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Purpose: Stomach cancer is one of the highest incidence and mortality malignancies 
worldwide. Our study aimed to illustrate the somatic mutation landscape and identify 
molecular markers of stomach cancer.
Materials and Methods: By integrated analysis of sequencing data and clinical data of 
stomach adenocarcinoma (STAD) from The Cancer Genome Atlas (TCGA) database, we 
identified several susceptibility genes and novel molecular markers and validated their 
potential function by the starBase website. Further, we validated the clinical value of two 
candidate lncRNAs in collected STAD samples by RT-qPCR.
Results: We illustrated the distributions of mutation frequencies and types to get the top 20 high- 
mutation frequency genes in STAD. We also found 2127 mRNAs, 129 miRNAs, and 170 lncRNAs 
that were differentially expressed. We identified four lncRNA-miRNA-mRNA ceRNAs (PVT1, 
MAGI2-AS3, MIR17HG, KCNQ1OT1). Besides, 27 mRNAs (PDE4C, ID1, AQP3, VCAN, FAP, 
NOX4, ANGPT2, SERPINE1, SPARC, PDGFRB, FN1, MFAP2, CSMD2, INHBA, COL10A1, 
MATN3, P4HA3, ADAMTS12, DGKI, OLFML2B, TMEM200A, FNDC1, CTHRC1, CHST1, 
F5, COL5A2, TUBB3) and two lncRNAs (MIR4458HG, LINC01235) showed a significant 
prognostic value, and their prognostic values were validated by the starBase website. What’s 
more, the clinical values of MIR4458HG and LINC01235 were also demonstrated in collected 
STAD samples.
Conclusion: We constructed the lncRNA ceRNA networks and identified 20 high-mutation 
frequency genes and 29 prognostic markers (27 mRNAs and two lncRNAs).
Keywords: STAD, mutation, ceRNA, lncRNA, prognostic marker

Introduction
Stomach cancer is one of the most common malignancies worldwide, with high incidence 
and mortality, and one of the main stomach cancer pathological types is stomach 
adenocarcinoma (STAD).1 Although there are several universal genetic changes that 
are involved in the development of STAD, identifying mechanisms that underlie cancer 
progression remains challenging due to a complicated signaling pathway network. 
Therefore, identification of potential biomarkers and novel targets for diagnosis, prog-
nosis, and treatment is urgently needed.

With the rapid progress in the high-throughput next generation sequencing (NGS) 
technology, characterization of genome-wide variations and discovery of novel oncotar-
gets have become more feasible. Only a small percentage of mutations cause genetic 
disorders, thus it’s very significant for identification of somatic variants from big sequen-
cing data. Bioinformatics based on gene expression profiles will provide new clues for 
seeking for novel molecular diagnostic and prognostic markers. Increasing evidence 

Correspondence: Peiming Zheng; 
Guangzhi Liu  
People’s Hospital of Zhengzhou 
University, Zhengzhou 450003, People’s 
Republic of China  
Tel +86 37165897605  
Email zpm8266@163.com; 
guangzhi72@126.com

OncoTargets and Therapy                                                                    Dovepress
open access to scientific and medical research

Open Access Full Text Article

submit your manuscript | www.dovepress.com OncoTargets and Therapy 2020:13 7735–7746                                                              7735

http://doi.org/10.2147/OTT.S263733 

DovePress © 2020 Zhang et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

O
nc

oT
ar

ge
ts

 a
nd

 T
he

ra
py

 d
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://orcid.org/0000-0002-0596-6715
http://orcid.org/0000-0003-4837-1612
mailto:zpm8266@163.com
mailto:guangzhi72@126.com
http://www.dovepress.com
http://www.dovepress.com
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
http://www.dovepress.com/permissions.php


has shown that mRNA, miRNA, and lncRNA play an impor-
tant role in the occurrence and development of cancer, includ-
ing cell proliferation, differentiation, cell cycle, apoptosis, 
mesenchymal transition, and drug resistance.2,4 mRNA can 
be translated into a functional protein that is involved in various 
pathology and physiology processes. miRNA interacts with 
mRNA to degrade it or inhibit its translation. LncRNA takes an 
important part in tumorigenesis by various mechanisms such 
as ceRNA, RNA decoy, transcription regulation, and epige-
netic modification.5 That lncRNA acts as ceRNA in lncRNA- 
miRNA-mRNA form involves in kinds of tumorigenesis, such 
as stomach cancer, breast cancer, kidney cancer, head and neck 
squamous cancer, lung cancer, or prostate cancer.6 By analyz-
ing the sequencing data of STAD from The Cancer Genome 
Atlas (TCGA) database, we aimed to investigate the distinct 
mRNA, miRNA, and lncRNA biomarkers that show clinical 
significance in STAD.

