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Abstract: The immune-suppressive effects of cannabidiol (CBD) are attributed to the modulation 
of essential immunological signaling pathways and receptors. Mechanistic understanding of the 
pharmacological effects of CBD emphasizes the therapeutic potential of CBD as a novel immune 
modulator. Studies have observed that the antagonists of CB1 and CB2 receptors and transient 
receptor potential vanilloid 1 reverse the immunomodulatory effects of CBD. CBD also inhibits 
critical activators of the Janus kinase/signal transducer and activator of transcription signaling 
pathway, as well as the nucleotide-binding oligomerization domain-like receptor signaling pathway, 
in turn decreasing pro-inflammatory cytokine production. Furthermore, CBD protects against 
cellular damage incurred during immune responses by modulating adenosine signaling. 
Ultimately, the data overwhelmingly support the immunosuppressive effects of CBD and this 
timely review draws attention to the prospective development of CBD as an effective immune 
modulatory therapeutic. 
Keywords: cannabidiol, CBD, immune modulation, CB1 and CB2 receptors, TRPV1, JAK/ 
STAT, inflammasome

Cannabidiol (CBD)
Cannabidiol (CBD) is one of the biochemical compounds, referred to as cannabi-
noids, isolated from the Cannabis plant (Figure 1).1,2 CBD is the second most 
prominent cannabinoid within the plant and comprises nearly 40% of the plant 
extricate.3,4 In recent years, CBD has become one of the most widely studied 
cannabinoids for its anti-inflammatory and immunomodulatory effects.5,6 These 
anti-inflammatory and immunomodulatory pharmacological properties of CBD 
have set the precedent for its use as a natural compound for autoimmune disorders 
such as multiple sclerosis (MS), type 1 diabetes, and rheumatoid arthritis.7,8 To 
date, however, the FDA has approved only one CBD prescription drug, Epidiolex, 
for treatment of two rare and otherwise drug-resistant forms of epilepsy, Dravet 
Syndrome and Lennox-Gastaut Syndrome.9,10 An overview of elemental receptor 
and signaling pathway followed by a critical review of CBD’s involvement in the 
modulation of the receptors and immunological signaling cascades encourage 
further development of CBD as a state-of-the-art immunomodulatory therapy.8,11

CB1 and CB2 Receptors
CB1 and CB2 are members of the G-protein coupled receptor family and are encoded by 
the CNR1 and CNR2 genes, respectively.12 CB1 receptors have a prominent presence in 
the central nervous system (CNS) while CB2 receptors are more localized in immune 

Correspondence: Joaquin J Jimenez; Sylvia 
Daunert  
Department of Biochemistry and 
Molecular Biology, University of Miami 
Miller School of Medicine, 1011 NW 15th 
Street, Miami, FL 33136, USA  
Tel +1 305 243 6586  
Email j.jimenez@med.miami.edu; 
sdaunert@med.miami.edu

ImmunoTargets and Therapy                                                                Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com ImmunoTargets and Therapy 2020:9 131–140                                                                  131

http://doi.org/10.2147/ITT.S263690 

DovePress © 2020 Peyravian et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/ 
terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing 

the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. 
For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Im
m

un
oT

ar
ge

ts
 a

nd
 T

he
ra

py
 d

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.d

ov
ep

re
ss

.c
om

/
F

or
 p

er
so

na
l u

se
 o

nl
y.

http://orcid.org/0000-0002-4934-968X
http://orcid.org/0000-0003-4760-5528
mailto:j.jimenez@med.miami.edu
mailto:sdaunert@med.miami.edu
http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


cells.13–15 CB1 receptor activation initiates down-stream mod-
ulation of three main signaling pathways (Figure 2).12 

Activated CB1 receptor coupled to Gi/o inhibits adenyl cyclase 
(AC) activity, in turn inhibiting cyclic adenosine monopho-
sphate (cAMP) formation. As a result, intracellular signal 
transduction, and protein kinase A (PKA) activity is 
hindered.16–18 The cAMP-PKA signal transduction is crucial 
for many cellular responses including enzyme activation and 
gene expression.19 Studies have also shown that activation of 
the CB1 receptor also leads to regulation of mitogen-activated 
protein kinases (MAPKs) that are vital to inflammatory and 
immune cellular responses, including extracellular signal- 
regulated protein kinase 1/2 (ERK1/2), p38, and c-jun terminal 
kinase (JNK).20,21 The phosphoinositide 3-kinase (PI3K)/ 

protein kinase B (Akt) is a third pathway involved in cell 
growth and survival that may also be activated by CB1 

receptor.22,23 Similarly, CB2 receptor agonism modulates and 
inhibits AC and cAMP leading to the inactivation of PKA by 
Gi/o protein coupling.24,25

