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Abstract: Prosthesis-associated infections and aseptic loosening are major causes of implant 
failure. There is an urgent need to improve the antibacterial ability and osseointegration of 
orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc- 
containing metal oxide nanoparticles that have been widely studied in many fields, such as 
food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and 
good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. 
Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green 
preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential 
application in the biological field. This review discusses the antibacterial abilities of ZnO- 
NPs, including mechanisms and influencing factors. The toxicity and shortcomings of antic
ancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with 
other materials are introduced. Green preparation methods are also briefly reviewed. 
Keywords: antibacterial property, composite material, orthopedic implant, osteogenic 
activity, zinc oxide nanoparticles

Introduction
Pathological conditions of bones, like osteoporosis or cancer, often cause structural 
changes such as trabecular bone reduction and cortical bone thinning, which 
increase the likelihood of fractures and can lead to other bone defects. In addition 
to diseases, trauma is the main cause of bone defects.1–4 Although intrinsic self- 
healing abilities may naturally repair minor defects, therapeutic interventions are 
often necessary for defects larger than 6 mm.5

At present, autografting is considered the gold standard for treating critical bone 
defects.6 Although autografts have good histocompatibility and are non- 
immunogenic, the process of implantation may further harm the patient and could 
cause chronic pain, bleeding, and other complications.7,8 Another common treat
ment is the allografting of bone tissue transplanted from a donor. However, 
compared with autografting, it may lead to immune rejection and even serious 
infection.9 Artificial bone replacement is a widely accepted clinical treatment that 
has been used to treat bone defects for decades. However, prostheses can pose 
challenges such as infection and aseptic loosening.10,11 Fortunately, their biological 
performance can be improved by proper modifications, including the introduction 
of nanoparticles (NPs).

NPs are usually defined as objects with a dimension of 1–100 nm.12 These nano- 
scaled materials may possess different physical and chemical properties compared with 
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the bulk ones due to their high surface area to volume 
ratio.13,14 NPs are widely applied in industry, cosmetics, 
and food products.15,16 As a trace element, zinc participates 
in various metabolic processes. A substantial proportion of 
zinc (~30%) is stored in bone, and the pathological reduction 
of zinc levels impairs bone growth.17–19 Zinc plays an impor
tant regulatory role in bone formation. In addition to being 
a component of inorganic minerals, it also activates proteins 
involved in bone homeostasis.20 Zinc oxide NPs (ZnO-NPs) 
are a common type of zinc-containing nanoparticles that have 
gained increasing attention in biological research because of 
their low toxicity, biological compatibility, bioactivity, and 
chemical stability.21 ZnO-NPs can accelerate bone growth 
and mineralization.22 In addition, they possess selective toxi
city toward bacteria and normal cells.23,24 These biological 
properties imbue ZnO-NPs with considerable potential in 
orthopedic applications. In fact, studies have confirmed that 
implants of various materials, like metals and polymers 

decorated with ZnO-NPs via doping or coating, show better 
antibacterial and osteogenic abilities.25,26

To our knowledge, this is the first article focused on 
summarizing the recent progresses of ZnO-NPs in orthopedic 
applications. The first part is a brief review on the green 
preparation methods. Then, The mechanisms, influencing fac
tors, and recent progress in antibacterial applications are dis
cussed (Figure 1). The third section discusses the mechanisms 
and reducing methods of toxicity and proposes a hypothesis on 
the limitations of ZnO-NPs in anticancer applications. The 
final section highlights the osteogenic properties of ZnO- 
NPs. This article reviews research studies on the antibacterial, 
toxic, anticancer, and osteogenic properties of ZnO-NPs in 
orthopedics over the last 5 years. This review also sheds light 
on the ability of ZnO-NPs to exert both antibacterial and 
osteogenic effects, and their considerable potential in syner
gies with other co-decorated materials to enhance the biologi
cal activity of implants.

Figure 1 Schematic of ZnO-NP preparation strategies, antibacterial mechanisms, and influencing factors.  
Abbreviations: ROS, reactive oxide species; ZnO-NPs, zinc oxide nanoparticles.
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Green Fabrication Process of 
ZnO-NPs
There are Two strategies adopted for NPs preparation: top- 
down and bottom-up.27,28 The top-down strategy refers to 
breaking bulk materials into nano-scale particles, but it 
produces imperfect surface structures.29 In contrast, the 
bottom-up strategy refers to the self-assembly process in 
which atoms gathered into a nucleus and finally aggregate 
into NPs.30 As the most widely used preparation strategy, 
Products obtained through bottom-up strategies usually 
have homogeneous chemical NPs compositions.31 ZnO- 
NPs can be prepared by physical, chemical, and biological 
methods. Physical methods often follow the top-down 
strategy and include: grinding, milling, thermal evapora
tion, pulsed laser deposition, and others.32,33 Although 
large quantities of ZnO-NPs can be produced in a short 
period of time, problems like high energy consumption, 
uneven size distribution, and low product nanometer rate 
still need to be solved.30,34 Chemical methods like electro
chemistry, chemical reduction, and photochemical reduc
tion techniques usually follow a bottom-up strategy.33 NPs 
produced via chemical methods are homogeneous in 
size.35 However, toxic chemical reagents used during 
synthesis often remain on NP surface, which limits their 
use in medical applications.23,36,37

