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Abstract: The treatment of advanced non–small-cell lung cancer (NSCLC) has undergone a

paradigm shift in the last decade. Molecular characterization of the disease has led to the

rapid development of personalized medicine and swift delivery of targeted therapies to

patients. The discovery of the anaplastic lymphoma kinase (ALK) gene in patients with

NSCLC has resulted in rapid bench–bedside transition of several active drugs, with several

others currently in clinical trials. After the first-generation ALK inhibitor crizotinib, next-

generation ALK inhibitors have entered clinical applications for ALK-rearranged NSCLC.

Ceritinib, alectinib, and brigatinib have all received approval for ALK-positive patients who

have failed prior crizotinib, as well as first-line therapy in treatment-naïve patients based on

favorable efficacy. Most recently, lorlatinib, a potent, newer-generation ALK inhibitor, has

been approved as second- or third-line treatment. These advances have led to better patient

outcomes, but concurrently have led to several crucial unanswered questions about optimal

care for ALK-positive NSCLC patients. The ultimate acquisition of resistance to ALK-

inhibitor therapy poses a challenge to ongoing research efforts, in addition to the routine

management of these patients in the clinic. This review provides a summary of the clinical

development of crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib and highlights current

management paradigms, current and evolving clinical information, emerging clinical deci-

sion-making and sequencing of therapy in advanced, metastatic, or recurrent ALK-positive

NSCLC.
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Introduction
Lung cancer is the leading cause of cancer-related death in the US and worldwide,

with <20% 5-year survival for newly diagnosed patients.1 Lung cancers are classi-

fied into two main types: non–small cell lung cancer (NSCLC; 80%–85%) and

small cell lung cancer (15%–20%).2,3 NSCLCs are further subdivided into three

main types: adenocarcinoma (50%), squamous-cell carcinomas (30%), and large-

cell carcinomas.4 Increased understanding of molecular and biological aspects of

cancer growth has led to the discovery of several oncogenic driver mutations,

thereby dramatically changing treatment paradigms for patients with NSCLC over

the past decade. Genetic alterations, such as epidermal growth factor receptor
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(EGFR) mutations (10%–15% in NSCLC in Europe and

North America) and anaplastic lymphoma kinase (ALK)

rearrangement are two examples of the targets in NSCLC

that have revolutionized the concept of precision

oncology.4–6 There can exist substantial variation in

EGFR-mutation frequency when grouped by geographic

region, and EGFR-mutation frequency has been reported

to be 20%–76% in Asia–Pacific regions.7 Rearrangement

in ALK-receptor tyrosine kinase, a molecular subtype of

NSCLC, occurs in 5%−7% of NSCLC patients.8–11 While

in unselected NSCLC patients, overall frequency of ALK

rearrangement is low, selection of patients based on clin-

icopathological features, such as no or light smoking his-

tory and adenocarcinoma histology results in higher

frequencies (about 13%) of ALK-rearranged NSCLC.16

There are an estimated 40,000 incident cases of ALK-

positive NSCLC worldwide each year, and patient char-

acteristics are quite dissimilar from the overall patient

population with NSCLC.11 ALK-positive NSCLC patients

are generally younger (median age 52 years old), are

never- to only light smokers, and primarily have adeno-

carcinoma histology.12–16 Clinicopathological findings of

younger age, never- to light smoking history and adeno-

carcinoma-predominant histology in ALK-positive

patients were confirmed in a large real-world retrospective

analysis recently.17

ALK-gene alterations were first reported in the 1990s

through the cloning of translocation involving the short

arm of chromosome 2 and long arm of chromosome 5— t

(2;5) — discovered in a small number of anaplastic large-

cell lymphomas.18,19 ALK translocation was next discov-

ered in a subset of inflammatory myofibroblastic tumors,20

and later in 2007 ALK-gene alternation/rearrangement was

first described in patients with NSCLC.20–22 In NSCLC,

this gene alteration was reported as a small inversion

within the short arm of chromosome 2 (2p) that juxtaposed

the 5′ end of the echinoderm microtuble-associated pro-

tein-like 4 (EML4) gene with the 3′ end of the ALK gene,

resulting in the fusion oncogene EML4–ALK in NSCLC

cells. Formation of the EML4–ALK fusion leads to activa-

tion, thereby potentiating proliferation and survival of the

cancer cells.11,23 Diagnosis is most typically made using

fluorescence in situ hybridization (FISH), immunohisto-

chemistry (IHC), or next-generation sequencing (NGS) of

the tumor tissue.24,25 In the US, FISH, IHC, and NGS are

approved companion diagnostic tests to identify ALK-

positive NSCLC.12

ALK Inhibitors
Before the discovery of the EML4–ALK fusion protein,

conventional chemotherapy was used as the first line of

therapy for all advanced or metastatic NSCLC. After the

EML4–ALK discovery, crizotinib (first generation of

ALK-directed therapy), a tyrosine kinase inhibitor (TKI)

targeting ALK, ROS1, and MET was tested in a phase I

trial26 and became the first US FDA-approved ALK inhi-

bitor for NSCLC. Ceritinib was the first of the second-

generation ALK inhibitors tested, and was later approved

after confirmation of its efficacy in both crizotinib-resis-

tant and crizotinib-naïve patients. Soon after, two other

ALK inhibitors — alectinib and brigatinib — were

approved for ALK-positive patients who had failed prior

crizotinib. While both are now approved in treatment-

naïve patients, alectinib has become the preferred agent.

Most recently, we have started learning more about the

indisputable role of lorlatinib, a highly potent, next-gen-

eration ALK/ROS1 TKI. However, the benefit of ALK

TKIs is limited by the emergence of drug resistance.

