Results: In breast cancer tissues, high ME1 expression was significantly associated with 
larger tumor size, higher incidence of lymph node metastasis and higher incidence of lymph- 
vascular invasion. High ME1 expression significantly correlated with worse recurrence-free 
survival (RFS), and was an independent prognostic factor for RFS, which was confirmed by 
mRNA results in the public database. In vitro, upregulation of ME1 by transfecting MCF-7 
cells with virus vector remarkably enhanced viability, motility and epithelial–mesenchymal 
transition (EMT) and decreased ROS levels, whereas knockdown in MDA-MB-468 cells 
produced totally opposite effects as expected. When pretreated with oxidizing agent, MCF-7 
cells overexpressing ME1 lost its motility, whereas MDA-MB-468 cells with knockdown of 
ME1 restored its motility when pretreated with antioxidant.
Conclusion: To our knowledge, these clinical and experiment works first suggested that 
ME1 may be a novel biomarker and potential therapeutic target for breast cancer metastasis, 
and its biological effect is mainly controlled by manipulating ROS.
Keywords: malic enzyme 1, breast cancer, prognosis, metastasis, reactive oxygen species

Plain Language Summary
Breast cancer is the most common malignancy in women worldwide. Tumor metastasis is the 
important cause for breast cancer patients’ deaths. It is also a hard problem for clinical 
treatment. In this article, Dr Hu’s team reported a novel risk factor and potential therapeutic 
target for breast cancer metastasis. Anaerobic glycolysis is a metabolic process in which 
glucose is broken down without the use of oxygen. However, cancer cells prefer anaerobic 
glycolysis even in the presence of oxygen. Various types of cancer including breast cancer 
express elevated levels of malic enzyme 1 (ME1), a metabolic enzyme which can promote 
anaerobic glycolysis. By evaluating the expression of ME1 in breast cancer tissues, Dr Hu’s 
team found high ME1 expression significantly correlated with risk factors for breast cancer 
recurrence, and indicated worse prognosis in breast cancer patients. In cellular experiments, 
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Dr Hu’s team found ME1 could eliminate reactive oxygen spe
cies and thus promote the malignant biological behaviors of 
breast cancer cells. Future studies should address the strategies 
targeting ME1 for breast cancer treatment.

Introduction
Breast cancer is the most common malignancy in women 
and one of the three most common malignant tumors 
worldwide.1 In recent years, the curative effect of breast 
cancer has increased significantly. Nonetheless, even in 
patients with no lymph node metastasis, nearly 20% of 
them suffer from breast cancer recurrence.2,3 Therefore, it 
is necessary to further characterize patients with high 
recurrence risk and explore the molecular mechanism of 
breast cancer progression to help develop personalized 
treatment.

Reprogramming energy metabolism is one of the hall
marks of cancer, which is known as Warburg effect: cancer 
cells prefer glycolysis even in the presence of oxygen.4 It 
has been well accepted that cancer cells reprogram the 
metabolic patterns to satisfy their rapid proliferation and 
metastasis.5 In breast cancer, many glycolysis enzymes 
(hexokinase, phosphofructokinase, pyruvate kinase, etc.), 
glucose transporters, together with related signaling path
ways (PI3K/AKT, mTOR, AMPK, etc.) and transcription 
factors (c-myc, p53, HIF-1, etc.) have been reported to be 
essential for the energy metabolism, and contribute to cell 
proliferation, metastasis, angiogenesis, and resistance to 
chemotherapy and radiation.6

Malic enzyme 1 (ME1, Enzyme Commission number: 
1.1.1.40) is a cytosolic metabolic enzyme that catalyzes the 
citric acid cycle intermediate malate to pyruvate, the sub
strate of glycolysis, and converts Nicotinamide adenine dinu
cleotide phosphate (NADP) to Nicotinamide adenine 
dinucleotide phosphate hydrate (NADPH), the necessities 
of various biosynthetic reactions. Besides, ME1 can form 
physiological complexes with 6-Phosphogluconate dehydro
genase and further increase the pentose phosphate pathway 
flux and NADPH generation.7 Hence, ME1 promotes glyco
lysis and is involved in reactive oxygen species (ROS) home
ostasis, glutamine metabolism and lipogenesis,8 playing an 
important role in Warburg effect. We performed data mining 
from the public Oncomine database and found that ME1 was 
upregulated in various cancer types including breast cancer. 
Recently, the potential function of ME1 has been revealed in 
tumor progression. However, there is a lacking of research on 
the role of ME1 in breast cancer. These findings prompted us 
to assess the value of ME1 in breast cancer.