ZnO-NP biosynthesis is mostly categorized as wet che
mical synthesis involving plants or microorganisms. 
Biosynthesis is environmentally friendly and safe, and the 
obtained ZnO-NPs are usually more biocompatible since 
they were functionalized by biochemicals.32,38 Customized 
sizes and structures can be obtained by modulating extract 
parameters like the original source (different plants or micro
organisms), pH, and concentration.32,39,40 ZnO-NPs can be 
obtained through plant extracts using milder solvents such as 
water and ethanol, and the reducing and capping agents in 
extracts like phenols and flavones can stabilize the NPs 
through electrostatic, steric, hydration, and van der Waals 
forces.41–44 The preparation process of plant extract-assisted 
biosynthesis is relatively simple and can be done in three 
steps (Figure 2). Generally, the first step is plant extract 
preparation. Next, zinc salts are added to plant extracts as 
precursors. During this stage, metal ions are reduced into 
NPs and then stabilized by reducing and capping agents. In 
the final step, ZnO-NPs are obtained after other synthesis 
processes like high temperature annealing.39,45 Wang et al45 

successfully obtained spherical ZnO-NPs with a diameter of 
20 nm, using the extract of Artemisia annua. Although NP 
sizes were relatively homogeneous, the product showed 
a specific aggregation phenomenon, which could lead to 
toxicity. Hu et al46 obtained spherical ZnO-NPs with 
a diameter of 8 nm from the Cucurbita pepo leaf 

Figure 2 Schematic diagram of ZnO-NP preparation from plant extracts.  
Notes: (A) green preparation process through plant extract utilization. (B) Mechanisms of green preparation through plant extracts utilization. Reprinted from Applied 
Materials Today, Volume 5, Shamaila S, Sajjad AKL, Ryma N-u-A, et al, Advancements in nanoparticle fabrication by hazard free eco-friendly green routes, Page: 150–199, 
Copyright (2016) with permission from Elsevier.  
Abbreviation: ZnO-NPs, zinc oxide nanoparticles.
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extract using a classic mixing-stirring-annealing process. 
Interestingly, they claimed no aggregation occurred. This 
discrepancy may be explained by the different extracts and 
capping agents with diverse stabilizing effects.

Microorganisms including bacteria, fungi, and algae 
can also participate in ZnO-NP biosynthesis,47,48 as these 
microorganisms have a self-defense mechanism for heavy 
metal ion exposure.49 The preparation process can be 
divided into microorganism cultivation, biochemical activ
ities of microorganisms, intra- and extracellular transport 
of metal ions, intracellular nucleation, and finally NP 
formation.35,49 Shamsuzzaman et al50 used a Candida albi
cans suspension as a reducing and capping agent, and 
successfully prepared quasi-spherical ZnO-NPs with 
a diameter of ~15–20 nm. Sanaeimehr et al51 also obtained 
ZnO-NPs with good anticancer effects using Sargassum 
muticum extract.

It is worth noting that biosynthetic methods are not 
perfect. The extract components may vary and some even 
remain unknown, which means that further purification of 
functional biochemicals is needed.52 In conclusion, Future 
explorations of biosynthesis should be focused on details 
of the mechanisms and purification of functional biochem
icals from plants or microorganisms. Successful large- 
scale biosynthesis of custom-structured ZnO-NPs will 
enhance their application in biological fields.

Antibacterial Properties of 
ZnO-NPs
Antibacterial Mechanism and Influencing 
Factors
Prosthesis-associated infections are a major cause of 
implantation failure and can occur due to improper surgical 
performance or post-operation contamination from sur
rounding tissues.53 Revision of the prosthesis increases the 
financial burden of patients and also causes secondary 
injury.54 There are five stages in the development of pros
thesis-associated infection: 1) reversible attachment; 2) 
irreversible attachment; 3) microcolony formation; 4) pro
liferation and maturation; and 5) matrix detachment.55 

During the proliferation and maturation stage, colonies 
begin to form biofilms. These protective extracellular 
matrixes greatly enhance the resistance of bacteria against 
the immune system and bactericides.56–59 It is therefore 
essential to inhibit bacterial attachment and growth at the 
early stage, which could be achieved using implants with 
antibacterial properties.