CBD and CB1 and CB2 Receptors
The low affinity of CBD for both CB1 and CB2 receptors (Ki > 
2000 nM) suggests the pharmacodynamics of CBD to be 
independent of these receptors.26–29 For example, CBD sup-
pressed cytokine production in CB1 and CB2 receptor knock-
out (CNR1−/−/CNR2−/−) mice, suggesting the effects of CBD 
are independent of CB1 and CB2 receptors.30 Specifically, 
Interleukin-2 (IL-2), a T-cell-derived cytokine, was signifi-
cantly reduced in splenocytes of CNR1−/−/CNR2−/− mice 
upon treatment with CBD (1 μM). CBD (10 μM) also signifi-
cantly decreased adaptive immune response cytokine produc-
tion of Interferon gamma (IFN-γ). However, CBD has been 
shown to function as an inverse agonist of CB1 and CB2 

receptors and can antagonize the effects of CB1 and CB2 

receptor agonists.4 The use of CB1 and CB2 receptor antago-
nists reverses the anti-inflammatory and immune-suppressive 
effects of CBD.31,32 For instance, while treatment with CBD 
(10 mg/kg) was shown to reduce gastrointestinal motility in 
a bacterial lipopolysaccharide (LPS) sepsis mouse model, the 
effects were reversed upon treatment with CB1 receptor 
antagonist, AM251 (1 mg/kg).31 Similar reversal of CBD- 
induced neuroprotective effects was observed in a hypoxic- 
ischemic brain injury model in newborn pigs.32 In this model, 
CBD (1 mg/kg) inhibited inflammatory cytokine interleukin-1 
(IL-1) production in hypoxic-ischemic pigs, and co- 
administration with CB2 receptor antagonist, AM630 (1 mg/ 
kg), reversed this CBD-mediated neuroprotective effect. 
Conclusively, the immune-protective effects of CBD are phar-
macologically supported to be independent of CB1 and CB2 

receptors as well as by inverse agonism of CB1 and CB2.

Transient Receptor Potential 
Vanilloid 1 (TRPV1)
The transient receptor potential vanilloid 1 (TRPV1) is 
a homotetrameric membrane protein and is the most well- 
studied nonselective ion channel of the transient receptor 
potential cationic family.33 TRPV1 is expressed in various 
immune cells including lymphocytes, microglia, and astro-
cytes and is involved in pathophysiological responses of the 
immune system.34 Numerous exogenous and endogenous sti-
muli activate TRPV1 with capsaicin as the most notable 

Figure 1 Chemical structure of cannabidiol (CBD).

Figure 2 Signaling pathway activity downstream of CB1. Activated CB1 receptor 
couples with Gi/o to inhibit adenyl cyclase (AC) activity, thus inhibiting cyclic 
adenosine monophosphate (cAMP) production and protein kinase A (PKA) activity. 
CB1 receptor activation also regulates mitogen-activated protein kinases (MAPK) 
and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathways.
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agonist.35 TRPV1 is responsible for detecting stimuli to main-
tain and regulate cellular homeostasis by promoting Ca2+ 

influx as a secondary messenger for the induction of pro- 
inflammatory cytokines and chemokines.36 Similar to CB1 and 
CB2 receptors described above, activation of TRPV1 may lead 
to varying downstream signaling such as PI3K/Akt and ERK1/ 
2 signaling pathways (Figure 3).37 TRPV1 may also lead to 
transforming growth factor-activated kinase 1 (TAK-1) depen-
dent JNK/MAPK cascade that leads to pro-inflammatory 
nuclear factor-κB (NF-κB) activation.38 Janus kinase/signal 
transducers and activators of transcription (JAK/STAT) path-
way may also be activated downstream of TRPV1 activation 
leading to increased expression of pro-inflammatory 
cytokines.39