In the present study, we evaluated the relationships 
between ME1 expression and clinicopathological features 
in breast cancer patients, and explored the potential role of 
ME1 in proliferation, migration and invasion of breast 
cancer cells. Our clinical and experimental work identified 
ME1 as a novel prognostic indicator, highlighted its poten
tial role in the development of breast cancer and found its 
effect could be mainly blocked by manipulating ROS.

Materials and Methods
Patients, Tissue Specimens and Clinical 
Data
The study cohort consisted of 220 female breast cancer 
patients who underwent radical surgery between 
11 August 2015 and 17 May 2016 in Fudan University 
Shanghai Cancer Center (FUSCC, Shanghai, China). 
Eligible patients were women who had histologically con
firmed invasive breast cancer; had no evidence of distant 
metastasis; and provided sufficient tissues for further 
research. Patients were ineligible if they had received 
neoadjuvant chemotherapy or radiation therapy. Formalin- 
fixed paraffin-embedded breast cancer tissues were used as 
the study materials. Clinical data of the patients were 
retrieved from the Outcome unit. Molecular subtype was 
defined according to the St. Gallen International Expert 
Consensus Conference on the Primary Therapy of Early 
Breast Cancer 2013 (Supplementary Table S1).9 The med
ium follow-up period was 29.2 months (range 0.50–34.25). 
Recurrence-free survival (RFS) time was calculated from 
the date of radical surgery to the date of breast cancer 
recurrence (ipsilateral breast, local-regional, or distant), 
death or the last time of follow-up.

Immunohistochemistry (IHC)
Tissue microarray was constructed by Wei Ao biotech 
Company (Shanghai, China). Duplicate cores, which were 
selected morphologically as representative regions of tumor 
tissues, were taken from each specimen with a diameter of 
2 mm. After deparaffinized and rehydrated, the sections were 
heated in an autoclave at 120°C in sodium citrate buffer (pH 
6.0) for 10 min for antigen retrieval. The sections were then 
incubated with 3% hydrogen peroxide for 15 min. After 
blocking of nonspecific binding with QuickBlock™ 
Blocking Buffer (Beyotime, P0260, China) for 15 min, the 
sections were incubated at 4°C with ME1 antibody (Abcam, 
ab97445, 1:1000, USA) overnight. The IHC Kit (GTVision, 
GK500705, China) including second antibody and DAB 
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substrate was used. After washing with PBS, the sections 
were incubated with the second antibody for 30 min at room 
temperature. Color was developed with DAB (1:100) for 2 
min. The sections were counterstained with hematoxylin 
(Servicebio, G1004, China), and finally dehydrated. The 
TMA section omitting the incubation of primary antibody 
was used as negative control. We also verified that intercel
lular substance was not stained to exclude nonspecific back
ground staining. ME1 staining was observed mainly in 
cytoplasm and a small part was in nucleus.

Immunohistochemical Staining Score
The standards for IHC staining scoring were previously 
described (Supplementary Table S2).10 Herein the intensity 
range was 0 = negative; 1 = low; 2 = medium and 3 = high. 
The quantity 0 = no positivity; 1 = positivity in 0–10%; 
2 = positivity in 11–50%; 3 = positivity in 51–80%; 4 = posi
tivity in >80%. The final immunoreactive score (IRS, ranging 
from 0–12) was obtained by multiplying the intensity score 
and the quantity score. Two pathologists blinded to the 
patients’ information scored the immunohistochemical stain
ing. In discrepant cases, they further reviewed the cases and 
reached a consensus. For ME1 low and high expression was 
defined as IRS ≤ 6 and IRS > 6, respectively.