In this study, we investigate the top 20 high-mutation 
frequency genes and identify the highest single nucleotide 
variant (SNV) C>T transition. We find 2127 mRNAs, 129 
miRNAs, and 170 lncRNAs (P-value≤0.01, |log2Fold 
change|≥1) in STAD samples. We also find several abnor-
mal signaling pathways such as cell cycle, cellular senes-
cence, and p53 signaling pathway in STAD. Besides, we 
found 27 mRNAs and two lncRNAs that show significant 
prognostic value in STAD, and their prognostic values are 
validated by the starBase database.7 In summary, our 
results provide the somatic mutation landscape, the differ-
ential RNA expression profiles, and potentially diagnostic 
and prognostic markers of STAD.

Materials and Methods
Data Download
The data of Stomach adenocarcinoma (STAD) were down-
loaded from TCGA database (http://tcga-data.nci.nih.gov/) 
using the gdc-client. The data included somatic variants, 
RNA-seq, miRNA-seq, and clinical data. This study met 
the publication guidelines stated by TCGA. All data used 
in the study were obtained from TCGA, and hence ethics 
approval and informed consent were not required. The 
demographic and clinical features of the STAD patients 
are summarized in Table 1.

Analysis and Visualization of Mutation 
Landscape
Variant numbers and types in each STAD sample were 
calculated, analyzed, and visualized using the Mutation 

Annotation Format (MAF) files from the TCGA website 
via the R package maftools.8 The Oncogenic Pathways 
function was checked for enrichment of known 
Oncogenic Signaling Pathways in TCGA cohorts.9

Differential Expression Analysis
We first filtered duplicated samples and non-Primary 
Tumor and non-Solid Tissue Normal samples in RNA- 
seq and miRNA-seq metadata. Then we merged raw 
counts data and did TMM normalization and voom trans-
formation. The differential expression analysis was per-
formed by R package limma and the cut-off was 
a P-value≤0.01 and |log2Fold change|≥1.10 All differential 
expression RNAs were visualized in volcano plot and 
heatmap by R package ggplot2.11

Functional Enrichment Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) functional enrichment analysis 
were performed by R package clusterProfiler and 
a P-value≤0.05 was set as the cut-off.12 Protein–Protein 
Interaction (PPI) was analyzed by the STRING website 
(http://string-db.org/cgi/input.pl) and displayed using 
Cytoscape.13

ceRNA Network Analysis
Analysis of the lncRNA-miRNA-mRNA network was 
based on calculating hypergeometric probability, 
Pearson’s correlation, and Regulation similarity by 
R package GDCRNATools.14 Common miRNAs targeting 
both lncRNA and mRNA were identified using the 

Table 1 The Demographic and Clinical Features of the STAD 
Patients

Variables Classification Patients

Race White 278 (73.2%)
Asian 89 (23.4%)
Black or African American 13 (3.4%)

Gender Female 158 (35.7%)
Male 285 (64.3)

Age ≤65 197 (45.0%)
>65 241 (55%)

Tumor stage I 59 (14.2%)

II 130 (31.2%)

III 183 (44.0%)
IV 44 (10.6%)
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starBase database. ceRNAs were selected with thresholds 
of hyperPvalue≤0.05, corPvalue≤0.05, and regSim≠0. The 
ceRNA networks were visualized in Sankey plot using 
R package ggalluvial.

Survival Analysis
Kaplan-Meier and Log rank test were employed to deter-
mine the relationship between all differential expression 
RNAs (mRNAs, miRNAs, lncRNAs) and overall survival 
of STAD patients. A P-value≤0.05 was regarded as 
significant.