CBD and TRPV1
As TRPV1 activation induces pro-inflammatory and 
immune mediators, TRPV1 channels are a potential tar-
get for novel immune modulatory therapeutics.40–42 

Vanilloid receptor knockout (TRPV1−/−) mice treated 
with CBD dose-dependently (5 mg/kg – 50 mg/kg) 
inhibited induction of myeloid-derived suppressor cells 
(MDSCs), suggesting that TRPV1 receptors are critical 
for induction of MDSCs by CBD.43 CBD (10 mg/kg) 
was also shown to be an effective therapeutic in 

a rodent model of thermal hyperalgesia which is asso-
ciated with immune activation.44,45 In contrast, co- 
administration of CBD (10 mg/kg) with TRPV1 antago-
nist, capsazepine (CPZ) (2 mg/kg), partially reversed the 
anti-hyperalgesia effects of CBD. Treatment with CPZ 
(10 mg/kg) fully reversed the anti-hyperalgesia effects, 
signifying that CBD modulates TRPV1 for immune 
suppression.45 Similarly, CBD (10 μM) increased pha-
gocytosis of CNS immune response microglial cells and 
treatment with CPZ (10 μM) abolished this enhanced 
phagocytosis, attributing the increased phagocytic 
effects to modulation of TRPV1.46 The role of TRPV1 
in the immunomodulatory effects of CBD was also 
apparent in CBD-induced endometrial cancer cell apop-
tosis. The apoptotic effects of CBD (5 μM) on the 
endometrial cancer cell line were dependent on TRPV1 
modulation as these effects were reversed upon co- 
administration with TRPV1 antagonist, iRTX (20 nM), 
hence signifying that CBD may be a potential candidate 
for immune modulation of TRPV1.47

Janus Kinase (JAK) and Signal 
Transducer and Activator of 
Transcription 3 (STAT3)
Janus kinase/signal transducers and activators of tran-
scription (JAK/STAT) signaling pathway is an evolu-
tionary conserved cascade fundamental to T cell- 
mediated immunity and adaptive immune responses.48– 

50 Broadly, cytokines or growth factors activate their 
respective transmembrane receptors, facilitating activa-
tion of receptor-bound JAKS51,52 (Figure 4). Activated 
JAKs (JAK1, JAK2, JAK3, TYK2) proceed to phos-
phorylate latent STAT monomers (STAT1, STAT2, 
STAT3, STAT4, STAT5a, STAT5b, STAT6) leading to 
STAT dimerization, translocation to the nucleus, binding 
to specific DNA promoter sequences, and ultimately 
transcription of the target gene.53,54 Signal transducer 
and activator of transcription 3 (STAT3) is one of the 
seven STAT proteins involved in the regulation of cri-
tical cellular gene transcriptions including cell differen-
tiation, proliferation, metastasis, as well as immune 
responses.55 Constitutive activation of JAK-STAT3 sig-
naling is the basis for the development and progression 
of many cancers; thus, it is not surprising that JAK- 
STAT3 remains a principal anticancer target.56 However, 
as STAT3 is a transcription factor that remains generally 
confined to the nucleus, the drug-ability of STAT3 

Figure 3 Transient receptor potential vanilloid 1 (TRPV1) signaling. TRPV1 activa-
tion initiates down-stream signaling of three major pathways including PI3K/AKT. 
Transforming growth factor-activated kinase 1 (TAK-1) dependent c-jun terminal 
kinase (JNK)/MAPK and Janus kinase/signal transducers and activators of transcrip-
tion (JAK/STAT) signaling cascades may also be activated as a result of TRPV1 
activation leading to nuclear factor-κB (NF-κB) activation within the nucleus and 
transcription of target genes.
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remains low, posing an unresolved scientific and clinical 
challenge.57

CBD and JAK/STAT
The use of CBD, to modulate of JAK/STAT is one novel 
approach towards immunosuppression. Transcriptomic 
profiles of CBD-treated human Gingival Mesenchymal 
Stem Cells (hGMSCs) revealed down-regulation of JAK/ 
STAT pathways, particularly complete down-regulation of 
Interleukin-6 (IL-6), a potent but not exclusive activator of 
JAK/STAT3 signaling.58,59 Similarly, treatment with CBD 
(ranging from 0.5 μM to 20 μM) has been shown to 
significantly inhibit IL-2 and IFN-γ production in mouse 
splenocytes.30,60 Both IL-2 and IFN-γ are activators of 
JAK/STAT. IL-2 is also a stimulator of PI3K-Akt and 
MAPK signaling cascades critical in regulating lympho-
cyte proliferation. CBD also inhibits another anti- 
inflammatory and immune regulatory cytokine involved 
in the modulation of JAK/STAT, Interleukin-10 (IL-10), 
in human leukemic T-cells.61,62