Cell Lines and Cell Culture
Cell lines including MCF-7, MDA-MB-468, SKBR3, 
MDA-MB-231, ZR-75-1 and 293FT were obtained from 
the Cell Research Institute (Shanghai, China). Cells were 
routinely cultured in high-glucose DMEM (MCF-7, 
SKBR3, ZR-75-1 and 293FT) (Hyclone, USA) or L-15 
(MDA-MB-468 and MDA-MB-231) (Hyclone, USA), 
supplemented with 10% (v/v) fetal bovine serum (Gibco, 
USA) at 37°C in a humidified 5% CO2 atmosphere (MCF- 
7, SKBR3, ZR-75-1 and 293FT) or 100% atmosphere 
(MDA-MB-468 and MDA-MB-231).

Protein Extraction and Western Blotting 
Analysis
Cells were washed twice with pre-chilled PBS, pelleted by 
centrifugation and lysed in RIPA (Beyotime, PC102, 
China). After incubation for 30 min on ice, lysates were 
centrifuged (12,000g, 10 min, 4°C). Supernatants were 
collected and the protein concentration was measured 
using a BCA protein assay reagent (Enzyme, ZJ101, 
China). Total protein (20ug) was separated on 10% SDS- 
PAGE and then transferred to nitrocellulose membranes for 

2h at room temperature. The membranes were incubated 
with the appropriate primary antibodies (anti-ME1, Abcam, 
ab97445, 1:1000, USA; anti-β-actin, Proteintech, 60,008- 
1-Ig, 1:1000, USA) overnight at 4°C, washed three times 
with TBST, and then incubated with the corresponding 
secondary antibody (goat anti rabbit IgG, SA00001-2, 
1:1000; goat anti mouse IgG, SA00001-1, 1:1000, 
Proteintech, USA) for 1h at room temperature. The bands 
were visualized by Immobilon Western Chemiluminescent 
HRP Substrate (Millipore, WBKLS0100, USA) and 
detected with a luminescent image analyzer (GE Image 
Quant LAS4000 mini, USA).

Plasmids, Constructs and Infection
ZsGreen-labelled pHBLV lentiviral vector was purchased 
from XY biotech Company (Shanghai, China). Full-length 
cDNA encoding ME1 was ligated to ZsGreen-labelled 
pHBLV vector according to the manufacturer’s instructions. 
Cherry-labelled GV298 lentiviral vector was purchased 
from Genechem (Shanghai, China). The siRNA target 
sequence (5-GCTGAGGTTATAGCTCAGCAA-3) for 
ME1 (Genebank ID, NM_002395) and two different single- 
stranded DNA oligonucleotides (5-CCGGGCTGAGG 
TTATAGCTCAGCAACTCGAGTTGCTGAGCTATAAC
CTCAGCTTTTTG-3 and 5-GATCCAAAAAGCTGAG 
GTTATAGCTCAGCAACTCGAGTTGCTGAGCTATAA
CCTCAGC-3) used to match to generate the ME1-siRNA 
constructs were designed by GeneChem. The ME1-siRNA 
constructs were inserted into Cherry-labelled GV298 vector 
to form ME1-shRNA. Lentivirus carrying ME1 cDNA or 
shRNA targeting ME1 was produced from 293FT cells. 
MCF-7 and MDA-MB-468 cells were infected with lenti
virus and then selected with puromycin. The overexpres
sion and knockdown efficacy were evaluated by Western 
blotting.

Cell Proliferation Assays
Cells were seeded in 96-well plates (2000 cells/well) in 
triplicate and cell viability was examined by Cell Counting 
Kit-8 (CCK-8) assay (Dojindo Laboratories, Japan). Cells 
were seeded in 6-well plates (1000 cells/well) in triplicate 
and cultured for two weeks in colony-formation assay. 
Colonies were washed three times in PBS, fixed with 4% 
formaldehyde and stained with Crystal violet for 5 min.