Several mechanisms of resistance to ALK TKIs have

now been discovered. In this review, we discuss each of

the ALK inhibitors, mechanisms of acquired resistance of

cancer cells to each of these inhibitors, their effectiveness

in cases with brain metastases, and their role in optimal

care of patients with advanced or metastatic ALK-rear-

ranged NSCLC.

Crizotinib
The promising results from the aforementioned phase I

study26 led to the phase III PROFILE 1007 trial, which

compared crizotinib with either pemetrexed or docetaxel

in the second-line setting in patients with locally advanced

or metastatic ALK-rearranged NSCLC after progressing on

one prior platinum-based regimen.27 The primary end

point of median progression-free survival (mPFS) was

7.7 months in the crizotinib group and 3.0 months in the

pemetrexed or docetaxel group (for progression or death

with crizotinib hazard ratio (HR) 0.49, 95% confidence

interval (CI) 0.37–0.64; p<0.001). Prior to this, crizotinib

had already received accelerated approval on August 26,

2011. Subsequently, the promising results from the

PROFILE 1007 trial led to regular approval of crizotinib

on November 20, 2013 in second line settings for ALK-

rearranged lung cancer patients after progression on plati-

num doublet therapy.28
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The key phase III PROFILE 1014 trial aimed to assess the

efficacy of the ALK inhibitor crizotinib compared with stan-

dard chemotherapy (pemetrexed plus platinum) as first-line

treatment for advanced ALK-rearranged NSCLC.29 This trial

established crizotinib’s superiority over the standard first-line

regimens. mPFS was significantly longer in the crizotinib arm

(10.9months) than the standard-chemotherapy arm (7months;

HR 0.45, 95% CI 0.35–0.60; p<0.001), and the overall

response rate (ORR) was 74% in the crizotinib arm vs 45%

in the standard-chemotherapy arm (p<0.001). Additionally,

crizotinib was associated with greater reduction in lung cancer

symptoms and improvement in quality of life. As a result of

this study, crizotinib became the standard first-line agent in

patients with ALK-positive NSCLC.30 In 2014, the

PARAMOUNTstudy demonstrated overall survival (OS) ben-

efit with the use of maintenance pemetrexed in patients with

advanced nonsquamous NSCLC.31 These results were

reported after the PROFILE 1014 trial had long been under-

way, but led to criticism of PROFILE 1014’s study design,

which lacked the use of maintenance pemetrexed in the stan-

dard-chemotherapy arm.Nonetheless, this trial highlightedOS

benefit in crizotinib, with median OS not reached (NR) with

crizotinib (95% CI 45.8 months to NR) and 47.5 months with

chemotherapy (95% CI 32.2 months to NR, HR 0.76, 95% CI

0.548–1.053; p=0.0978), probably not reaching statistical sig-

nificance due to crossover allowed as part of the study design.

Mechanisms of Acquired Resistance
to Crizotinib
Patients on crizotinib can develop resistance and relapse,

with isolated central nervous system (CNS) progression,

extracranial oligoprogression, or systemic progression,

usually after a year.32 The mechanisms of relapse have

been categorized as ALK-dependent and ALK-

independent.11 Generally, ALK-dependent resistance

occurs as a result of secondary mutations within the target

kinase that reinduce kinase activation, despite the presence

of the TKI.33 The emergence of secondary mutations hin-

der the binding of the TKI to the target kinase, and thus

unchecked kinase activation ensues.

Around a third of secondary resistance mutations are

located in the ALK tyrosine-kinase domain, with the com-

monest being L1196M.34 L1196M-mutation resistance

(observed in 7% of crizotinib-resistant cases) is followed

closely by the G1269A mutation (4%). The G1202R muta-

tion, observed in 2% of cases, confers high-level resistance to

crizotinib, as well as to next-generation ALK inhibitors. A

second ALK-dominant mechanism of crizotinib resistance is

amplification of the ALK-fusion gene, which occurs less

frequently than secondary mutation acquisition.33,34 Non–

ALK dominant mechanisms represent reactivation of bypass

signaling pathways, such as EGFR, NRG1 overexpression,

IGF-1R activation, or c-KIT, which prevent the tumor’s

dependence upon ALK activation for continued growth and

survival.35 These two main mechanisms of ALK-TKI resis-

tance to crizotinib and other next-generation ALK TKIs are

highlighted in Table 1.

The PROFILE trials demonstrated that crizotinib achieves

higher responses in systemic lesions in ALK-rearranged

NSCLC than chemotherapy. However, it was not clear if

crizotinib was effective in CNS metastasis.29,30,36 The brain

is a common sanctuary site of metastatic disease progression

for patients on crizotinib, with about 70% of patients

Table 1 Main Mechanisms of Resistance to First- and Next-Generation ALK TKIs

ALK

TKIs29,33,96,97
ALK-Dependent Resistance Mechanism ALK-Independent Resistance

Mechanism

(Amplification/Mutation Acquisition) (Bypass of Signaling Pathways)

Crizotinib Amplification of the ALK fusion gene; L1196M, G1269A/S, I1151Tins, L1152P/R,

C1156Y/T, I1171T/N/S, F1174C/L/V, V1180L, G1202R, S1206C/Y, E1210K

mutation acquisition

EGFR, NRG1 overexpression,101 IGF-1R

activation102

Ceritinib G1202R, F1174C/L/V, G1202del, I1151Tins, L1152P/R, C1156Y/T cMET-gene amplification; activating mutation

of MEK (MAP2K1K57N), PIK3CA mutations

Alectinib G1202R, I1171T/N/S, V1180L, L1196M cMET-gene amplification, PIK3CA mutations