Validation and Coexpression Analysis
Validation of the differential expression analysis and prog-
nostic value of candidate differential expression RNAs 
(mRNAs, lncRNAs) were performed through the 
starBase database. Pearson’s correlation is calculated to 
measure the expression correlation between lncRNA and 
mRNA (|cor|≥0.3, P-value≤0.05).

Patients Samples and RT-qPCR Validation
Normal, paracancer, and cancer samples from 20 STAD 
patients were obtained by resection from Henan Provincial 
People’s Hospital between January 26, 2019 and 
September 8, 2019. The samples were dissected by 
a professional pathologist. Tissue 1–2 cm away from the 
cancer was used as the paracancer sample, and tissue 
3–5 cm away from the cancer was used as the normal 
sample. All enrolled patients were newly diagnosed with 
STAD. The inclusion criteria were as follows: 1) all sub-
jects were diagnosed by gastroscopy and histopathology 
and 2) did not undergo any preoperative treatment. The 
exclusion criteria were as follows: 1) combined with other 
cancer patients and 2) combined with heart, kidney, and 
liver dysfunction. All clinicopathological data for the 
STAD samples, including age, sex, clinical stage, and 
histological grade, were obtained from the clinical and 
pathological records. This study was performed in accor-
dance with the rules of the Declaration of Helsinki of 1975 
(revised in 2013) and approved by the Clinical Research 
Ethics Committee. Informed consent forms were obtained 
from all subjects before they participated in the study. 
Tissue samples were stored in RNAlater stabilization solu-
tion (Thermo Fisher Scientific, USA) at −80°C. Tissue 
samples were homogenized by TissueLyser using 3 mm 
steel balls in TRIzol reagent (Thermo Fisher Scientific) to 
extract total RNA according to the manufacturer’s instruc-
tions. The RNAs were then DNase I treated and reverse- 

transcribed with HiScript II 1st Strand cDNA Synthesis Kit 
(Vazyme, China), followed by qPCR on a StepOnePlus 
machine (Thermo Fisher Scientific) using SYBR Green 
master mix (Vazyme) and specific primers (18S, forward- 
GTAACCCGTTGAACCCCATT, reverse-CCATCCA 
ATCGGTAGTAGCG; MIR4458HG, forward-CCTATTG 
GTCCCAGGTGTCG, reverse-ATGGGTGCCATTG 
ACGTCTT; LINC01235, forward-GTCTCTCACAGG 
TCAACGCA, reverse-TGTGTCCCCTTTTGGCTGAA). 
The qPCR reaction condition was set as following, holding 
stage (95°C, 5 minutes); cycling stage (95°C, 10 seconds; 
60°C 30 seconds; 40 cycle); melt curve stage (95°C, 15 
seconds; 60°C, 1 minute; 95°C, 15 seconds; in step and 
hold mode). Besides, the specificity of primers has been 
tested by melt curve and nucleic acid gel electrophoresis.

Results
The Somatic Mutation Landscape in 
STAD
To illustrate the somatic variants of STAD, we utilized 
the Mutation Annotation Format (MAF) files from the 
TCGA website and performed the variants annotation. 
We found that the main Variant Classification was 
Missense Mutation, the main Variant type was single 
nucleotide polymorphism (SNP), and the main single 
nucleotide variant (SNV) Class was C>T transition 
(Figure 1A). We further performed functional enrich-
ment analysis of the mutated genes and found they 
mainly enriched in RTK-RAS, WNT, NOTCH, Hippo, 
PI3K, Cell Cycle, MYC, TGFβ, TP53, and NRF2 sig-
naling pathway (Figure 1B). We also analyzed the muta-
tion landscape of the top 20 genes that sorted by 
mutation frequency, and they were TTN, TP53, 
MUC16, LRP1B, SYNE1, ARID1A, CSMD3, FAT4, 
FLG, PCLO, HMCN1, CSMD1, OBSCN, ZFHX4, 
DNAH5, RYR2, SPTA1, KMT2D, FAT3, and PIK3CA 
(Figure 1C). Identification and characterization of 
somatic variants would help us understand the suscept-
ibility genes in STAD.