CBD also has been shown to inhibit JAK/STAT activators, 
including IFN-γ and inflammatory and immune response 
tumor necrosis factor (TNF) cytokine in a rheumatoid arthritis 
model.63–65 This study revealed that CBD (5 mg/kg per day 
intraperitoneally (ip)) reduced TNF and IFN-γ production in 
arthritic mice. The anti-arthritic and immunosuppressive 
effects of CBD were further underlined by concentration- 
dependent (0–10 μg/mL) inhibition of lymphocyte 

proliferation.65 CBD (5 mg/kg) is also effective in the suppres-
sion of T-cell proliferation and microglial activation, as well as 
reduction of axon damage within the spinal cord of in an 
encephalomyelitis murine model of Multiple Sclerosis (MS) 
by suppression of fundamental JAK/STAT initiators including 
IL-2, TNF-α, and IFN-γ.11 Notably, T cells express many IL 
receptors that can lead to activation of JAK/STAT; therefore, 
suppression of T cells by CBD may inhibit activation of this 
signaling pathway. High concentration of CBD (20 μg/mL) 
also attenuates TNF-α and IFN-γ expression in the intestinal 
lymphatic system as quantified in rat mesenteric lymph node 
and spleen isolated T cells and human lymphocytes.66

The immunomodulatory effects of CBD have also been 
observed in Type 1 diabetes mellitus. Type 1 diabetes mellitus 
is an autoimmune disease leading to T lymphocyte-mediated 
destruction of insulin-producing pancreatic β cell.67 

Administration of CBD (5 mg/kg/day ip) has shown to sig-
nificantly prevent the onset of autoimmune diabetes in non- 
obese diabetes (NOD) prone mice in comparison to mice that 
did not receive CBD.68,69 These mice displayed significant 
reduction in Th1 inflammatory cytokine production of IFN- γ 
and TNF- α, and an increase in Th2 cytokine production of IL- 
4 and IL-10, suggesting that CBD may exert an immunomo-
dulatory mechanism resulting in a Th1 to Th2 immune 
response shift.70 Similarly, CBD (5 mg/kg/day) was shown to 
significantly reduce pro-inflammatory cytokine IFN-γ and 
TNF-α in the plasma of NOD mice treated with CBD.69 

These mice also exhibited a decrease in Th1 cytokine produc-
tion and increase in the production of Th2-associated 
cytokines.69 These results suggest that CBD may have an 
immunomodulatory role, shifting immune responses from 
Th1 to Th2.69 Expression of other initiators and activators of 
JAK/STAT including IL-6, TNF-α, and IL-12 were also 
reduced in the CBD-treated splenocytes derived from these 
non-obese diabetes-prone (NOD) female mice.

CBD has been shown to reduce proinflammatory signaling 
by modulation of IFNβ/STAT pathway71 such that CBD (10 
μM) reduced IL-1β, IL-6, and IFNβ expression in LPS acti-
vated microglial cells. IL-1β activates myeloid differentiation 
factor 88 (MyD88)-adaptor protein-dependent pathway that 
leads to activation of NF-κB-dependent transcription. The 
NF-κB pathway is primarily responsible for regulating the 
expression of many pro-inflammatory genes including cyto-
kines TNF α, IL-1, and IL-6. IFNβ, on the other hand, activates 
chemokines such as CXCL10, CCL5, and CCL2 by binding to 
IFN receptor and inducing phosphorylation of JAK leading to 
STAT pathway activation. CBD also suppresses NF-κB 
mediated transcription, in turn enhancing the anti- 

Figure 4 Janus kinase/signal transducers and activators of transcription (JAK/STAT) 
signaling pathway. Cytokines facilitate activation of receptor-bound JAKS leading to 
phosphorylation, dimerization, and translocation of STAT to the nucleus to pro-
mote transcription of target genes.
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inflammatory effects. This process is mediated via STAT3 by 
increasing anti-inflammatory STAT3 phosphorylation while 
reducing pro-inflammatory STAT1 phosphorylation.71 

Collectively, these studies further illuminate the pharmacody-
namics of CBD and underline the immunomodulatory proper-
ties of CBD by down-regulation of JAK/STAT signaling 
cascade, thus supporting the development of CBD as a novel 
immune modulation therapeutic.