Cell Migration and Invasion Assays
The migration and invasion assays were done in a 24-well 
Chemotaxis chamber with 8-μm pores (Corning, USA). 
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For migration assays, 5×104 cells were seeded into the 
Matrigel-uncoated upper insert at 24-well in medium with
out serum. Medium containing 20% serum was added to 
the well as a chemoattractant. Following a culture of 36 h, 
non-invading cells were removed from the upper surface. 
For invasion assays, 1×106 cells were seeded into the 
Matrigel-coated upper insert at 24 wells in medium with
out serum. Medium containing 20% serum was added to 
the well as a chemoattractant. Following a culture of 48 h, 
non-invading cells were removed. Then, the membranes 
were fixed with 4% formaldehyde for 15 min. The invad
ing cells were stained with Crystal violet for 5 min.

Detection of ROS Level
Cells in 6-well plates were washed with PBS three times 
and incubated with Dihydroethidium (DHE, Beyotime, 
S0063, China) or 2ʹ,7ʹ-Dichlorodihydrofluorescein diace
tate (DCFH-DA, Beyotime, S0033, China) for 30 min at 
room temperature. Afterwards, cells were collected, 
washed with PBS three times and resuspended in PBS. 
DHE or DCF fluorescence was measured by FACScan 
Flow Cytometer (Beckman-Coulter, USA) within 
30 min.

Statistical Analyses
We evaluated the correlations between ME1 expression 
and clinicopathological parameters by Pearson Chi- 
square test or Fisher’s exact test. Recurrence-free survi
val was plotted and calculated using Kaplan–Meier 
(KM) curve while differences between groups were 
compared by Log rank test. Univariate Cox proportional 
hazard model was used to estimate the influence of each 
variable on RFS. Variables with p values <0.1 in uni
variate Cox proportional hazard models were further 
included in multivariate Cox proportional hazard mod
els. In laboratory experiments, quantitative variables 
were illustrated as means ± SD and analyzed with the 
Student’s t-test. Two-sided p values <0.05 were consid
ered statistically significant. All analyses were per
formed by SPSS 22.0.

Results
High ME1 Expression Was Associated 
with Risk Factors of Breast Cancer 
Recurrence
To evaluate the role of ME1 in breast cancer, we first 
performed IHC staining of ME1 in a tissue microarray 

containing 220 early-stage breast cancer patients. Several 
representative cases are shown in Figure 1A. ME1 mainly 
located in cytoplasm and a small part was observed in 
nucleus. As defined above, 51.8% (114/220) and 48.2% 
(106/220) of the patients were categorized as ME1-high 
and ME1-low cases, respectively.

Next, we explored the correlations between ME1 
expression by IHC and clinicopathological parameters in 
our cohort (Table 1). Comparing to ME1-low cases, ME1- 
high cases were significantly associated with larger tumor 
size (p = 0.036), higher incidence of lymph node metas
tasis (p < 0.001) and higher incidence of lymph-vascular 
invasion (p = 0.001). However, we did not find any spe
cific relations of ME1 expression with age, histopathologic 
type, histologic grade, ki67 index or molecular subtype, 
partially due to the limited sample size of our cohort. 
Moreover, we investigated the correlation between ME1 
mRNA level and clinicopathological parameters in Curtis 
Breast dataset via Oncomine database.11 High ME1 
mRNA level correlated to higher histologic grade, later 
TNM stage, TNBC and HER2 positive breast cancer 
(Figure 1B). In short, high expression of ME1 in both 
the mRNA and protein levels was associated with risk 
factors of breast cancer recurrence.