Expression Profiles of mRNA, miRNA, 
and lncRNA in STAD
To get the expression profiles of mRNA, miRNA, and 
lncRNA and identify functional RNAs of STAD, we 
analyzed the RNA-seq and clinical data of STAD from 
TCGA database. We found 2127 mRNAs (935 up- 
regulated and 1192 down-regulated), 129 miRNAs (70 
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up-regulated and 59 down-regulated) and 170 lncRNAs 
(119 up-regulated and 51 down-regulated) (P-value≤0.01, 
|log2Fold change|≥1) (Figure 2 and Table S1). These 
differentially expressed mRNAs, miRNAs, and lncRNAs 
may take an important role in the occurrence and devel-
opment of STAD.

Functional Enrichment Analysis of the 
Differentially Expressed mRNAs
To illustrate the key signaling pathways and molecular 
working mechanisms in the occurrence and development 
of STAD, we did the GO, KEGG, and PPI bioinformatic 
analysis. Comparative GO analysis of the misregulated 
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Figure 1 The somatic mutation landscape in STAD. (A) Bar plot of the distribution of mutation spectra in STAD. The distribution of Variant classifications, Variant types, and 
SNVs and their Variant numbers in STAD. (B) Dot plot of the pathway enrichment analysis of the mutated genes. (C) Oncoplot displaying the somatic mutation landscape of 
STAD cohort. Genes are ordered by their mutation frequency.
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mRNAs indicated that up-regulated GO terms mainly 
included nuclear division, organelle fission, and chromo-
some segregation and down-regulated GO terms were 
mainly enriched in muscle function and modulation of 
chemical synaptic transmission (Figure 3A). Further 
functional enrichment analysis of the misregulated 
mRNAs by KEGG revealed that the primary activated 
signaling pathways in STAD included cell cycle, cellular 
senescence, and p53 signaling pathway and the inhibited 
signaling pathways mainly included oxytocin, calcium, 
and MAPK signaling pathway (Figure 3B). We wanted 
to find the hub mRNAs in the specific signaling path-
way, so we did Protein–Protein Interaction (PPI) analy-
sis of the misregulated mRNAs enriched in the cell 
cycle and p53 signaling pathways. CDK1 were located 

in the center of the PPI networks and may be the hub 
mRNA (Figure 3C and D). These methods will help us 
further discover the key mRNAs and abnormal signaling 
pathways in the progression of STAD.

Identification of ceRNA Network in 
STAD
By using GDCRNATools, we built the ceRNA network 
on the basis of the mRNA, miRNA, and lncRNA 
expression profiles in STAD. It is well known that 
lncRNAs and mRNAs have co-expression patterns in 
ceRNA networks. LncRNA-miRNA interaction and 
miRNA-mRNA interaction were collected from the 
starBase database. By calculating the hypergeometric 
probability, Pearson’s correlation and overall regulation 
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Figure 2 Expression profiles of mRNA, miRNA, and lncRNA in STAD. (A–C) Volcano plot of expression profiles of mRNA, miRNA, and lncRNA. The red dot represents 
up-regulated RNAs, the green dot represents down-regulated RNAs, and the black dot represents normal RNAs. (D–F) Heatmap of differentially expressed RNAs 
(DERNAs). The DERNAs are selected with thresholds of P-value≤0.01 and |log2Fold change|≥1.
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similarity, 45 mRNA nodes, 21 miRNA nodes, four 
lncRNA nodes, and 130 edges were identified from 
differential expression profiles (Figure 4). We got four 
ceRNA lncRNAs (PVT1, MAGI2-AS3, MIR17HG, 
KCNQ1OT1) and the ceRNA network may help us 
further understand their complicated working mechan-
isms in the progression of STAD.