ZnO-NPs possess good antibacterial properties; how
ever, the specific mechanism is not clear. Antibacterial 
properties come from three aspects: the interaction between 
NPs and bacteria; the release of zinc ions (Zn2+); and the 
generation of reactive oxide species (ROS).24,60 Bacteria 
possess negative charges on their surfaces because of nega
tively charged cell wall components like teichoic and lipo
teichoic acid.61 Conversely, ZnO-NPs are positively 
charged in water suspensions.62

Electrostatic attraction between bacteria and ZnO- 
NPs leads to the accumulation of NPs on the bacterial 
surface, which changes the zeta potential of the bacteria 
and destroys the potassium channels on cell membranes, 
eventually leading to lipid peroxidation and increased 
permeability.63,64 This membrane dysfunction also 
causes enhancing internalization, which finally leads to 
excessive intracellular ZnO-NP accumulation and altered 
metabolism.65 Zn2+ also plays an important role in anti
bacterial properties; they can combine with functional 
proteins, thereby changing cell membrane permeability. 
As the intracellular Zn2+ concentration increases, inter
action with the thiol group of the enzyme is strength
ened, thus affecting various bacterial enzymatic 
reactions, weakening glycolysis, and inducing cell 
death.66,67 ROS are highly reactive oxygen-containing 
chemical species that are involved in maintaining cellu
lar homeostasis under normal conditions. However, high 
ROS levels may induce oxidative stress and toxicity.68,69 

ZnO-NPs can produce ROS when subjected to light or 
ultraviolet irradiation because of the electron-hole pair 
activation, but active redox cycling on NP surfaces will 
still produce ROS in aqueous solutions even in darkness. 
Excessive ROS will directly damage bacterial lipids, 
proteins, and DNA, ultimately killing the bacteria.70–72

Many factors can affect ZnO-NP antibacterial perfor
mance. A smaller size corresponds to a larger specific 
surface area and smaller volume, thus enhancing Zn2+ 

dissolution, ROS generation, and abilities to adsorb and 
penetrate cell membranes.65,73-76 Mahamuni et al77 

obtained ZnO-NPs with a diameter range of 15–100 nm 
through polyol synthesis. ZnO-NPs with the smallest dia
meter of 15 nm showed the best antibacterial effect on 
Staphylococcus aureus. Similarly, Wang et al78 found that 
bacteria are more sensitive to small-sized particles, by 
comparing the antibacterial properties of ZnO-NPs with 
diameters of 15, 50, and 90 nm.

Surface defects on particles also play an important role 
in mediating antibacterial properties. Physical defects like 

Li et al                                                                                                                                                                 Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 6250

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


irregular protrusions and sharp edges can mechanically 
damage bacteria, and surface electronic states caused by 
chemical defects may enhance ROS production.79 In addi
tion, antibacterial properties can be manipulated by differ
ent morphologies such as nanocombs, nanorods, 
nanobelts, nanowires, nanosheets, nanoflowers, and snow
flakes, and such structures can be achieved by changing 
the preparation method.80–83 Compared with spherical par
ticles, rod-shaped particles are more likely to penetrate the 
cell membrane, and thus have stronger bactericidal 
properties.84 Talebian et al85 compared the same volumes 
of ZnO-NPs in flower, rod, and ball structures and showed 
that flower-shaped particles had the highest specific sur
face area with more Zn2+ release and the strongest anti
bacterial properties. Various unique structures can confer 
many possibilities for orthopedic applications of ZnO- 
NPs. However, the mechanisms of ZnO-NP morphology 
on biological properties are not yet well understood. 
Therefore, more studies are needed particularly focused 
on specific mechanisms and optimal structures. Besides 
the intrinsic properties of ZnO-NPs, external environmen
tal factors also affect antibacterial properties. Li et al86 

examined the toxicity of ZnO-NPs toward S. aureus in 
ultrapure water, NaCl solution, minimal Davis medium 
(MD), and Luria–Bertani (LB) medium. They found that 
the solubility of ZnO-NPs in various solutions were as 
follows: LB, 68 mg/L; MD, 38 mg/L; NaCl, 14 mg/L; 
and ultrapure water, 6.9 mg/L. However, the strongest 
antibacterial properties were observed in ultrapure water. 
The difference in solubility was due to the different com
ponents of each solution. Chloride ions can form com
plexes with zinc ions in NaCl solution, and phosphates in 
other solutions can form Zn3(PO4)2 with zinc ions to 
accelerate dissolution. However, these reactions reduce 
the concentration of zinc ions, thereby reducing the anti
bacterial ability.

The species and metabolism of bacteria can also influ
ence antibacterial behaviors. Gram-negative bacteria are 
more resistant to ZnO-NPs because lipopolysaccharides 
on the cell wall prevent ZnO-NP adhesion and 
internalization.87 Antimicrobial tests show that the mini
mum inhibitory concentrations (MICs) of Gram-positive 
compared with Gram-negative bacteria are 50%–85% 
lower.88 Elizabeth et al89 observed an increased Zn2+ 

release in the presence of bacteria. This is because bacteria 
lower the surrounding pH during the metabolic process, 
thereby accelerating dissolution.90

Antibacterial Properties of ZnO-NP- 
Modified Implants
ZnO-NPs modifications imbue implants with good antibac
terial properties. Elizabeth et al89 covered titania nanotubes 
and titania nanoleaf with ZnO-NPs through precipitation. 
Compared with pure nano-patterned materials, the antibac
terial properties of modified samples were significantly 
improved. Artifon et al91 mixed polyetherimide (PEI) with 
different concentrations of ZnO-NPs and obtained a series 
of ZnO/PEI scaffolds by electrospinning. The antibacterial 
effect increased with higher ZnO-NP content. In addition to 
direct toxicity toward bacteria, ZnO-NP-modified implants 
can also regulate the immune system and enhance antibac
terial properties. Wang et al92 incorporated ZnO-NPs on the 
surface of a titanium substrate through magnetron sputter
ing to form a nano-coating. The modified samples exhibited 
good antibacterial properties during in vitro experiments. 
Interestingly, the authors reported even better antibacterial 
effects with in vivo experiments. Subsequently, they cul
tured macrophages with modified samples in vitro and 
found increased secretion of pro-inflammatory factors and 
enhanced phagocytosis ability against bacteria, indicating 
that immune system regulation played a considerable role in 
in vivo antibacterial ability.