High ME1 Expression Indicated Worse 
Prognosis of Breast Cancer Patients
Since ME1 expression correlated with risk factors of breast 
cancer recurrence, we further evaluated the association 
between ME1 expression and RFS in our cohort. Survival 
analysis by the Log rank test showed high ME1 expression 
was significantly correlated with worse RFS (p < 0.01) 
(Figure 1C). In addition, univariable cox regression showed 
pathologic N stage ≥2, lymph-vascular invasion and ME1 
high expression were associated with worse RFS (p < 0.1). 
Further multivariable cox regression including the above 
three variables identified ME1 high expression as an inde
pendent negative prognostic factor for RFS (HR = 5.343, 
95% CI = 1.191–23.971, p = 0.029) (Table 2). Moreover, we 
conducted stratified analysis which revealed high ME1 
expression was related to worse RFS among cases more 
than 45 years old (HR = 10.725, 95% CI = 1.394–82.482, 
p = 0.023) and among those with Ki67 index ≥20% 
(HR = 4.127, 95% CI = 1.176–14.485, p = 0.027) (Figure 2).

Finally, we investigated the relationships between ME1 
mRNA expression and survival in breast cancer via an 
online tool KM plotter.12 Consistently, high ME1 mRNA 
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Figure 1 High ME1 expression correlated with risk factors of breast cancer recurrence and indicated worse prognosis. (A) Representative immunohistochemistry images in 
breast cancer tissues with ME1 staining (magnification, 400×). From left to right are images representing IRS =1, IRS = 6, IRS = 8, and IRS = 12. (B) ME1 mRNA expression 
with histologic grading, TNM staging and molecular subtype (data from Curtis Breast dataset, Oncomine database); (C) KM test for RFS stratified by ME1 protein level (data 
from FUSCC); (D) KM test for RFS stratified by ME1 mRNA level (data from KM plotter); (E) KM test for overall survival stratified by ME1 mRNA level (KM plotter). 
Abbreviations: ME1, malic enzyme 1; IRS, immunoreactive score; KM, Kaplan–Meier; RFS, recurrence-free survival; HR, hazard ratio; FUSCC, Fudan University Shanghai 
Cancer Center.
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expression related to both worse RFS (HR = 1.29, 95% 
CI = 1.04–1.59, p < 0.05) (Figure 1D) and worse overall 
survival (HR = 1.39, 95% CI = 1.24–1.55, p < 0.05) 
(Figure 1E). Collectively, high expression of ME1 indi
cated worse prognosis of breast cancer patients.

Breast Cancer Cell Lines with High 
Malignancy Showed High ME1 Expression
The correlations between ME1 expression with clinico
pathological features and outcomes suggest ME1 could 

participate in breast cancer progression. To further evaluate 
the role of ME1 in breast cancer progression in the experi
mental context, we first investigate the endogenous ME1 
expression in several representative breast cancer cell lines 
with diverse malignancy by Western blotting assays.13 ME1 
showed higher expression in the more aggressive cell lines 
including TNBC cell lines (MDA-MB-468 and MDA-MB 
-231) and HER2 positive cell line (SKBR3), while lower 
expression in luminal cell lines (ZR-75-1 and MCF-7) 
(Figure 3A).

Table 1 Clinicopathological Parameters of Patients and ME1 Protein Expression

Parameters No. of Patients n=220 ME1 Expression p-value

Low, n=106 High, n=114

Age, n (%) <45 years 53 (24.1) 29 (27.4) 24 (21.1) 0.274

≥45 years 167 (75.9) 77 (72.6) 90 (78.9)

Tumor size, n (%) ≤2cm 86 (39.1) 49 (46.2) 37 (32.5) 0.036
>2cm 134 (60.9) 57 (53.8) 77 (67.5)

Lymph node metastasis, n (%) No 113 (51.4) 68 (64.2) 45 (39.5) <0.001
Yes 107 (48.6) 38 (35.8) 69 (60.5)

Histopathologic type, n (%) IDC 201 (91.4) 97 (91.5) 104 (91.2) 0.941

Non-IDC a 19 (8.6) 9 (8.5) 10 (8.8)

Histologic grade, n (%) 1–2 74 (33.6) 37 (34.9) 37 (32.5) 0.907

3 132 (60.0) 62 (58.5) 70 (61.4)
Unknown 14 (6.4) 7 (6.6) 7 (6.1)

Ki67%, n (%) <20% 22 (10.0) 10 (9.4) 12 (10.5) 0.787
≥20% 198 (90.0) 96 (90.6) 102 (89.5)