Nucleotide-Binding 
Oligomerization Domain-Like 
Receptor (NLR) Signaling Pathway
Nucleotide-binding oligomerization domain-like receptors 
(NLRs) serve as cellular receptors that detect and orches-
trate innate immune system protection in response to cel-
lular stress and insult, such as pathogen-associated 
molecular patterns (PAMPs) and danger-associated mole-
cular patterns (DAMPs).72,73 When dangerous cellular sti-
muli or stress is detected, the NLR Family Pyrin Domain 
Containing 3 gene (NLRP3) consisting of a central nucleo-
tide-binding and oligomerization (NACHT) domain and 
leucine-rich repeat (LRR) forms an inflammasome com-
plex with an adaptor protein apoptosis-associated speck- 
like protein (ASC). The ASC consists of an N-terminal 
pyrin domain (PYD) and C-terminal caspase-recruitment 
domain (CARD) and cysteine protease caspase 1 
(Figure 5).74 This activated NLRP3 inflammasome com-
plex leads to activation of caspase 1, in turn, regulating 
pro-inflammatory interleukin-1β (IL-1β) and interleukin- 
18 (IL-18) cytokine production that play significant roles 
in NF-κB, MAPK and IFN pro-inflammatory pathways.75

CBD and NLR
An alternative pharmacological mechanism by which CBD 
induces immunomodulatory effects is by inhibiting activation 
of the NLR signaling cascade. Next-generation sequencing 
and gene ontology data reveal that inflammasome activation is 
inhibited in mesenchymal stem cells treated with CBD (5 μM) 
in comparison to stem cells not treated with CBD.76 In this 
study, CBD prevented NLRP3-inflammasome pathway acti-
vation by suppressing the expression of key genes belonging 
to NLRP3-inflammasome pathway including NLRP3 and 
caspase 1 and inhibited downstream production of IL-18 in 
Human Gingival Mesenchymal Stem Cells (hGMSCs).76 

Down-regulation of NLRP3 genes in CBD-treated hGMSCs 
was also confirmed using immunocytochemical and protein 
extraction. Gene expression profiling also indicated CBD- 

induced down-regulation of encoding genes belonging, but 
not limited to the NLRP3-inflammasome pathway, including 
pro-inflammatory cytokines (IL6ST, IL-1β), Interleukin 
receptors or subunits (IL1R1, IL11RA, IL13RA), Toll-like 
receptor adaptor myeloid differentiation 88 (MYD88), 
Interferon Gamma Receptors (IFNGR1 and IFNGR2), 
Mitogen-Activated Protein Kinases (MAPK1, MAPK12, 
and MAPK14), transcription factors (STAT3 and STAT6), 
NF-κB complex (NFKB2, NFKB3/RELA), and the Matrix 
Metallopeptidase 3 (MMP3).76

To further understand the immunosuppressive effects 
and modulation of NLRP3 inflammasome pathway, CBD 
has also been compared to known NLRP3 inflammasome 
inhibitors, oridonin and MCC950, for their respective inhi-
bition of NLRP3-inflammasome activity.77 Before evaluat-
ing anti-inflammasome activity of CBD, in vitro toxicity 
studies were conducted to ensure cellular viability of 
human monocytes treated with CBD. No significant cyto-
toxicity was observed among cells treated with CBD (0.1, 1, 
10 and 100 μM), suggesting CBD as a safe and non-toxic 
potential phyto-therapeutic. LPS was used to significantly 
increase the production of pro-inflammatory cytokine IL-1β 
in monocytes, and CBD (0.1, 1, and 10 μM) successfully 
attenuated this IL-1β production.77 As the NLRP3 inflam-
masome complex is responsible for IL-1β production, spe-
cific CBD-induced modulation of NLRP3 was evaluated by 