The Prognostic Value of DEmRNAs, 
DEmiRNAs, and DElncRNAs in STAD
To identify the key RNAs that were related to the overall 
survival of STAD patients, we did the Kaplan Meier (KM) 
survival analysis of the differentially expressed mRNAs, 
miRNAs, and lncRNAs. We got 32 mRNAs, and two 
lncRNAs that were significantly related with the overall 
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survival of STAD patients. We further validated the 
expression levels and prognostic value of these candidate 
mRNAs and lncRNAs by starBase database. Twenty-seven 
out of 32 mRNAs and both lncRNAs were validated of 
their differential expression levels and significant prognos-
tic value. Among the 29 RNAs, mRNAs (PDE4C, ID1, 
AQP3) and lncRNA MIR4458HG were down-regulated 
and positively related with the overall survival, and 
mRNAs (VCAN, FAP, NOX4, ANGPT2, SERPINE1, 
SPARC, PDGFRB, FN1, MFAP2, CSMD2, INHBA, 
COL10A1, MATN3, P4HA3, ADAMTS12, DGKI, 
OLFML2B, TMEM200A, FNDC1, CTHRC1, CHST1, 
F5, COL5A2, TUBB3), and LINC01235 were up- 
regulated and negatively related with the overall survival 
(Figure 5). The consistency of our analyzed results with 
the starBase database results demonstrated the correctness 
of our analysis procedure and the clinical significance of 
these validated mRNAs and lncRNAs. The up-regulated 
and overall survival negatively related RNAs may play an 
oncogenic role and the down-regulated and overall survi-
val positively related RNAs may act as tumor suppressors. 
Further, these mRNAs and lncRNAs may work as poten-
tially prognostic markers.

Potential Function of Candidate lncRNAs
Using Pearson’s correlation analysis of the relationship 
between differential expression lncRNAs and mRNAs, we 
identified tens of significantly correlated mRNAs of the candi-
date lncRNAs MIR4458HG and LINC01235 (Figure 6A and 
B, Table S2). For example, MIR4458HG was positively cor-
related with antitumor gene Cyclin-dependent kinase inhibitor 
1C (CDKN1C) and LINC01235 were positively correlated 
with oncogenes NOTCH3. These analyses may demonstrate 
the important function of the two candidate lncRNAs and give 
us a clue to study their working mechanism.

Validation of the Expression Levels of the 
Two Candidate lncRNAs
We performed RT-qPCR experiment to validate the expres-
sion levels of the two candidate lncRNAs that showed 
clinical significance using the collected STAD samples. 
We found that MIR4458HG was low expressed in para- 
cancer and cancer samples when compared with the normal 
samples, and also low expressed in cancer samples when 
compared with para-cancer samples (Figure 6C). Besides, 
LINC01235 was high expressed in para-cancer and cancer 
samples when compared with the normal samples, and also 

high expressed in cancer samples when compared with 
para-cancer samples (Figure 6D). The expression levels of 
the two candidate lncRNAs were significantly correlated 
with the pathological state (normal, para-cancer, and can-
cer), and they may be meaningful indicators for the progres-
sion of STAD.

Discussion
In this study, we utilized the somatic variants, RNA-seq, 
miRNA-seq, and clinical data of STAD from TCGA database 
and analyzed the mRNA, miRNA, and lncRNA expression 
profiles. We found that the Missense Mutation ranked the 
maximum Variant numbers (>1×105), the C>T transition 
accounted for the most single nucleotide variant (SNV) 
Classes (>50%), and top 20 high-mutation frequency genes 
(such as TP53, 46%). Previous studies also have demon-
strated that TP53 mutations were independent markers of 
bad prognosis in many cancer types, including stomach 
cancer.15 We further identified 2127 DEmRNAs, 129 
DEmiRNAs, and 170 DElncRNAs. Among these 
DEmRNAs, growth arrest-specific gene 1 (GAS1) was 
down-regulated and reported to suppress stomach cancer 
growth via modulating the Bcl-2/Bax ratio and the activity 
of caspase-3.16 The up-regulated transcription factor SOX4 
was proved to be an unfavorable prognostic factor for sto-
mach cancer.17 Among these DEmiRNAs, miR-30a was 
down-regulated and demonstrated to inhibit stomach cancer 
invasion, metastasis, and drug resistance by inhibiting the 
EMT.18 Among these DElncRNAs, up-regulated HOTTIP 
was proved as an oncogene in several types of cancers 
including stomach cancer.19 The previous studies have 
demonstrated the important function of several selected 
RNAs, and these differentially expressed mRNAs, 
miRNAs, and lncRNAs may act as potential targets or mar-
kers of STAD. Besides, the GO and KEGG enrichment 
analysis of misregulated mRNAs revealed that the main 
abnormal signaling pathway in STAD included cell cycle, 
p53, and cellular senescence. And further PPI network ana-
lysis of mRNAs enriched in a specific signaling pathway may 
demonstrate CDK1 as the hub gene in STAD.