In order to obtain materials with good antibacterial and 
osteogenic effects, ZnO-NPs are typically used as antibacter
ial agents in combination with osteogenic materials. The 
most common co-modified material is hydroxyapatite 
(HA).93–95 Maimaiti et al26 produced coatings of nano-HA 
(nHA) and ZnO-NPs and employed polypyrrole as a dual 
regulator using the pulse electrochemical deposition method. 
This coating exhibited good antibacterial properties while 
retaining mineralization functionality. Shitole et al96 obtained 
a series of multi-concentration gradient poly- 
epsiloncaprolactone (PCL)/nHA/ZnO scaffold through elec
trospinning by mixing PCL and nHA with ZnO-NPs in 
various concentrations. Although the antibacterial activity 
increased with higher concentration, MG-63 cell adhesion 
decreased on scaffolds with 15 wt% and 30 wt% ZnO-NPs, 
which indicated a cytotoxic effect. The final recommended 
concentration of ZnO-NPs was 10 wt%, which reduced the 
adhesion rates of S. aureus and E. coli by 80.8% and 82.1%, 
respectively, compared to the control group.

To enhance the antibacterial effect of ZnO-NPs, anti
biotics and other antibacterial NPs can be given in con
junction with ZnO-NPs to facilitate antibacterial synergy. 
Banerjee et al97 prepared ZnO-NPs by precipitation, 
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subsequently modified them with pancreatin to obtain 
ZnO-NPs-PK and studied their ability to inhibit MRSA 
(methicillin-resistant S. aureus). They found that the MIC 
to inhibit 90% of MRSA isolates was 50% lower for ZnO- 
NPs-PK compared with bare ZnO-NPs. Furthermore, com
bining ZnONPs-PK with vancomycin at a concentration of 
1/4 MIC almost completely inhibited MRSA growth. This 
phenomenon suggests that MRSA treated with low- 
concentration ZnO-NPs are more susceptive to certain 
antibiotics. However, because the antibacterial mechanism 
of ZnO-NPs is not fully understood, combining them with 
antibiotics and ZnO-NPs may not achieve a stable anti
bacterial effect. Alves et al98 pre-treated MRSA with low- 
concentration ZnO-NPs, which made MRSA develop 
a slight tolerance to the main antibacterial mechanism of 
ZnO-NPs. Subsequently, the antibacterial ability of anti
biotics with different mechanisms against ZnO-NP- 
tolerant MRSA were tested in sub-concentrations. The 
authors claimed that the inhibitory effects of vancomycin 
and rifampicin were not obvious, indicating that the main 
antibacterial mechanism of ZnO-NPs in this experiment 
were similar to those antibiotics, which inflict RNA 
damage and affect cell wall synthesis. This also means 
that without clarifying the antibacterial effect of ZnO-NPs, 
the combined application with various antibiotics will 
have low efficiency and uncertainty and may even trigger 
toxicity. Combining Ag nanoparticles (AgNPs) and ZnO- 
NPs while modifying implants has been drawing 
increasing attention. AgNPs are the most widely studied 
antibacterial agents, with broad-spectrum antibacterial 
effects and no known resistant strains.99 The combined 
application with AgNPs enhances antibacterial ability 
and reduces the toxicity associated with a high concentra
tion of a single material.100–102 Zhang et al100 mixed 
different proportions of AgNPs and ZnO-NPs (the total 
amount of these two NP concentration was10 wt%) with 
HA powder (90 wt%) and coated it on the surface of the 
titanium sheet using laser cladding. The antibacterial activ
ity against S. aureus of coatings with only ZnO-NPs was 
relatively low, only 35.9%. Although the antibacterial rate 
of coatings with 10 wt% AgNPs reached 93%, it caused 
cytotoxicity in normal cells. Thus, the Ag7ZnO3HA coat
ing (Ag/ZnO/HA = 7:3:90 wt%) was found to be the best 
biological coating. The antibacterial rate of S. aureus 
reached 85.8%, and the coating retained good biocompat
ibility and osteogenic effects (Figure 3).

ZnO-NPs have shown great potential for antimicrobial 
modification of implants, but challenges still exist. The 

underlying antibacterial mechanisms remain to be clari
fied, and the effects of combined application with antibio
tics and the ability to regulate the immune system require 
further research.

