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Abstract: Film-forming sprays offer many advantages compared to conventional topical

preparations because they can provide uniform drug distribution and dose, increased bioa-

vailability, lower incidence of irritation, continuous drug release, and accelerated wound

healing through moisture control. Film-forming sprays consist of polymers and excipients

that improve the characteristics of preparations and enhance the stability of active sub-

stances. Each type of polymer and excipient will produce films with different features.

Therefore, the various types of polymers and excipients and their evaluation standards

need to be examined for the development of a more optimal form of film-forming spray.

The selected literature included research on polymers as film-forming matrices and the

application of these sprays for medical purposes or for potential medical use. This article

discusses the types and concentrations of polymers and excipients, sprayer types, evalua-

tions, and critical parameters in determining the sprayability and film characteristics. The

review concludes that both natural and synthetic polymers that have in situ film or viscoe-

lastic properties can be used to optimise topical drug delivery.
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Introduction
Topical routes of drug delivery aim for systemic or local effects and offer various

advantages, including avoiding first-pass metabolism and the effect of low pH and

enzymes in the gastrointestinal tract, as well as a large available surface area.1–7 To

improve therapeutic efficiency or pharmacokinetic profiles, drugs administered via

the topical route are generally made in a dosage system, such as a patch, gel, lotion,

cream, ointment, or spray.8–10 However, the concern is that patch preparations still

leave drug residues after use and can be deliberately abused.11 Patch preparations

are also often associated with hypersensitivity, irritation, and blistering.12 Problems

in the scale-up of production are also often found where drugs are difficult to

stabilise and can crystallise during storage.13 Other semisolid preparations also

have the disadvantage of being easily attached to clothing while on the move and

can cause cross-infection of wounds because it is applied using the fingers.14

Compared to other topical dosages, sprays offer several advantages such as prac-

tical use, low incidence of irritation, sterility of the dosage, excellent coverage of

the skin or wound, even distribution of the drug when applied, and adjustable

dosage.14–20

In recent decades, various innovations have continued to be developed to obtain

efficient and effective spray preparations. One of them is a film-forming spray

(FFS) which has been applied in multiple fields, such as the food industry, cos-

metics, pharmaceuticals, plantations, etc.19,21-26 FFS generally consists of active
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substances, enhancers, and polymers that are dissolved in

organic solvents.24 A thin, non-sticky film forms that can

increase the contact time and permeability of the drug,

resulting in continuous drug release, and can prevent crys-

tallisation so that more drug is available to provide ther-

apeutic effects compared to other conventional topical

preparations.27

The type of nozzle, the size of the aperture, the pres-

sure of spray applied, and the nature of the liquid strongly

influence the sprayability of FFS.28,29 The viscoelastic,

in situ gel, pH and thermal-sensitive properties of FFS

are essential to study to determine what aspects need to

be considered in selecting polymers, solvents, and other

excipients.30 Therefore, this review explores the types of

polymers, excipients, and sprayers commonly used in FFS

and the evaluation standards needed to determine the qual-

ity of FFS for better development.

Methodology
This review employed literature originating from Scopus,

PubMed, and Google Scholar by using the keywords ‘film-

forming spray‘, ‘spray of film-forming solution‘, ‘polymer

in film-forming spray‘, and ‘spray of polymer‘. The

selected literature included research on polymers as film-

forming matrices that are applied using a spray for medical

purposes or for potential medical use. We excluded

reviews and literature in which the application was not

appropriate for medical use such as spray drying or spray

pyrolysis methods. A flowchart of the methodology can be

seen in Figure 1.

Definition and Mechanism of a
Film-Forming Spray
An FFS is a drug delivery system in the form of a sprayed

solution that will form a film when it contacts the target

therapeutic site by utilising the polymer as a matrix for

film formation.20,25,30 After forming the film, the drug

release process is similar to a patch, in which the polymer

matrix containing the drug will release it in a sustained

fashion.21 However, in contrast to topical patches and

other topical preparations, films form following the pattern

of the skin or wound since deep indentations can be

exposed to small droplets of the film-forming solution

(see Figure 2). Of course, this greatly facilitates drug

access to the target tissue. In a film-forming spray, drug

dosages can also be adjusted based on the volume of

solution per spray so that systemic or local effects can be

controlled. An FFS also provides an even distribution of

drugs and spreads well. Ease of use can also increase

patient compliance.20,30–33

The thin film is easy to wash away with water.20,34 This

thin and non-sticky film also increases patient comfort during

activities compared to using patches, ointments, gels, etc.,

because these have a rough and sticky texture when

applied.35,36 The thin film also facilitates the permeation of

Figure 1 Flowchart of the methodology.