One of the lncRNA working mechanisms was acting as 
ceRNA by competitively binding miRNAs. By lncRNA- 
mRNA coexpression analysis, lncRNA-miRNA and 
miRNA-mRNA interaction analysis, we identified four 
lncRNAs (PVT1, MAGI2-AS3, MIR17HG, KCNQ1OT1) 
that may work as ceRNAs in STAD. In previous studies, 
PVT1 and MAGI2-AS3 were proved as oncogenes in sto-
mach cancer and MIR17HG was demonstrated as an 
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Figure 5 Overall survival analysis of misregulated mRNAs and lncRNAs in STAD (A–AD). Kaplan–Meier survival curve for the correlation of misregulated mRNAs and 
lncRNAs with overall survival of STAD patients. The red curve represents the high-expressed group, the blue curve represents the low-expressed group, and they are 
separated by the median.
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anticancer gene.20,22 MAGI2-AS3 was down-regulated and 
may act as a miRNA sponge of miR-374a-5p and miR-374b- 
5p in STAD. Previous studies also demonstrated the ceRNA 
characteristic of MAGI2-AS3, and it could suppress the 
development of breast cancer and hepatocellular cancer by 
targeting the miR-374a-5p or miR-374b-5p.23,24 The 
lncRNA ceRNA network analysis could give us clues to 
identify functional lncRNAs and study their complicated 
working mechanisms in STAD.

By differential analysis and KM survival analysis of 
mRNAs, miRNAs, and lncRNAs, we got 29 candidate RNA 
prognostic markers of STAD, and furthermore, their prognos-
tic values were validated by the starBase database. Among the 
29 RNAs, mRNAs (PDE4C, ID1, AQP3) and lncRNA 
MIR4458HG were down-regulated and positively related 
with the overall survival, and mRNAs (VCAN, FAP, NOX4, 

ANGPT2, SERPINE1, SPARC, PDGFRB, FN1, MFAP2, 
CSMD2, INHBA, COL10A1, MATN3, P4HA3, 
ADAMTS12, DGKI, OLFML2B, TMEM200A, FNDC1, 
CTHRC1, CHST1, F5, COL5A2, TUBB3) and LINC01235 
were related with unfavorable overall survival. In previous 
studies, ID1, AQP3, FAP, NOX4, ANGPT2, SERPINE1, 
SPARC, PDGFRB, FN1, INHBA, COL10A1, MATN3, 
P4HA3, OLFML2B, TMEM200A, FNDC1, and CTHRC1 
have demonstrated their oncogene features. For example, 
COL10A1 was induced by TGF-β1-SOX9 axis and promoted 
invasion and metastasis in stomach cancer via epithelial-to- 
mesenchymal transition.25 The rest genes were also important 
enzymes or cellular components by searching their symbol in 
UniPro and GeneCard website. All these mRNAs and 
lncRNAs may serve as potential prognostic markers of STAD.
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Figure 6 The potential function of the two candidate lncRNAs. (A, B) The network of the two candidate lncRNAs with misregulated mRNAs; LncRNA, light red diamond; 
mRNA, light blue ellipse. (C, D) Bar plot of the relative expression levels of the two candidate lncRNAs in collected STAD samples, and P-value≤0.05 is regarded as 
significant.
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Conclusions
Our work presented the mutation landscapes and identi-
fied top 20 high-mutation frequency genes that may be 
susceptibile genes in STAD. We further identified hun-
dreds of differentially expressed mRNAs, miRNAs, and 
lncRNAs, illustrated abnormal signaling pathways, and 
selected the hub genes (CDK1) by PPI analysis of p53 
and cell cycle signaling pathway. Besides, we found 
four lncRNA ceRNAs on the basis of the mRNA, 
miRNA, and lncRNA expression profiles in STAD. 
What’s more, we got 27 mRNAs and two lncRNAs 
that showed a significant prognostic value and their 
prognostic values were validated by the starBase data-
base. We validated the clinical significance of 
MIR4458HG and LINC01235 in collected STAD sam-
ples, and they may be meaningful indicators for the 
progression of STAD.
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competing endogenous RNA; DERNA, differentially 
expressed RNA.