Toxicity and Anticancer Properties
Toxicity Mechanisms and Reducing 
Methods
Low toxicity is a prerequisite for orthopedic implantation 
to minimize harm to the patient. The toxicity mechanisms 
of ZnO-NPs are quite similar to antibacterial mechanisms, 
that is, interactions between particles and cells, Zn2+ 

release, and ROS generation. Among these, it is generally 
believed that ROS generation is the main cause of eukar
yotic cell death.103–106 ZnO-NPs internalized by cells may 
enter the mitochondria and generate excessive intracellular 
ROS through depolarization of mitochondrial membrane 
and impairing the electron transport chain. These ROS 
may cause oxidative stress and directly destroy the mem
branes of the mitochondria and other organelles to induce 
apoptosis.107

The US Food and Drug Administration listed ZnO-NPs 
as “generally regarded as safe” (GRAS) substances 
(21CFR182.8991). However comparing with magnesium 
oxide nanoparticles (MgO-NPs), which are also classified 
as GRAS substances (21CFR184.1431) and widely studied 
in the orthopedic field, ZnO-NPs show more 
biotoxicity.108,109 Ivask et al110 tested the toxicity of MgO- 
NPs and ZnO-NPs against human alveolar epithelial A549 
cells, human epithelial colorectal Caco-2 cells, and the 
murine fibroblast cell line, Balb/c 3T3. The MgO-NPs 
showed non-toxicity at concentrations less than 100 µg/ 
mL, while ZnO-NPs showed toxicity to all three cell types 
at concentrations higher than 30.2 µg/mL.110 Therefore, 
ZnO-NP applications need to be within an appropriate 
range of concentration.

Studies have shown that their toxicity is dose depen
dent. Sudhakaran et al111 obtained spherical ZnO-NPs with 
diameters of ~43 nm with a wet chemical method. 
Subsequently, ZnO-NPs were administered to healthy 
adult Wistar rats through intravenous and intraperitoneal 
routes (10 mg/kg). Although the rats had no obvious 
toxicity on gross examination, histological damage was 
found in the liver. NPs also can affect embryonic devel
opment. Yan et al112 injected ZnO-NPs into chicken 
embryos at a daily dose of 5 µg for 9–12 days and 
observed embryonic craniofacial defects. Suriyaprabha 
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et al113 treated zebrafish embryos with different ZnO-NP 
concentrations and reported that only those >90 µg/mL 
induced abnormal embryo development. ZnO-NPs can 
also damage lung and reproductive functions.114,115 

However, since factors like size, temperature, solvent 
properties, pH, and others affect ZnO-NPs toxicity, it is 
difficult to determine a safe concentration range. 
Fortunately, they are unlikely to damage organs and 

embryos in orthopedic applications since ZnO-NPs are 
incorporated or coated on the implant. However, the 
implants can be toxic to the peri-prothesis tissues.

Even distribution is essential when decorating implants 
with ZnO-NPs. Aggregation during modification may lead 
to high local ZnO-NP concentrations, resulting in 
toxicity.116 Abdulkareem et al117 coated the surface of 
a titanium (Ti) substrate with ZnO-NPs and HA, to create 

Figure 3 Combined application of ZnO-NPs and silver enhances antibacterial properties while reducing toxicity.  
Notes: (A) Schematic of the Ag/ZnO/HA composite coating fabrication process and the antibacterial and osteogenesis processes. (B) Biological functions of Ag/ZnO/HA 
composite coating: (b1) antibacterial efficiency of the samples against E. coli; (b2) antibacterial efficiency of the samples against S. aureus; (b3) MTT assays of cell viability after 
culturing for 1, 3, and 7 days; (b4) osteogenic effects evaluated with ALP activity assays for 3, 7, and 14 days. The Data are presented as mean ± SD (n = 3): *P < 0.05, **P < 
0.01, and ***P < 0.001 (t-test). Reprinted with permission from Zhang Y, Liu X, Li Zet al Nano Ag/ZnO-Incorporated Hydroxyapatite Composite Coatings: Highly Effective 
Infection Prevention and Excellent Osteointegration. ACS Appl Mater Interfaces. 2018;10(1):1266–1277. Copyright (2018) American Chemical Society.  
Abbreviations: ALP, alkaline phosphatase; E. coli, Escherichia coli; S. aureus, Staphylococcus aureus; ZnO-NPs, zinc oxide nanoparticles.
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a HA/ZnO nanocomposite coated layer. The coating 
showed excellent antibacterial properties, but NP aggrega
tion led to a reduction in bioactivity. Fortunately, this 
disadvantage can be avoided by using suitable preparation 
methods. Maimaiti et al26 produced an HA coating doped 
with ZnO-NPs by pulse electrochemical deposition. The 
particles were distributed uniformly, and the coating 
showed no toxicity while exhibiting good antibacterial 
and osteogenesis properties.