Lymph-vascular invasion, n (%) Negative 113 (51.4) 66 (62.3) 47 (41.2) 0.001
Positive 106 (48.2) 39 (36.8) 67 (58.8)

Unknown 1 (0.5) 1 (0.9) 0 (0.0)

HR status b, n (%) Positive 104 (52.7) 53 (50.0) 51 (44.7) 0.435

Negative 116 (52.7) 53 (50.0) 63 (55.3)

HER2 status c, n (%) Positive 55 (25.0) 21 (19.8) 34 (29.8) 0.184

Negative 162 (73.6) 83 (78.3) 79 (69.3)
Unknown 3 (1.4) 2 (1.9) 1 (0.9)

Molecular subtype, n (%) Luminal A 15 (6.8) 6 (5.7) 9 (7.9) 0.190
Luminal B 89 (40.5) 47 (44.3) 42 (36.8)

HER2+ 24 (10.9) 7 (6.6) 17 (14.9)

TNBC 92 (41.8) 46 (43.4) 46 (40.4)

Adjuvant chemotherapy, n (%) Yes 190 (86.4) 91 (85.8) 99 (86.8) 0.953

No 21 (9.5) 10 (9.4) 11 (9.6)
Unknown 9 (4.1) 5 (4.7) 4 (3.5)

Notes: p<0.05 is considered statistically significant. Significant p-values are in bold. aNon-IDC cases included invasive lobular carcinoma, metaplastic carcinoma, invasive 
micropapillary carcinoma, neuroendocrine carcinoma, apocrine carcinoma, malignant adenomyoepithelioma and adenoid cystic carcinoma. bHR status was evaluated using 
immunohistochemistry. cHER2 status was evaluated using both immunohistochemistry and fluorescence in situ hybridization. 
Abbreviations: ME1, malic enzyme 1; IDC, invasive ductal carcinoma; HR, hormone receptor; HER2, human epidermal receptor-2; TNBC, triple negative breast cancer.
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Table 2 Survival Analysis of RFS by Cox Regression