Brigatinib E1210K + S1206C, E1210K + D1203N, G1202Ra Not described

Lorlatinib100 L1198F + C1156Yc, L1196M/D1203N, F1174L/G1202R, C1156Y/G1269A NF2 loss-of-function mutations100

Abbreviation: TKI, tyrosine-kinase inhibitor.
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experiencing CNS progression.37,38 It is also known that

crizotinib has a suboptimal effect on control of metastatic

disease in the CNS.39 Crizotinib is a known substrate of PgP,

a key efflux pump in the blood–brain barrier (BBB), signify-

ing that the BBB may preclude attainment of therapeutic

levels in patients with CNS disease. Low concentrations of

crizotinib in cerebrospinal fluid (CSF) compared with plasma-

crizotinib concentrations have been demonstrated (lower

CSF:plasma ratios, in the range of 0.06–0.26%). In animal

models, the IC50 for crizotinib was determined to be 60–120

nM, which was well below the median steady-state plasma

concentration of 570 nM/L achieved with the standard

approved dose of 250 mg twice daily.40,41 In addition, anec-

dotal reports have highlighted poor CSF concentration of a

meager 1.4 nM/L, signifying inadequate levels of crizotinib in

the CNS.40,42 These findings explained the ineffectiveness of

this drug in CNS metastatic disease.42–44

Ceritinib
In vitro enzymatic studies have demonstrated that ceritinib (a

second-generation oral ALK inhibitor) is about 20 times as

potent as crizotinib.45,46 It does not inhibit activity of MET

kinase; however, it has inhibitory properties against other

kinases, such as ROS1 and IGF-1R.47 It has demonstrated

activity and efficacy against ALK mutations arising after

crizotinib exposure, namely L1196M, G1269A, I1171T,

and S1206Y,48 but failed to overcome two crizotinib-resistant

ALK mutations — G1202R and F1174C (as illustrated in

Table 1).46 In the phase I ASCEND-1 trial, 255 patients with

locally advancedALK-rearranged or metastatic NSCLCwere

enrolled. In the ALK-naïve patient population (n=83), ORR

was noted to be 72% and median duration of response (DoR)

17 months. In the ALK inhibitor–pretreated patient cohort

(n=163), ORR was noted to be 56% and median DoR 8.3

months. mPFS in ALK inhibitor-naïve patient population

was 18.4 months and 6.9 months in patients with prior

exposure to ALK inhibitors.49 The phase II ASCEND-2

trial included 140 patients who had received two or more

previous treatment regimens (with chemotherapy, one or

more platinum doublets). The median DoR was 9.7 months

and mPFS 5.7 months, similar to those reported in

ASCEND-1.50 The phase III ASCEND-5 trial evaluating

ceritinib versus chemotherapy in patients with ALK-rear-

ranged NSCLC (progressed on chemotherapy and crizotinib)

met its primary end point of superior PFS in 231 patients with

progressive disease (5.4 months for ceritinib vs 1.6 months

for chemotherapy, HR 0.49,95% CI 0.36–0.67; p<0.0001).51

In 2017, ASCEND-4, a global phase III trial, compared

ceritinib with platinum–pemetrexed combination chemother-

apy in newly diagnosed patients with metastatic ALK-rear-

ranged NSCLC (n=376), demonstrating significant

improvement in mPFS (16.6 months in the ceritinib arms

vs 8.1 months in the chemotherapy arm, HR 0.55;

p<0.00001).52 The compelling results of ASCEND-4 led to

US FDA approval of ceritinib 750 mg/day as a first-line

agent in ALK-rearranged NSCLC on May 26, 2017. Later,

in December 2017, the FDA-approved dose of ceritinib was

changed from 750 mg/day under fasting conditions to 450

mg/day taken with food, based on the results of the

ASCEND-8 study (a randomized phase I study of ceritinib

450 mg or 600 mg taken with a low-fat meal versus 750 mg

in fasted state).53 Ceritinib at 450 mg daily with food had

similar plasma-drug concentrations and a more favorable

gastrointestinal safety profile than ceritinib 750 mg daily in

fasted patients, leading to the FDA decision to lower the

ceritinib dose to 450 mg/day. In a recent safety and efficacy

update on ASCEND-8, ceritinib at a dose of 450 mg with

food showed consistent efficacy (shown in Table 2) and less

gastrointestinal toxicity.54

In addition to being effective in the majority of patients

who are resistant to crizotinib, ceritinib is also more effica-

cious than crizotinib in the treatment of brain metastasis. This

was highlighted in the phase I and II trials ASCEND-1 and

ASCEND-2, with ORR of 63% in patients who were ALK

inhibitor–naïve (ASCEND-1)49 and ORR of 45% in crizoti-

nib-pretreated patients (ASCEND-2).50 ASCEND-7 was

designed specifically to study intracranial effects of ceritinib.

This trial assigned patients based on prior treatment exposure.

A total of 42 patients treated with an ALK inhibitor and brain

radiotherapy were assigned to arm 1, 40 patients with prior

ALK inhibitor only to arm 2, 12 patients with prior brain

radiotherapy only to arm 3, and 44 patients not previously

treated with brain radiotherapy or an ALK inhibitor to arm 4.

In the recently reported results, intracranial ORRs of 39.3%

(95% CI 21.5%–59.4%), 27.6% (95% CI 12.7%–47.2%),

28.6% (95% CI 3.7%–71.0%), and 51.5% (95% CI 33.5%–

69.2%), respectively, for each of the four arms. This study

confirmed the efficacy and safety of ceritinb in patients with

active brain metastasis with or without a prior exposure to

crizotinib.55,56 Similar to crizotinib, the efficacy of ceritinib

can also be hindered by emergence of secondary resistance

mutations. G1202R (found in only 2% of post-crizotinib

samples) is a predominant resistance mechanism post-ceriti-

nib, -alectinib, and -brigatinib (frequency of 21%–43%).34

Additionally, F1174 mutations also confer resistance to
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ceritinib.34MEK reactivation is a key ALK-independent resis-

tance mechanism post-ceritinib (Table 1).