Besides inhibiting aggregation, decorating with materi
als that may reduce Zn2+ release and ROS levels is also an 
option. Li et al118 used atomic layer deposition to deposit 
the ZnO seed layer on a Ti substrate surface (Ti-ZnOs), 
and then the ZnO nano-rod arrays were grown with 
a hydrothermal method (Ti-ZnO). Subsequently, polydo
pamine (PDA) coating was applied (Ti-ZnO/PDA), and 
arginine-glycine-aspartic acid-cysteine (RGDC) peptides 
were immobilized to obtain the final sample (Ti-ZnO 
/PDA/RGDC). Ti-ZnO/PDA/RGDC exhibit good antibac
terial and osteogenesis properties and less toxicity. This 
reduction in toxicity can be attributed to the reducibility of 
PDA, which consumes the ROS generated by ZnO-NPs. In 
addition, the covalent bonds between Zn2+ and PDA can 
reduce Zn2+ release, thereby further lowering toxicity and 
enhancing biocompatibility (Figure 4). Although the toxi
city of ZnO-NPs is relatively low compared with other 
NPs, attention still needs to be paid to their concentration 
and distribution in orthopedic applications.119 Suitable 
implant preparation methods are needed to ensure homo
geneous particle distribution, and further investigation is 
required to determine the mechanism of toxicity and a safe 
concentration range.

Introducing less-toxic materials can also reduce the 
toxicity of ZnO-NPs. Vidic et al120 obtained ZnO/MgO 
mixed NPs through the combustion of zinc-magnesium 
alloys, and then tested the antibacterial and cytotoxic 
properties of ZnO-NPs, MgO-NPs, and ZnO/MgO mixed 
NPs against E. coli, Bacillus subtilis, and HeLa cells. 
Compared with MgO-NPs, ZnO-NPs exhibited better anti
bacterial properties against both bacterial species and 
stronger toxicity against HeLa cells. The antibacterial 
properties of the mixed NPs were better than those of 
MgO-NPs, while their cytotoxicity was lower than that 
of pure ZnO-NPs.120 This combination successfully 
reduced toxicity, while maintaining antibacterial proper
ties. However, reports on the co-application of MgO-NPs 
and ZnO-NPs in orthopedics are few. In fact, MgO-NPs 
can both reduce the toxicity of ZnO-NPs and promote 

bone repair. The combination of ZnO-NPs and MgO-NPs 
may present favorable potential for orthopedic applications 
and requires further studies.

Limitations of Anticancer Effects in 
Orthopedic Applications
The anti-cancer properties of ZnO-NPs are a research hot 
spot aimed at improved bio-applications. The mechanism 
is the same as for toxicity. Many studies have reported 
ZnO-NP anti-cancer effects on multiple cancer cell lines, 
including bladder, breast, lung, and others.121–124 

However, very few reports have focused on ZnO-NP treat
ment for bone tumors. After tumor resection, bone defects 
need to be filled with implants that can assist in the 
elimination of remaining cancer cells and enhance bone 
healing.125

Highly proliferative cells are more sensitive to ZnO- 
NPs and the strong toxicity of ZnO-NPs against rapidly 
proliferating cells may delay the healing process.126 

Taccola et al127 examined the response of bone marrow 
mesenchymal stem cells (BMSCs) and differentiated 
osteoblasts to ZnO-NPs. At a concentration of 20 µg/mL, 
BMSCs with strong proliferating potential are significantly 
inhibited, while ZnO-NPs have little effect on osteoblasts 
with lower proliferation abilities. Kim et al128 suggested 
that ZnO-NPs participate in mitochondrial dysfunction and 
lead to BMSC apoptosis. These findings suggest that ZnO- 
NPs with anti-cancer effects may damage normal cell 
proliferation and may not suitable for treating bone cancer.

Osteogenic and Chondrogenic 
Abilities of ZnO-NPs
Osteogenic Mechanism of ZnO-NPs
The osteogenic properties of ZnO-NPs are due to Zn2+ 

release. As an essential trace element, Zn2+ participates in 
various enzyme catalytic activation reactions.22 

Furthermore, Zn2+ can promote bone growth, mineraliza
tion, and formation.129,130 ZnO-NPs produce Zn-OH 
groups when in contact with water molecules that act as 
apatite nuclei and accelerate mineralization.131 In addition, 
Zn2+ can activate the mitogen-activated protein kinase 
pathway, which promotes expression of the osteocalcin 
gene region. Moreover, cells exposed to excessive Zn2+ 

may up-regulate the expression of Zn2+ transporters such 
as ZIP1, and its overexpression can enhance Runx2 
expression, thus enhancing bone formation.132,133
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Yamaguchi et al134 demonstrated that 10–250 µmol/L 
Zn2+ inhibited osteoclast differentiation. They pointed out 
that Zn2+ suppresses nuclear factor-κB signaling by reducing 
levels of tumor necrosis factor-α in vivo. This inhibitory 
effect decreases osteoclast generation and enhances the pro
liferation of osteoblasts, with a net effect of greatly enhanced 
osteogenesis. Park et al135 studied the upstream signaling 

pathway of RUNX2 and found that Zn2+ can activate protein 
kinase A signaling, by up-regulating cyclic adenosine mono
phosphate (cAMP), and thus enhancing nuclear transloca
tion of phosphorylated cAMP response element-binding 
protein and upregulated RUNX2 expression.