Parameters Univariate Multivariate

HR 95% CI p-value HR 95% CI p-value

Age

≥45 years 1
<45 years 0.962 [0.314, 2.952] 0.946

Tumor size
≤2cm 1

>2cm 1.217 [0.450, 3.291] 0.699

Pathologic N stage

pN0–1 1 1

pN2–3 3.505 [1.352, 9.086] 0.010 1.731 [0.549, 5.463] 0.349

Histopathologic type

Non-IDC a 1
IDC 0.383 [0.110, 1.333] 0.132

Histologic grade
1–2 1

3 1.353 [0.470, 3.897] 0.575

Ki67%

<20% 1
≥20% 1.862 [0.247, 14.048] 0.547

HR status b

Negative 1

Positive 0.545 [0.201, 1.477] 0.233

HER2 status c

Negative 1

Positive 0.931 [0.303, 2.855] 0.900

Molecular classification

Luminal A 1 0.602
Luminal B 0.789 [0.092, 6.759] 0.829

HER2+ 2.026 [0.211, 19.490] 0.541

TNBC 1.367 [0.171, 10.950] 0.768

Lymph-vascular invasion

Negative 1 1
Positive 3.392 [1.094, 10.519] 0.034 1.895 [0.504, 7.122] 0.344

Adjuvant chemotherapy
No 1

Yes 0.811 [0.185, 3.550] 0.781

ME1 expression

Low 1 1

High 4.482 [1.288, 15.597] 0.018 5.343 [1.191, 23.971] 0.029

Notes: p<0.05 is considered statistically significant. Significant p-values are in bold. aNon-IDC cases included invasive lobular carcinoma, metaplastic carcinoma, invasive 
micropapillary carcinoma, neuroendocrine carcinoma, apocrine carcinoma, malignant adenomyoepithelioma and adenoid cystic carcinoma. bHR status was evaluated using 
immunohistochemistry. cHER2 status was evaluated using both immunohistochemistry and fluorescence in situ hybridization. 
Abbreviations: RFS, recurrence-free survival; HR, hazard ratio; CI, confidence interval; IDC, invasive ductal carcinoma; HR, hormone receptor; HER2, human epidermal 
receptor-2; TNBC, triple negative breast cancer; ME1, malic enzyme 1.
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ME1 Promoted Proliferation, Migration, 
Invasion, and EMT in Breast Cancer Cells
To determine the effects of ME1 in breast cancer cells, we 
constructed MCF-7 cell line stably overexpressing ME1 
and MDA-MB-468 cell line stably expressing shRNA 
against ME1. The overexpressing and silencing effect 
were verified via Western blotting assays (Figure 3B 
and C). We first conducted cell proliferation assays. 
Ectopic expression of ME1 in MCF-7 cells significantly 
accelerated cell proliferation in CCK-8 assays and 
increased colony formation in colony growth assays 
(p < 0.001). On the contrary, cell proliferation and clono
genicity were suppressed with knockdown of ME1 in 
MDA-MB-468 cells (p < 0.01) (Figure 3D and E). Next, 
we examined whether ME1 could influence the ability of 
cell migration and invasion, which is another distinct 
feature of malignant tumor. Overexpression of ME1 in 

MCF-7 cells enhanced cell motility in both transwell 
migration and invasion assays (p < 0.05) (Figure 3F), 
accompanied by the development of epithelial–mesenchy
mal transition (EMT) (Figure 3H). In contrast, knockdown 
of ME1 in MDA-MB-468 cells produced totally opposite 
effects as expected (p < 0.05) (Figure 3G and H).

Regulating ROS Inhibited the Effect of 
ME1 on Cell Migration
It is acknowledged that ME1 catalyzes malate to pyruvate, 
accompanied by NADP+ converting to NADPH, which 
plays a crucial role on ROS homeostasis. Thus, we assessed 
ROS level to explore the possible mechanism by which 
ME1 could promote breast cancer progression. In accor
dance with our speculation, DHE fluorescence revealed that 
ME1 overexpression significantly decreased ROS level in 
MCF-7 cells (p < 0.01) (Figure 4A). Oppositely, ME1 
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knockdown apparently increased ROS level in MDA-MB 
-468 cells by DCF fluorescence (p < 0.001) (Figure 4B). 
When pretreated with hydrogen peroxide, an oxidizing 
agent, MCF-7 cells overexpressing ME1 showed higher 
ROS level (p < 0.05) and lost its motility in transwell 
migration assays (p < 0.001) (Figure 4C and E). 
Moreover, MDA-MB-468 cells with knockdown of ME1 
showed lower ROS level (p < 0.001) and restored its moti
lity when pretreated with N-acetyl cysteine, an antioxidant 
(p < 0.001) (Figure 4D and F).

Discussion
In the present study, we demonstrated that ME1 high 
expression was associated with risk factors of breast cancer 
recurrence and indicated worse prognosis. Thus, we found 
out the important role of ME1 in breast cancer. Further work 
showed ME1 promoted cell proliferation, migration, inva
sion ability, and EMT in breast cancer cells, probably by 
decreasing intracellular ROS level, which probably reflects 
ROS level in the tumor micro-environment.

Previous study of ME1 in breast cancer only focusing on 
TNBC subtype drew the same conclusion as ours that ME1 
was highly expressed in TNBC cells,14 but its upstream up- 
regulators have not been reported yet. We also found the 
relationship between ME1 expression and HER2 positive in 
Curtis Breast Dataset. This phenomenon was supported by 
the evidence that NR1D1, the positive transcription factor 
of ME1, resides on ERBB2-containing 17q12-21 amplicons 
and is part of the ERBB2 expression signature.15 p53 can 
inhibit ME1, and downregulation of ME1 reciprocally acti
vates p53 through distinct MDM2- and AMP-activated 
protein kinase-mediated mechanisms in a feed-forward 
manner.8 ME2 is frequently hemizygously codeleted with 
SMAD4, and ME1, as its isoenzyme, is transcriptionally 
upregulated in an ETV4-dependent manner.16 ME1 upregu
lation occurs via direct transcriptional activation mediated 
by β-catenin/TCF1, in which way oncogenic WNT/β- 
catenin signaling facilitates tumor growth.17 These findings 
show the complex regulation mechanisms of ME1 and 
further exploration is needed.