Alectinib
Alectinib is a highly potent second-generation ALK-spe-

cific TKI and exhibits suppressive activity against RET

kinase.57,58 However, it lacks inhibitory properties against

MET kinase and has little activity against ROS1 kinase.59

In Japan, a phase I/II study of alectinib (AF-001JP) in

ALK inhibitor–naïve ALK-rearranged NSCLC patients

enrolled patients (n=24) in the phase I portion of the

trial. A dose of 300 mg twice daily was identified as apt

in the phase I portion (no dose-limiting toxicities or grade

4 adverse events with the maximal dose) and thus recom-

mended for phase II.60 An ORR of 93.5% (95% CI

82.1%–98.6%) was demonstrated in the 46 patients

enrolled in the phase II portion. At the 3-year follow up

of this study, reported in 2017, PFS was 62% (95% CI

45%–75%), OS rate 78%, and median PFS not reached.61

In the studies that followed, 600 mg twice daily was

recommended for phase II based on activity, tolerability,

and pharmacokinetic data.62 Efficacy of alectinib 600 mg

twice daily was assessed in two phase II studies conducted

in an ALK-rearranged, crizotinib-resistant patient popula-

tion. The first of these two pilot phase II studies

(NP28673) enrolled 138 patients, and showed an ORR of

50% (95% CI 41%–59%) with mPFS of 8.9 (95% CI 5.6–

11.3) months.63 The second trial (the North American

NP28761) showed similar results, wherein 87 ALK-rear-

ranged, crizotinib-resistant NSCLC patients were enrolled,

demonstrating ORR of 48% (95% CI 36%–60%) and

mPFS of 8.1 (95% CI 6.2–12.6) months.64 The findings

from these two pilot studies led to accelerated FDA

approval of alectinib in the US in patients with ALK-rear-

ranged, crizotinib-resistant NSCLC on December 11,

2015. After consistent benefit in phase II studies, more

promising results for alectinib came to the forefront as a

frontline therapy. The phase III J-ALEX trial included

Japanese patients with ALK inhibitor–naïve ALK rearran-

gement–positive NSCLC who were randomized to either

alectinib at 300 mg twice daily or crizotinib 250 mg twice

daily as first-line therapy.65 This trial enrolled 207

patients, and mPFS was 34.1 months for alectinib (recent

update,66 95% CI 22.1–NE) and 10.2 months for crizotinib

(95% CI 8.2–12; HR0.37, 95% CI 0.26–0.52; p<0.0001).

The similar global phase III ALEX trial compared

Table 2 Major ALK-Inhibitor Clinical Trials for Second- and Next-Line Therapy in ALK-Rearranged Non–Small Cell Lung Cancer

Trial PROFILE 100727 ASCEND-551 ASCEND-853,54 NP2867363 ALTA73 Solomon

et al81

ALK

inhibitor

Crizotinib (n=173) Ceritinib (n=115) Ceritinib 450 mg with

low-fat meal (n=108)

Alectinib (n=138) Brigatinib 90 mg;

arm A (n=112)

Lorlatinib 100 mg

(n=276)$

Comparator Chemotherapy–

pemetrexed or

docetaxel (n=174)

Chemotherapy–

pemetrexed or

docetaxel (n=116)

Ceritinib 750 mg, fasted

(n=111)

None (single-arm study) Brigatinib 180 mg;

arm B (n=110)

None (single-arm

study)

Primary end

point

mPFS mPFS ORR ORR ORR ORR

Response

rate (%)

65 vs 20 39.1 vs 6.9 78.1% vs 75.7% 50 45 vs 54 EXP (2–3A) 69.5;

EXP3B 32.1; EXP

(4–5) 38.7

Median PFS

(months)

7.7 vs 3 (HR 0.49,

95% CI 0.37–0.64;

p<0.001)

5.4 vs 1.6 (HR 0.49,

95% CI 0.36–0.67;

p<0.0001)

NE (95% CI 11.8–NE) vs

12.2 (8.2–NE); HR and

p-value — NR

8.9 (95% CI 5.6–11.3) 9.2 vs 12.9 (HR

0.55, 95% CI 0.35–

0.86, arm B vs A)

Pooled mPFS

(EXP2–5): 7.3

(95% CI 5.6–

11.0)

Median OS

(months)

21.9 vs 21.7 (HR

0.85, 95% CI 0.66–

1.10; p=0.11)

18.1 vs 20.1 (HR

1.00, 95% CI 0.67–

1.49; p=0.50)

NR Pooled analysis with another

study (NP28761)57, mOS 29.1

(95% CI 21.3–39.0)

27.6 vs NR (HR

0.67, 95% CI 0.42–

1.06; p-value NR

NR

Notes: $ALK-positive and pretreated with crizotinib without chemotherapy (n=27; EXP2); ALK-positive and pretreated with crizotinib and chemotherapy (n=32; EXP3A);

ALK-positive and one previous non–crizotinib ALK TKI with or without chemotherapy (n=28; EXP3B); ALK-positive and pretreated with two ALK TKIs with or without

chemotherapy (n=66; EXP4); ALK-positive and pretreated with three ALK TKIs with or without chemotherapy (n=46; EXP5). Cohorts EXP1 (treatment-naïve ALK+) and

EXP6 (ROS1+) excluded in this table.