ZnO-NPs can improve the activity and differentiation of 
mesenchymal stem cells (MSCs) and osteoblasts on the 

Figure 4 DOPA coatings reduce ZnO-NPs toxicity.  
Notes: (A) Schematic of the ZnO/PDA/RGDC NR array fabrication process. (B) Antibacterial properties of different samples against S. aureus and E. coli: (b1) re-cultivated 
bacterial colonies on agar culture plates after dissociation from various surfaces, S. aureus and E. coli seeded at a concentration of 107 CFU/mL, (b2) antibacterial rate of 
different samples against S. aureus and E. coli. (C) MTT cell viability results after culturing in the presence of different samples after 1, 3, and 7 days. (D) ALP activities of 
osteoblasts cultured in the presence of different samples after 1, 3, and 7 days. The data are presented as mean ± standard deviation: *P < 0.05, **P < 0.05, and ***P < 0.001 
(t-test). Reprinted with permission from Li J, Tan L, Liu XM et al Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of 
ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods. ACS nano. 2017;11(11):11,250–11,263. Copyright (2017) American chemical society.  
Abbreviations: ALP, alkaline phosphatase; DOPA, dopamine; NR, nanorod.
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implant surface. These properties are ascribed to the larger 
modified implant surface area, which may possess more 
active sites that tend to absorb more proteins.136 

Furthermore, studies have shown that physical properties of 
the scaffold are very important and can affect bone 
regeneration.137–140 These physical properties can also be 
optimized by ZnO-NPs modifications. Sahmani et al93 

mixed different proportions of ZnO-NPs with HA, then 
sintered the mixed materials, and coated the resulting scaf
folds with gelatin-ibuprofen. They found that the higher the 
ZnO-NP weight fraction, the higher the rate of degradation. 
Li et al141 proposed that doping ZnO-NPs into beta-phase 
poly (vinylidene fluoride) can produce a scaffold with 
a bone-like Young’s modulus, which can promote bone repair 
in vivo. However, several studies reported that doping ZnO- 
NPs would increase the water contact angle and reduce the 
material’s hydrophilicity, impairing osteoblast adhesion.96,142

Osteogenic Properties of ZnO-NP- 
Modified Implants
Wang et al45 found that ZnO-NP osteogenic ability is concen
tration dependent (Figure 5). They reported that the expres
sions of alkaline phosphatase and collagen significantly 
increased in MG63 cells cultured with 10 µg/mL ZnO-NPs 
compared to 5 µg/mL. They proposed that more ZnO-NPs 
produce a better osteogenic effect within the non-toxic 

concentration range. Shen et al143 applied a ZnO coating 
onto a micrometer-scale patterned Ti substrate using 
a hydrothermal method. The ZnO-NP-containing samples 
promoted osteoblast proliferation and differentiation. 
Furthermore, quantitative tartrate-resistant acid phosphatase 
(TRAP) activity analysis of RAW264.7 cells was performed, 
and the ZnO-NPs modified samples had the lowest TRAP 
activity, indicating the inhibition of osteoclast 
differentiation.143 The results of subsequent animal experi
ments corroborated the in vitro results that ZnO-NP modifica
tion could efficiently promote new bone tissue formation after 
implantation for 4 and 12 weeks.

The combination of HA and ZnO-NPs is very common 
in orthopedic experiments and can promote osteogenesis 
via multiple mechanisms. Shitole et al96 incorporated nano- 
HA and ZnO-NPs into the PCL scaffold, which greatly 
improved its osteogenic effect. Maimaiti et al26 proposed 
that the HA/Zn coating achieved better osteogenic perfor
mance for bone formation compared to the pure HA coat
ing. Gnaneshwar et al144 firstly doped ZnO-NPs into HA 
particles to obtain ZnO/HA particles, and then incorporated 
them to poly (L-lactic acid)-co-PCL and silk fibroin nanofi
brous scaffolds. They found that scaffolds doped with ZnO/ 
HA particles possessed stronger osteogenesis effects than 
scaffolds doped with the same quantities of ZnO-NPs and 
nHA. This result could guide the development of new co- 
modification strategies with various NPs in the future. 

Figure 5 Effect of ZnO-NP concentration on osteogenesis activity.  
Notes: (A) Alizarin red stain for calcium mineralization in osteoblasts treated with ZnO-NPs (0, 5, and 10 µg/mL) for: (a1) 5 and (a2) 7 days. (B) mRNA expression in 
osteoblasts treated with ZnO-NPs (0, 5, and 10 µg/mL) for 24, 48, and 72 h; (b1) ALP; (b2) collagen. Data are presented as mean ± SEM values from three experiments: *P < 
0.05, #P < 0.01 compared with 0 µg/mL-treated osteoblasts. Reprinted from Journal of Photochemistry and Photobiology B: Biology, Volume 202, Wang D, Cui L, Chang X, 
Guan D. Biosynthesis and characterization of zinc oxide nanoparticles from Artemisia annua and investigate their effect on proliferation, osteogenic differentiation and 
mineralization in human osteoblast-like MG-63 Cells, Page: 111,652. Copyright (2020) with permission from Elsevier. Abbreviations: ALP, alkaline phosphatase; ZnO-NPs, 
zinc oxide nanoparticles.