Data Sharing Statement
The data used to support the findings of this study are 
included within the article.

Funding 
This work was supported by the National Natural Science 
Foundation of China (No. 81802094) and Central 
Government Guides the Development of Local Science and 
Technology Special Funds of China (Z135050009017). 

Disclosure
The authors report no conflicts of interest in this work.

References
1. Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: 

GLOBOCAN estimates of incidence and mortality worldwide for 36 
cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. 
doi:10.3322/caac.21492

2. Garzon R, Calin GA, Croce CM. MicroRNAs in Cancer. Annu Rev Med. 
2009;60(1):167–179. doi:10.1146/annurev.med.59.053006.104707

3. Prensner JR, Chinnaiyan AM. The emergence of lncRNAs in cancer 
biology. Cancer Discov. 2011;1(5):391–407. doi:10.1158/2159-8290

4. Zhang X, Gao S, Li Z, et al. Identification and analysis of estrogen 
receptor α promoting tamoxifen resistance-related lncRNAs. Biomed 
Res Int. 2020;2020:1–10. doi:10.1155/2020/9031723

5. Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian 
cell differentiation by long non-coding RNAs. EMBO Rep. 2012;13 
(11):971–983. doi:10.1038/embor.2012.145

6. Zhang Y, Xu Y, Feng L, et al. Comprehensive characterization of 
lncRNA-mRNA related ceRNA network across 12 major cancers. 
Oncotarget. 2016;7(39):64148–64167. doi:10.18632/oncotarget. 
11637

7. Li JH, Liu S, Zhou H, et al. starBase v2.0: decoding miRNA-ceRNA, 
miRNA-ncRNA and protein-RNA interaction networks from 
large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42(D1):D92– 
D97. doi:10.1093/nar/gkt1248

8. Mayakonda A, Lin DC, Assenov Y, et al. Maftools: efficient and 
comprehensive analysis of somatic variants in cancer. Genome Res. 
2018;28(11):1747–1756. doi:10.1101/gr.239244.118

9. Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling 
pathways in the cancer genome atlas. Cell. 2018;173(2):321–337. 
doi:10.1016/j.cell.2018.03.035

10. Ritchie ME, Phipson B, Wu D, et al. limma powers differential 
expression analyses for RNA-sequencing and microarray studies. 
Nucleic Acids Res. 2015;43(7):1–13. doi:10.1093/nar/gkv007

11. Wickham H. ggplot2. Wiley Interdiscip Rev Comput Stat. 2011;3 
(2):180–185. doi:10.1002/wics.147

12. Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for 
comparing biological themes among gene clusters. OMICS. 2012;16 
(5):284–287. doi:10.1089/omi.2011.0118

13. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software envir-
onment for integrated models of biomolecular interaction networks. 
Genome Res. 2003;13(11):2498–2504. doi:10.1101/gr.1239303

14. Lee SR, Roh YG, Kim SK, et al. Activation of EZH2 and SUZ12 
regulated by E2F1 predicts the disease progression and aggressive 
characteristics of bladder cancer. Clin Cancer Res. 2015;21 
(23):5391–5403. doi:10.1158/1078-0432.CCR-14-2680

15. Petitjean A, Achatz MI, Borresen-Dale AL, et al. TP53 mutations in 
human cancers: functional selection and impact on cancer prognosis and 
outcomes. Oncogene. 2007;26(15):2157–2165. doi:10.1038/sj. 
onc.1210302

16. Wang H, Zhou X, Zhang Y, et al. Growth arrest-specific gene 1 is 
downregulated and inhibits tumor growth in gastric cancer. FEBS 
J. 2012;279(19):3652–3664. doi:10.1111/j.1742-4658.201 
2.08726.x

17. Chen J, Ju HL, Yuan XY, et al. SOX4 is a potential prognostic factor 
in human cancers: a systematic review and meta-analysis. Clin Transl 
Oncol. 2016;18(1):65–72. doi:10.1007/s12094-015-1337-4

18. Wang LL, Zhang XH, Zhang X, et al. MiR-30a increases cisplatin 
sensitivity of gastric cancer cells through suppressing epithelial-to- 
mesenchymal transition (EMT). Eur Rev Med Pharmacol Sci. 2016;20 
(9):1733–1739.