Abbreviations: mOS, median overall survival; mPFS, median progression-free survival; NR, not reported; NR, not reached; ORR, objective response rate.
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alectinib with crizotinib in treatment-naïve, advanced

ALK-rearranged NSCLC patients.67 This trial enrolled a

total of 303 patients (including those with asymptomatic

CNS disease) randomized to receive either alectinib 600

mg twice daily or crizotinib 250 mg twice daily. mPFS in

the alectinib arm was superior to crizotinib arm (34.8

months vs 10.9 months, HR 0.50, 95% CI 0.36–0.70;

p<0.001) in a recent update.68 Despite alectinib dose dis-

parity in both ALEX trials, the superiority of alectinib over

crizotinib was evident. Following this, alectinib was FDA-

approved for first-line treatment of ALK-rearranged

NSCLC on November 6, 2017 at a recommended dose of

600 mg orally twice daily with food.

In terms of activity against brain metastases, alectinib

has proven superior to both crizotinib and ceritinib.

Alectinib is not a substrate of PgP (unlike crizotinib and

ceritinib), an essential efflux transporter located at the

BBB. Alectinib was thus mechanistically thought to be a

better penetrant of the BBB. A pooled analysis of two

phase II studies showed an intracranial ORR of 64%

(22% complete response) observed in 50 patients with

measurable CNS disease.69 In the ALEX trial, CNS-dis-

ease progression was more common in the crizotinib group

as compared with the patient before enrollment, thereby

making it possible to measure response to treatment in

patients with baseline CNS disease: 59% of patients in

the alectinib arm had a CNS response duration of >12

months compared with only 36% in the crizotinib arm.67

In a recent update, for those with CNS metastases, mPFS

was 25.4 months for alectinib versus 7.4 months for cri-

zotinib (HR 0.37, 95% CI 0.23–0.58).70

In addition to activity against L1196M-gatekeeper mutation,

alectinib is also active against other secondarymutations, such as

G1269A.34,57 Unfortunately, similarly to crizotinib and ceritinib,

eventual resistance to alectinib is unavoidable. Common muta-

tions seen after alectinib treatment are G1202R (as seen in

ceritinib), I1171T/N/S (also seen post-crizotinib in 2% and cer-

itinib in 4% of cases), in addition to smaller percentages of a few

others such as V1180L and L1196M (Table 1).34 Genotyping

results of paired tissue and plasma samples has demonstrated that

G1202R, I1171T/N/S, and V1180L were prevalent at compar-

able percentages in both plasma and tissue samples; however,

L1196Mprevalencewasmuch lower in tissue (2%) samples than

in plasma (22%) genotyped samples.71 L1196M-mutation pau-

city in tissue samples was believed to be residual from prior

crizotinib exposure (as L1196M is the gatekeeper mutation that

confers resistance to crizotinib), which likely was overcome by

subsequent alectinib use. Overall, this suggests that the

proportion of patients relapsing on alectinib due to secondary

resistance mutations was similar between tissue and plasma

samples. Therefore, it may be reasonable to detect putative

resistance mutations in plasma upon progression on alectinib.

Brigatinib
Brigatinib, another second-generation ALK inhibitor, dif-

fers from others in its wide range of inhibitory properties

against tumors with resistance-associated mutations.43,72,73

Brigatinib effectively inhibits ALK and ROS1, with higher

selectivity over more than 250 kinases and also may have

a role in treating osimertinib-refractory EGFR-mutant

NSCLC as it inhibits C797S–T790M–activating-mutation

(triple mutation)–mediated EGFR-TKI resistance in vitro

and in vivo.74 In a study by Zhang et al, cellular and in

vivo activities of ALK TKIs were compared using engi-

neered and cancer-derived cell lines.75 This study demon-

strated superior in vitro and in vivo potency of brigatinib

compared with crizotinib (12-fold greater potency than

crizotinib). The study also demonstrated a superior inhibi-

tory profile against all known 17 secondary ALK mutations

(including G1202R) tested in cellular assays and higher

inhibitory properties compared with crizotinib, ceritinib,

and alectinib. The role of this is yet to be determined in

daily practice; however, there appears to be a signal in

initial trials indicating favorable results.

After an earlier phase I/II trial,76 the randomized phase II

ALTA trial enrolled crizotinib-resistant patients (n=222, 74%

were recipients of prior chemotherapy) with advanced ALK-

rearranged NSCLC.73 The primary end point ORR was 54%

(similar to ceritinib and alectinib), butmPFSwas 12.9months

(better than ceritinib and alectinib). Of note, mPFS with

brigatinib when assessed by an independent review board

was 15.6 months. Although cross-trial comparisons can be

deceptive, brigatinib seems to have a PFS advantage over

ceritinib and alectinib. This superior PFS may correspond to

expanded inhibition of developed ALK resistance, but briga-

tinib’s efficacy after progression on alectinib and ceritinib

remains to be determined. In a multicenter retrospective

analysis, brigatinib demonstrated limited clinical activity in

alectinib-refractory ALK-positive NSCLC.77 Nonetheless, a

phase II, open-label, single-arm, multicenter, international

trial (NCT03535740) designed to assess the efficacy and

safety of brigatinib in patients with ALK-positive NSCLC

that have progressed on alectinib or ceritinib is under way.78

In addition, brigatinib has notable CNS activity in spite of

being a substrate for PgP. In the aforementioned phase II

ALTA trial, in patients with prior exposure to crizotinib, 69%
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had CNS disease at baseline. The trial demonstrated ORR of

67% and median duration of CNS response of 16.6 months.

In patients with any CNS disease at baseline, independent

review board–assessed intracranial mPFS was 18.4 months.