Li et al                                                                                                                                                                 Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                       

International Journal of Nanomedicine 2020:15 6256

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


AgNPs, As a strong antibiotic, also have the ability 
to promote bone formation.99 Interestingly, AgNPs 
and ZnNPs may act synergistically to promote 
osteogenesis.100,101 In the study of Deng et al,101 AgNPs 
and ZnNPs were uniformly doped on the surface of sulfo
nated polyetheretherketone (PEEK), using a layer-by-layer 
technique. Compared to PEEK doped with pure silver or 
ZnO-NPs, the hydrophilicity of ZnO/Ag/PEEK was 
reduced, cell adhesion was impaired in the early stage, 
and the number of MG-63 cells on ZnO/Ag/PEEK were 
the highest on day 5. Reverse transcription polymerase 
chain reaction of cells co-cultured with the sample on day 
14, showed significantly higher expression of osteogenic 
genes with ZnO/Ag/PEEK compared with Ag/PEEK and 
ZnO/PEEK (Figure 6). Although the synergistic mechanism 
of AgNPs and ZnO-NPs is not clear, their combined appli
cation has considerable potential for osteogenesis.

Interestingly, ZnO-NPs can promote cartilage forma
tion at lower concentrations. Khader et al25 prepared ZnO/ 
PCL scaffolds with a concentration gradient of 1–10 wt% 
ZnO-NPs with an electrospinning technique. They found 
that under concentrations of 1–2.5wt%, the expression of 
cartilage markers such as SOX-9 and collagen type II were 
significantly increased in MSCs. Moreover, the scaffold 
with 10 wt% ZnO-NPs promoted osteogenic properties 
rather than chondrogenic differentiation, which is consis
tent with the findings of a previous study.145

Mirza et al145 studied the chondrogenic effects of 1% 
ZnO-NPs decorated with poly (octanediol citrate) polymer, 
and found that they improved chondrocyte viability, upregu
lated the expression of cartilage matrix-specific genes 
(COL2A1 and ACAN), and inhibited the expression of the 
matrix degradation gene (MMP-13).This cartilage- 
promoting ability could be attributed to Zn2+ release. Some 

Figure 6 Combined application of ZnO-NPs and silver exerts a synergistic osteogenesis effect.  
Notes: (A) Schematic of Ag/ZnO dual-decorated micro-/nanoporous SPEEK preparation process, and its bactericidal effect and osteogenic activity. (B) Scanning electron 
microscopy images of SPEEK, Ag-SPEEK, Zn-SPEEK, and Ag/Zn-SPEEK. (C) Biological activities of different samples: (c1) proliferation of MG-63 on various sample surfaces 
for 1, 3, and 5 days; (c2) ALP activity of MG-63 cells on various samples for 7 days. Data are presented as mean ± standard deviation: *P < 0.05, #P < 0.05 compared with 
other groups, and ##P < 0.01 compared with other groups. Reprinted from Deng Y, Yang L, Huang Xet al Dual Ag/ZnO-Decorated Micro-/Nanoporous Sulfonated 
Polyetheretherketone with Superior Antibacterial Capability and Biocompatibility via Layer-by-Layer Self-Assembly Strategy. Macromol Biosci. 2018;18(7): e1800028, with 
permission from Copyright (2018) John Wiley and Sons.  
Abbreviations: ALP, alkaline phosphatase; SPEEK, sulfonated polyetheretherketone; ZnO-NPs, zinc oxide nanoparticles.
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studies claim that Zn2+ can enhance chondrocyte prolifera
tion, while also preventing cartilage loss by activating the 
P13/Akt pathway.146,147 However, the mechanism by which 
ZnO-NPs promote cartilage growth is not clear, and further 
in vitro and in vivo experiments are needed.

Perspectives and Conclusion
Enhancing osseointegration and preventing post-implant 
prosthesis infections are major clinical challenges. ZnO- 
NP utilization may be one solution for these issues. This 
article summarized the preparation methods of ZnO-NPs, 
as well as the mechanisms, influencing factors, and the 
latest research progress into understanding their toxicity 
and osteogenic and antibacterial effects. However, several 
problems still remain. First, the specific mechanisms of 
antibacterial and toxicity are not yet well understood, so an 
effective non-toxic concentration range integrating multi
ple influencing factors cannot currently be determined. 
Second, ZnO-NPs exert synergistic antibacterial and 
osteogenic effects in combinations with other materials, 
and the specific mechanisms and optimal composition 
details need to be determined. Third, ZnO-NPs may pro
mote cartilage formation, although this requires further 
exploration. Future research directions should focus on 
expanding non-toxic preparations (such as large-scale 
green preparations), reducing toxicity, clarifying specific 
mechanisms of antibacterial and osteogenic abilities, and 
determine how to enhance beneficial effects.
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