19. Chang S, Liu J, Guo S, et al. HOTTIP and HOXA13 are oncogenes 
associated with gastric cancer progression. Oncol Rep. 2016;35 
(6):3577–3585. doi:10.3892/or.2016.4743

20. Zhao J, Du P, Cui P, et al. LncRNA PVT1 promotes angiogenesis via 
activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 
2018;37(30):4094–4109. doi:10.1038/s41388-018-0250-z

21. Chen L, Yao H, Wang K, et al. Long non-coding RNA MALAT1 
regulates ZEB1 expression by sponging miR-143-3p and promotes 
hepatocellular carcinoma progression. J Cell Biochem. 2017;118 
(12):4836–4843. doi:10.1002/jcb.26158

22. Bahari F, Emadi-Baygi M, Nikpour P. miR-17-92 host gene, under-
expressed in gastric cancer and its expression was negatively corre-
lated with the metastasis. Indian J Cancer. 2015;52(1):22–25. 
doi:10.4103/0019-509X.175605

23. Du S, Hu W, Zhao Y, et al. Long non-coding RNA MAGI2-AS3 
inhibits breast cancer cell migration and invasion via sponging 
microRNA-374a. Cancer Biomark. 2019;24(3):269–277. 
doi:10.3233/CBM-182216

Dovepress                                                                                                                                                           Zhang et al

OncoTargets and Therapy 2020:13                                                                                         submit your manuscript | www.dovepress.com                                                                                                                                                                                                                       

DovePress                                                                                                                       
7745

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.3322/caac.21492
https://doi.org/10.1146/annurev.med.59.053006.104707
https://doi.org/10.1158/2159-8290
https://doi.org/10.1155/2020/9031723
https://doi.org/10.1038/embor.2012.145
https://doi.org/10.18632/oncotarget.11637
https://doi.org/10.18632/oncotarget.11637
https://doi.org/10.1093/nar/gkt1248
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1016/j.cell.2018.03.035
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1002/wics.147
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1158/1078-0432.CCR-14-2680
https://doi.org/10.1038/sj.onc.1210302
https://doi.org/10.1038/sj.onc.1210302
https://doi.org/10.1111/j.1742-4658.2012.08726.x
https://doi.org/10.1111/j.1742-4658.2012.08726.x
https://doi.org/10.1007/s12094-015-1337-4
https://doi.org/10.3892/or.2016.4743
https://doi.org/10.1038/s41388-018-0250-z
https://doi.org/10.1002/jcb.26158
https://doi.org/10.4103/0019-509X.175605
https://doi.org/10.3233/CBM-182216
http://www.dovepress.com
http://www.dovepress.com


24. Yin Z, Ma T, Yan J, et al. LncRNA MAGI2-AS3 inhibits hepato-
cellular carcinoma cell proliferation and migration by targeting the 
miR-374b-5p/SMG1 signaling pathway. J Cell Physiol. 2019;234 
(10):18825–18836. doi:10.1002/jcp.28521

25. Li T, Huang H, Shi G, et al. TGF-β1-SOX9 axis-inducible COL10A1 
promotes invasion and metastasis in gastric cancer via epithelial-to- 
mesenchymal transition. Cell Death Dis. 2018;9(9):849–866. 
doi:10.1038/s41419-018-0877-2

OncoTargets and Therapy                                                                                                                Dovepress 

Publish your work in this journal 
OncoTargets and Therapy is an international, peer-reviewed, open 
access journal focusing on the pathological basis of all cancers, 
potential targets for therapy and treatment protocols employed to 
improve the management of cancer patients. The journal also 
focuses on the impact of management programs and new therapeutic 

agents and protocols on patient perspectives such as quality of life, 
adherence and satisfaction. The manuscript management system is 
completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal

Zhang et al                                                                                                                                                            Dovepress

submit your manuscript | www.dovepress.com                                                                                                                                                                                                                    

DovePress                                                                                                                                                           

OncoTargets and Therapy 2020:13 7746

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1002/jcp.28521
https://doi.org/10.1038/s41419-018-0877-2
http://www.dovepress.com
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
http://www.dovepress.com
http://www.dovepress.com