It received accelerated FDA approval on April 28, 2017 for

ALK-rearranged NSCLC in patients who have progressed or

are intolerant to crizotinib. ALTA-1L, the phase III trial,

compared brigatinib with crizotinib in ALK inhibitor-–

naïve ALK rearrangement–positive NSCLC to assess briga-

tinib’s role in the first-line setting. mPFS was not reached in

the brigatinib arm at the time of data analysis or 9.8 months

(9.0–12.9) in the crizotinib arm (HR for disease progression

or death 0.49 [95% CI 0.33−0.74]; 12-month PFS 67% [95%

CI 56%–75%] for brigatinib versus 43% [95%CI 32%–53%]

for crizotinib).79 Based on these results, the FDA recently

approved brigatinib for the first-line treatment of patients

with ALK-positive metastatic NSCLC on May 22, 2020.

Lorlatinib
Lorlatinib, a third-generation ALK inhibitor, was designed spe-

cifically to target mutations that drive resistance to other ALK

inhibitors and to penetrate the BBB. This macrocyclic TKI of

ALK and ROS1 effectively penetrates the BBB and retains

potency against most ALK-resistance mutations known to

develop during treatment with crizotinib and next-generation

TKIs, including the G1202R solvent-front mutation.34,80,81 In

the phase I portion of a phase I/II study,81,82 lorlatinib demon-

strated high efficacy, with 46% of patients with ALK-positive

NSCLC achieving objective and durable responses (median

DoR 12.4 months), many of whom had been recipients of

several prior lines of therapy and had CNS involvement.

Responses were evaluated for those patients who had received

a second-generation TKI previously, as well as those who had

prior exposure to crizotinib only. In addition, analysis of paired

CSF and plasma samples showed high drug penetration into the

CSF. This was demonstrated by pharmacokinetic analyses of

paired blood and CSF, which demonstrated that the average

ratio of CSF:plasma concentration of lorlatinib was 0.75 (75%),

higher than the 0.03 ratio reported with crizotinib.82 On the

basis of phase I and preliminary phase II data, accelerated

approval from the FDA was granted to lorlatinib on

November 2, 2018 for the treatment of patients with ALK-rear-

ranged advanced NSCLC after progression on crizotinib and at

least one other ALK inhibitor. In a recent global phase II trial,

lorlatinib demonstrated high intracranial activity in patients with

advanced ALK-rearranged NSCLC who had been recipients of

either crizotinib or other ALK inhibitors or were treatment-

naïve.81 The study enrolled 276 patients with histologically or

cytologically ALK-rearranged or ROS1-positive advanced

NSCLC with or without CNS disease, and assigned them to

six experimental cohorts (EXP1–6) on the basis of prior therapy

and ALK/ROS1 positivity.

The primary end point was response — overall and intra-

cranial. In treatment-naïve patients (EXP1), objective response

was achieved in 27 of 30. Three patients in this cohort had

measurable baseline CNS lesions per independent centralized

review, and intracranial tumor responses were observed in two

(66.7%, 95% CI 9.4%–99.2%). ORR was 69% in crizotinib-

treated patients, 33% in those treated with a non-crizotinib

ALK inhibitor, and 39% in those treated with two or three

previous ALK inhibitors. Lorlatinib thus represents an effec-

tive treatment strategy in heavily pretreated ALK-rearranged

NSCLCpatients and holds promise in the frontline setting. The

future role of lorlatinib as a potent ALK inhibitor is promising.

There exists a clear place for lorlatinib in the treatment of

previously treated or refractory ALK-positive disease. The

role of lorlatinib as first-line therapy was not answered in the

first presented studies. The phase III CROWN trial comparing

lorlatinib with crizotinib as first-line therapy is ongoing

(NCT03052608), and results are eagerly awaited.

Sequence of Therapy
After progression on crizotinib, second-generation TKIs (cer-

itinib, alectinib, and brigatinib) were being used as second-line

therapy. However,more recently the treatment paradigms have

shifted, raising questions about the most optimal first-line

therapy and selection of next-line therapies. Table 3 sum-

marizes the results from ALK inhibitors as first-line therapy

in trials of crizotinib (PROFILE 1014),29 ceritinib (ASCEND-

4),52 alectinib (J-ALEX and ALEX),65,67 and brigatinib

(ALTA-1L).79Based on these results, alectinib has beenwidely

adopted so far as a preferred first-line therapy for newly diag-

nosed ALK-rearranged NSCLC patients, due to its efficacy

(including CNS activity) and safety profile. The National

Comprehensive Cancer Network recommends use of any

first- (crizotinib) or second-generationTKI (alectinib, ceritinib,

or brigatinib) as first-line therapy for newly diagnosed ALK-

rearranged NSCLC patients.83 Treatment selection is also

likely based on the experience and preference of the prescrib-

ing oncologist, as well as concerns for toxicity and tolerability.

Table 2 lists the pivotal trials that led to the (mostly initial)

approval of thefiveALK inhibitors discussed herein in second-

line or above settings. Table 4 highlights the efficacy of these

ALK inhibitors for brain metastases in patients with ALK-

rearranged NSCLC.
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However, as discussed, numerous ALK-resistant mutations

arise after treatment with these TKIs,34 raising concerns for

optimal sequencing of therapy. Tumor progression on crizotinib

is inevitable and common with other ALK inhibitors as well. It

has also been reported that patients who have progressive disease

on second-generation ALK inhibitors have a higher likelihood of

Table 3 Major ALK Inhibitor Clinical Trials for First-Line Therapy in ALK-Rearranged Non–Small Cell Lung Cancer

Trial PROFILE 101429 ASCEND-452 J-ALEX65 ALEX67 ALTA 1L79

ALK

inhibitor

Crizotinib (n=172) Ceritinib (n=189) Alectinib (n=103) Alectinib (n=152) Brigatinib (n=137)