Figure 5 Nucleotide-binding oligomerization domain-like receptor (NLR) signaling 
pathway. Pathogen-associated molecular patterns (PAMPs) and danger-associated 
molecular patterns (DAMPs) activate NLR Family Pyrin Domain Containing 3 
(NLRP3) consisting of a central nucleotide-binding and oligomerization (NACHT) 
domain and leucine-rich repeat (LRR). NLRP3 forms an inflammasome complex 
with adaptor protein apoptosis-associated speck-like protein (ASC) consisting of 
a protein pyrin domain (PYD) caspase-recruitment domain (CARD) and cysteine 
protease caspase 1. Activated NLRP3 inflammasome complex activates caspase 1, 
leading to regulation of pro-inflammatory interleukin-1β (IL-1β) and interleukin-18 
(IL-18) cytokine production.
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comparing IL-1β concentration in LPS-stimulated mono-
cytes treated with CBD, oridonin, and MCC950. CBD and 
these NLRP3 inhibitors exhibited comparable IL-1β cyto-
kine inhibitory effects, thus stressing the immunomodula-
tory effects of CBD by inhibition of the NLRP3 
inflammasome pathway, hence, further emphasizing CBD 
as a prospective immunomodulatory agent.

Adenosine Signaling
Adenosine is a purine nucleoside that protects against exces-
sive cellular damage during stress and inflammation.78,79 The 
protective effects of adenosine are mediated by G protein- 
coupled A2A receptor, which attenuates inflammation via acti-
vation of cAMP-mediated pathway, and ultimately leading to 
inhibition of T cell differentiation, downregulation of neutro-
phil superoxide production, and inhibition of proinflammatory 
cytokines expression including TNF-α (Figure 6).80,81 

However, rapid intracellular uptake of adenosine, facilitated 
by the equilibrative nucleoside transporter (ENT), prevents 
adenosine interaction with their respective immune cell ade-
nosine receptors, and, consequently, blocking these protective 
effects.82,83 One method for hindering adenosine reuptake and 
promoting immune modulation is to prevent intracellular 
transport of adenosine by use of an ENT inhibitor.84

CBD and Adenosine Signaling
CBD is a competitive ENT inhibitor (Ki < 250 nM) resulting in 
subsequent anti-inflammatory and immunosuppressive effects 
by inhibiting adenosine uptake and enhancing adenosine 
signaling.85 In vitro data highlight properties of CBD similar 
to adenosine receptor agonists such as enhancing endogenous 
adenosine signaling and inhibiting adenosine uptake in murine 
microglia and macrophages pretreated with CBD.86 Moreover, 
in vivo treatment with CBD (1 mg/kg) decreased TNF-α as 
measured in the serum of LPS-treated mice.86 However, this 
effect was eliminated in an A2A receptor knockout mouse 
model and annulled in the presence A2A adenosine receptor 
antagonist.86 In a separate study, adenosine uptake inhibition 
was compared in rat retinal microglial cells treated with CBD 
and the ENT inhibitor S-(4-nitrobenzyl)-6-thioinosine 
(NBMPR) to understand if the ENT isinvolved in the pharma-
codynamic role of CBD 87 In this study, CBD (0.5 μM) alone 
was shown to inhibit adenosine uptake in retinal microglial 
cells and treatment with NBMPR alone inhibited adenosine 
uptake in a dose-dependent manner. However, adenosine 
uptake inhibition was not enhanced in CBD-treated cells that 
were also treated with NBMPR, which lead to the suggestion 
that the immunosuppressive effects are mediated by competi-
tive binding to ENT.87 Other studies have reported that TNF-α 
in LPS-treated mice is reduced in the presence of adenosine 
uptake inhibitors.88 As a result, endogenous adenosine is read-
ily available to bind to the A2A receptor. To study if CBD 
inhibits TNF-α by A2A receptor mediation, rats were treated 
with CBD (1 mg/kg) and A2A receptor antagonist ZM241385 
(10 mg/kg). In these experiments, CBD-treated rats showed 
significant reduction of TNF-α, while treatment with the 
ZM241385 alone or treatment with CBD and ZM241385 did 
not inhibit TNF-α concentration, suggesting that CBD inhibits 
adenosine uptake and reduces TNF-α production by A2A 

receptor modulation.87

The immunosuppressive effects of CBD by inhibition of 
adenosine reuptake and regulation of A2A receptor have also 
been evaluated in a murine model of Multiple Sclerosis. For 
that, mice were infected with Theiler’s Murine 
Encephalomyelitis Virus (TMEV) RNA to induce the deleter-
ious inflammatory effects, such as encephalomyelitis, and then 
treated with CBD.89 Treatment with CBD (5 mg/kg ip) inhib-
ited VCAM-1 production, a mediator of lymphocyte adhesion 
and leukocyte infiltration produced in response to inflamma-
tion. CBD was also found to reduce CCL2 and CCL5 chemo-
kine expression as well as pro-inflammatory cytokines TNF-α 
and IL-1β.89 CCL2 and CCL5 are associated with macrophage, 