The role of ME1 in breast cancer has not been fully 
elucidated. Although ME1 is reported to enhance cell pro
liferation and metastasis capacity in multiple cancer 
types,14,18-20 the underlying mechanism of which still 
remains inexplicit. On one hand, ME1 catalyzes malate to 
pyruvate, inducing cell glucose uptake and lactate production 
and thus promote Warburg effect, which is favorable for 
tumor.14 On the other hand, NADPH generated from ME1- 

catalyzed reaction reduces ROS accumulation, which is the 
common byproduct during tumor progression. Otherwise, 
excessive ROS can result in macromolecules damage includ
ing lipids, proteins, and nucleic acids, which is unfavorable 
for tumor.21 Moreover, ROS released to micro-environment 
may lead to ROS activation in other cell types including 
fibroblasts, vascular endothelial cells, immune cells, etc., 
which can in turn have a crosstalk with tumor cells. Our 
study implied that ME1 could help maintain the homeostasis 
of ROS and partially explained the function of ME1, in 
accordance with the results in gastric cancer cells.16

As far as we know, there are still no anti-tumor drugs 
targeting ME1. Considering the important role of ME1 in 
tumor progression, we also reflect on whether ME1 is 
a potential therapeutic target. Since ME1 is widely expressed 
in human tissues and it proves essential for the survival of 
normal fibroblasts,22 ME1 inhibition might do harm to nor
mal tissues severely and may not be a suitable therapeutic 
strategy. As demonstrated above, ME1 is highly expressed in 
HER2 positive cancer; hence, ME1 inhibition conjugated to 
trastuzumab could be a possible treatment for HER2 positive 
patients. Alternatively, targeting glycolysis, NADPH- 
producing enzymes, redox-regulating enzymes23 or potential 
downstream molecules of ME1 may be a better approach.

There are some limitations in our study. The follow-up 
period of our cohort was still short and the recurrence rate 
was only 7.7% (17/220) by the end-up point of our study, 
but our results were supported by data from KM plotter 
with a longer follow-up period. In order to identify 
whether ME1 influence the efficacy of treatment, informa
tion of adjuvant therapy including chemotherapy, anti- 
HER2 therapy and radiotherapy requires to be updated, 
which is ongoing in our center. Besides, we did not find 
the exact molecular mechanisms by which ME1 promoted 
tumor progression, which is now in active research in our 
laboratory. Despite these limitations, this study can clearly 
indicate the important role of ME1 in breast cancer and 
give emphasis on the relationship between Warburg effect 
and breast cancer.

Conclusions
In breast cancer tissues, high ME1 expression determined by 
IHC was significantly associated with risk factors of breast 
cancer recurrence and indicated worse prognosis. In vitro, 
ME1 enhanced viability, motility, and EMT. The influence 
of ME1 on cell motility can be reversed by manipulating 
ROS. These clinical and experiment works first suggested 
that ME1 may be a novel biomarker and potential 
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therapeutic target for breast cancer metastasis, and its biolo
gical effect is mainly controlled by manipulating ROS.

Abbreviations
CCK-8, Cell counting kit-8; CI, Confidence interval; DCFH- 
DA, 2ʹ,7ʹ-Dichlorodihydrofluorescein diacetate; DHE, 
Dihydroethidium; ER, Estrogen receptor; HER2, Human epi
dermal growth factor receptor-2; HR, Hazard ratio; IHC, 
Immunohistochemistry; IRS, Immunoreactive score; KM, 
Kaplan–Meier; ME1, Malic enzyme 1; NADP, Nicotinamide 
adenine dinucleotide phosphate; NADPH, Nicotinamide ade
nine dinucleotide phosphate hydrate; RFS, Recurrence-free 
survival; ROS, Reactive oxygen species; shRNA, Short hair
pin RNA; TNBC, Triple negative breast cancer.
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