Comparator Platinum-based

chemotherapy (n=171)

Platinum-based

chemotherapy (n=187)

Crizotinib (n=104) Crizotinib (n=151) Crizotinb (n=138)

Primary end

point

Median PFS (months) Median PFS (months) Median PFS (months) Median PFS (months) Median PFS (months)

Response

rate (%)

74 vs 45 72.5 vs 26.7 Not reported 82.9 vs 75.5 71 vs 60

Median PFS

(months)

10.9 vs 7 (HR 0.45, 95%

CI 0.35–0.60; p<0.001)

16.6 vs 8.1 (HR 0.55,

95% CI 0.42–0.73;

p<0.00001)

34.1 vs 10.2 (HR

0.37, 95% CI 0.26–

0.52; p<0.0001)

34.8 vs 10.9 (HR 0.43,

95% CI 0.32–0.58;

p<0.01)

Not reached vs 9.8 (HR

0.49, 95% CI 0.33–0.74;

p=0.0007)

Median OS

(months)

Not reached vs 47.5 (HR

0.76, 95% CI 0.548–1.05;

p=0.0978

Not reached vs 26.2

(HR 0.73, 95% CI 0.5–

1.08; p=0.056

— Not reached vs not

reached (HR 0.76, 95%

CI 0.50–1.15)

—

Abbreviations: OS, overall survival; PFS, progression-free survival.

Table 4 Efficacy of Various ALK Inhibitors for Brain Metastases in Patients with ALK-Rearranged NSCLC

Trial PROFILE

100727
ASCEND-452 ALEX67 ALTA73 Solomon

et al81

ALK inhibitor

(ALKi)

Crizotinib Ceritinib Alectinib Brigatinib 90 mg; arm A Lorlatinib

100 mg

Comparator Chemotherapy–

Pemetrexed or

Docetaxel

Chemotherapy-

Platinum based plus

pemetrexed

Crizotinib Brigatinib 180 mg; arm B None

(single-arm

study)

Prior ALKi ALKi-naïve ALKi-naïve ALKi-naïve ALKi-pretreated ALKi-

pretreated

ICC-ORR 18% 73% 81% 42% in arm A; 67% in arm

B

39%

IC-DoR 26.4 weeks Not reported 17.3 months for patients with

measurable target BM and NR for all

patients with BM at baseline

NR (3.7 months–NR) for

arm A; 16.6 (5.6 months–

NR for arm B)

Not

reported

Attainable CSF concentration and CSF to plasma ratio

Crizotinib Ceritinib Alectinib Brigatinib Lorlatinib

Attainable CSF

concentration

(nM/L)

1.435,37 NA 2.7 NA NA

CSF:plasma

ratio

~0.003 NA ~0.7540,98 0.3140 0.7599

Abbreviations: BM, brain metastasis; NA, not available; NR, not reached; IC-DoR, intracranial duration of response; IC-ORR, intracranial objective response rate.
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harboringALK-resistancemutations in their tumors than patients

who have disease progression on crizotinib.34,84 The most com-

monly reported ALK mutation is the solvent-front mutation

G1202R, found in 56% of patients who progress on second-

generation ALK inhibitors.34 Insight into acquired mutation pat-

terns upon progression can help with sequencing of therapy. As

an example, patients that progress on ceritinib acquiring the

F1174C mutation may benefit from alectinib, and those with

acquired V1180L mutation on alectinib may benefit from briga-

tinib (Table 1 illustrates putative resistance-mutation patterns for

different TKIs). Until recently, limited data regarding treatment

of patients previously treated with different ALK inhibitors

existed, but recent results from a global phase II study of the

third-generation ALK inhibitor lorlatinib showed a high ORR

and high intracranial response rate for patients with advanced

ALK-positive NSCLC.81 Lorlatinib was developed to better

penetrate the BBB and remain potent to acquired resistant muta-

tions that developed during therapy with first- and second-gen-

eration agents (particularlyALKG1202R mutations). The fact that

the solvent-front mutation G1202R is a resistant mutation

acquired in most second-generation TKIs offers lorlatinib an

indisputable role in patients progressed on several lines of TKI.

In addition to targeting resistance mutations via use of new-

generation TKIs for ALK-dependent tumors, improved under-

standing of basic mechanisms of ALK-independent resistance

pathways are now informing the development of therapeutic

strategies to counter resistance in the clinic. For instance,

NRG1 (the ligand for HER3 and HER4 tyrosine kinases) over-

expression can be abrogated by combined inhibition of ALK and

HER2.33 Similarly, MEK reactivation is an essential ALK-inde-

pendent resistance mechanism post-ceritinib.85 Combination

with ALK and MEK inhibitors have reportedly resulted in

improved responses, durability of response, and importantly

suppression of TKI resistance.33

It should be pointed out that the identification of ALK-

resistance mutations underlies the importance of obtaining

rebiopsy upon disease progression, either by tissue or

liquid form, to guide further appropriate TKI treatment

while gaining better understanding of resistance mechan-

isms. Validation studies testing for ALK mutations in

liquid form have been conducted and are being utilized

at some centers. Recently, a multicenter collaborative

study utilized liquid-biopsy technology and found molecu-

lar aberrations at a rate at least as high as standard-of-care

tissue genotyping, with high tissue concordance.86 The

overall concordance rate for ALK fusion was reported at

99%, with a positive predictive value of 100%. The sensi-

tivity of liquid biopsy for detection of ALK fusion was

75%, with a false-negative rate (1 – sensitivity) of 25%.