Figure 6 Adenosine signaling. Equilibrative nucleoside transporter proteins (ENT) 
facilitate diffusion of adenosine across the cell membrane. Adenosine activates 
G protein-coupled adenosine receptor (A2A), leading to cAMP formation mediated 
by adenylate cyclase activity and subsequent activation of protein kinase A (PKA).
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T cell, and leukocyte recruitment during inflammation.90 These 
pharmacological effects of CBD were also observed to be 
dependent on A2A receptor mediation in vivo. ZM241385 
was administered to TMEV-induced mice and then treated 
with CBD shortly after. CBD attenuated VCAM-1 expression 
and immune cell infiltration. However, these effects were not 
observed in mice receiving ZM241385 alone, suggesting that 
the A2A receptor is involved in the mechanism of action of 
CBD.89 These studies further solidify the immunosuppressive 
effects of CBD and link the modulatory properties of CBD to 
inhibition of adenosine uptake and its enhancement of adeno-
sine signaling.

Conclusions
Mechanistic understanding of fundamental pharmacologi-
cal pathways and receptors followed by a survey and 
analytical review of promising work involving CBD in 
the context of the aforementioned receptors and signaling 
cascades validate CBD as a prospective immune modula-
tory therapeutic agent. CBD exerts immunomodulatory 
effects in CB1 and CB2 receptor knockout mice, suggest-
ing that the significant reduction of immune response by 
CBD is independent of CB1 and CB2 receptors. However, 
receptor antagonists of CB1 and CB2 receptors have shown 
to reverse the immune modulatory effects of CBD, indi-
cating that CBD is also an inverse agonist of CB1 and CB2 

receptors. Co-administration of CBD with a TRPV1 
antagonist reversed CBD inhibition of immune activation, 
further indicating the involvement of TRPV1 in the immu-
nomodulatory effects of CBD. Moreover, CBD also down- 
regulates JAK/STAT signaling by inhibiting immune 
regulatory cytokines, such as TNF-α and IFN-γ, involved 
in the modulation of JAK/STAT. CBD also prevents 
NLRP3-inflammasome pathway activation as well as sup-
presses gene expression of downstream proteins of the 
NLRP3-inflammasome pathway. These immunosuppres-
sive effects result in decreased production of pro- 
inflammatory cytokines, including IL-1β and IL-18. CBD 
has also been shown to inhibit cellular adenosine uptake, 
resulting in enhanced adenosine signaling and protection 
against tissue injury during inflammation and immune 
response. Adenosine receptor, A2A, inhibition with an 
antagonist or in A2A receptor knockout mouse, was 
shown to reverse these immune modulatory effects of 
CBD. Ultimately, thefindings emphasize the immune- 
suppressive properties of CBD and its potential use as an 
attractive therapeutic strategy for immunomodulation.

However, to enhance CBD as a promising therapeutic 
option, additional mechanistic studies should be conducted 
in the context of other autoimmune disorders, using various 
immune system models and stimuli, to generate new knowl-
edge of the immune modulatory effects of CBD in vitro and 
in vivo. In addition, long-term studies are needed to determine 
CBD’s therapeutic efficacy in chronic immune diseases. 
Safety and toxicity should be evaluated in these long-term 
studies to identify any limitations associated with using CBD 
as a recurring immune modulator. Furthermore, as CBD is 
a highly hydrophobic molecule and subject to extensive first 
pass metabolism, its dosages are relatively high. Therefore, 
there are limitations on how varying dosage affects exhibited 
immunomodulatory properties. Conclusively, further studies 
should be conducted to attain a comprehensive understanding 
of CBD pharmacokinetics and dosages required for therapeu-
tic immune modulation with the ultimate purpose of enhan-
cing CBD as a prospective immune modulatory therapeutic.
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