These findings, though not perfect, are definitely encoura-

ging. Few shortcomings need to be improved upon before

liquid testing for detection of molecular aberrations

becomes a standard tool for monitoring patients on treat-

ment and selecting the next therapeutic options. Until then,

tissue genotyping remains the standard of care. Liquid

biopsy can be particularly valuable when tissue for geno-

typing is insufficient, significant delays in diagnosis are

expected, or contraindications to the tissue biopsy exist.

Figure 1 illustrates a current proposed treatment algo-

rithm for ALK-rearranged NSCLC. The proposed algo-

rithm is based on the recent data reviewed so far in this

paper within the framework in accordance with National

Comprehensive Cancer Network83 and European Society

for Medical Oncology guidelines87 and provides a useful

treatment strategy in real-world practice. Our preference is

to utilize rebiopsy-directed mutation-specific ALK inhibi-

tors upon progression on first-line therapy, followed by

lorlatinib (if not used previously) upon progression on

mutation-specific TKIs. After progression on one or more

second-generation TKIs, greater efficacy (ORR 62% and

mPFS 7.3 months) of lorlatinib in patients with ALK

mutations has been reported when compared with patients

without ALK mutations.88 This is likely due to less ALK

dependence in the absence of putative mutations. In the

absence of resistance mutation (and in the absence of

alternate ALK-independent resistance pathways), upon

progression on first-line TKIs, our preferred drug is lorla-

tinib as next-line therapy, due to evidence that suggests

that even in mutation-negative patients, reasonable

response rates (ORR 32%) and mPFS of 5.5 months can

be attained.88 Additionally, in patients with crizotinib-

resistant disease, the efficacy of lorlatinib is comparable

among patients with and without ALK mutations.88

Nonetheless, further research is warranted to guide better

treatment decision-making in patients with and without

ALK-resistance mutations. Here again, the importance of

rebiopsy, whether tissue- or liquid-based, upon each epi-

sode of progression cannot be emphasized more, so long

as it is feasible in practice. The National Cancer Institute’s

ALK Master Protocol (NCT03737994) will prospectively

match patients to appropriate ALK TKIs on the basis of

the underlying ALK-resistance mutation.89 Once patients

have progressed on lorlaitnib, the next line of therapy is

chemotherapy with or without immunotherapy or consid-

eration of participation in available clinical trials.
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Prospective Inhibitors and Trials in
Progress
Enthusiasm for the new ALK inhibitors is high, and several

new ALK inhibitors are in the pipeline. The ALK inhibitor

ensartinib (X396) has shown activity and is well tolerated in

ALK-rearranged NSCLC.90 Additionally, phase III frontline

studies, eg, comparing lorlatinib with crizotinib in the

CROWN trial, are ongoing. However, there remains an

unmet need to know more about on-target resistance

mechanisms to the different ALK inhibitors. There also

exists a need to understand off-target mechanisms under-

lying activation of alternate targetable molecular pathways

during therapy with different ALK inhibitors. As such, the

potential of eventually combining an ALK inhibitor with

another targeted agent(s) might also be relevant in future to

prevent or delay the development of resistance. Currently,

the role of immunotherapy in combination with ALK inhi-

bition is uncertain and not being studied actively. For exam-

ple, a phase I/II trial in ALK-rearranged NSCLC patients

evaluating a combination of ensartinib and durvalumab

(NCT02898116) was terminated after enrolling just two

patients, due to poor accrual. Another phase I/II study of

nivolumab plus crizotinib for first-line treatment of ALK

translocation–positive advanced NSCLC (CheckMate 370)

was also closed prematurely, due to severe hepatotoxicity.91

In the adjuvant setting, crizotinib is being studied after

surgery for patients with stage IB–IIIA NSCLC in the

ALCHEMIST trial (NCT02201992).92 Another study in

the adjuvant setting is evaluating the efficacy of alectinib

versus standard adjuvant platinum-based chemotherapy

(NCT03456076).93 Other studies (NCT03088930, NCT041

97076) evaluating ALK inihibitors in the neoadjuvant set-

ting are also under way.94,95

Conclusion
Treatment options for ALK-rearranged NSCLC patients have

advanced considerably in the past decade. Since the approval

of the first ALK inhibitor, crizotinib, several newer generations

ALK rearranged NSCLC

Alectinib (preferred) Ceritinib, Brigatinib, or Crizotinib

Consider re-biopsy for molecular analysis

Mutation- specific TKI Lorlatinib

PD PD

PD
#

Resistant 

mutation present

Resistant mutation 

absent
#

PD

Chemotherapy +/- ICI or clinical trial

No prior lorlatinib

Prior lorlatinibPD
#

Figure 1 Treatment algorithm for ALK-rearranged non–small cell lung cancer.

Note: #Absence of ALK-dependent secondary mutations as well as ALK-independent alternate resistance pathways on rebiopsy.

Abbreviations: ICI, immunocheckpoint inhibitor; PD, progressive disease; TKI, tyrosine-kinase inhibitor.
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of ALK inhibitors have proven their supremacy as first-line

therapies and have efficacy against crizotinib resistance. Such

factors as ability to overcome resistance-associated mutations

and enhanced CNS penetration have played a crucial role in

improving efficacy. Many of the agents have received acceler-

ated FDA approval in recent years, and it will be prudent to

study postmarketing survival trends of these drugs in the real

world, as well as compare approved inhibitors head to head to

better select front-line therapies for patients. Many such initia-

tives are under way, as discussed. However, while we are

awaiting the results of future studies, it is reasonable to con-

clude that the recent rapid progress inALK-rearrangedNSCLC

treatment has clearly shown incremental benefits to patients

with ALK-positive NSCLC by providing more effective and

less toxic therapy.
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