Figure 2 Mechanism of film-forming spray.
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wound moisture so that the balance can be maintained.

Inappropriate wound humidity can cause infection or irrita-

tion, as happens with the use of patch preparations.37–39

In formation of droplets, the film-forming solution is

sprayed using any kind of sprayer. Each sprayer has differ-

ent specifications and intended uses, but has specific poten-

tial in medical applications. The following is an explanation

of several types of sprayers that have the potential to be

used as drug delivery devices in film-forming systems.

Film-Forming Sprayers
Ordinal Spray
The ordinal spray is a type of spray that does not use unique

technology in the spraying process, generally employing

a plastic or aluminium container with a dip tube diameter of

1.2 mm and an aperture size of 0.3 mm.40 The average spray

angle produced is 78.69–87.39°.40–42 The average amount of

film-forming solution that can be sprayed is 0.11–0.35 g or -

mL.40,41,43 The average leakage rate of an ordinal spray con-

tainer is 0.01–0.03 %.34 An ordinal spray can be either

horizontal or vertical. The 3 K® Horizontal Spray Nozzle

(Ursatec, St. Wendel, Germany) has been reported to be able

to maintain the sterility of the film-forming solution during

storage and use. The spray force of the ordinal spray also varies

depending on the type and concentration of the polymer

used.31 The ordinal spray can also be used for extract

preparations.43,44

Metered Dose Spray
The metered dose spray (MDS) is a spray device that can

adjust the amount of spray. This tool is generally used to

deliver preparations to the systemic compartment via the

transdermal or transmucosal route. Therefore, in evaluating

a film-forming spray, the spray volume needs to be consid-

ered because it is related to the dose of the drug. The spray

volume of the MDS can be influenced by the volume avail-

able in the bottle, the homogeneity of the particle dispersion,

and the position of the container during use.45 The average

amount of FFS that can be sprayed is 90–102 mL.30,32,33 The

average spray angle of MDS is 83.51°.20 The average leak-

age rate of an MDS container is 0.01–0.02 %.30

Electrostatic Spray
Electrostatic spray (ES) is used extensively in the agricultural

field of pesticide application. ES can improve the deposition

efficiency, speed of droplet formation, uniformity of cover-

age, and reduce the loss to drift.46 The performance of ES is

influenced by the viscosity, surface tension, and electrical

resistivity of the solution.47 A solution cannot be sprayed

with ES if the conductivity is not within 10−8-10−5 S/m.48

The size of the droplets produced by ES ranges from 4–26

µm with an average diameter of 6.3–12 µm.25,26

Ultrasonic Spray
The ultrasonic spray has excellent potential to deliver film-

forming solutions. The resulting droplet can reach the nano

size with thin-film characteristics. The ultrasonic spray

nozzle can function at low and high pressures, producing

uniform droplets with diameter sizes of less than 10 µm.

The nozzle of the ultrasonic spray is 0.5 mm in diameter

with a droplet diameter of 1–10 µm. The resonant frequency

of the electrode used is 10 MHz. For applications in the

medical industry, an ultrasonic spray can produce layer-by-

layer (LBL) coating films with better particle size unifor-

mity compared to ordinary LBL spray.49

Each type of sprayer has specifications that match

certain polymers. Multiple types of polymers, both natural

and synthetic, have been used in the FFS system.

Polymers Used in Film-Forming
Sprays
Polymers play a significant role in the success of FFS prepara-

tions.Aside frombeing a drug release controller, polymers also

act as the film-forming base. Polymers can also prevent the

transformation of molecules, such as the formation of unex-

pected crystals.50 General considerations in the selection of

polymers are its ease of being washed away by water, stability,

biodegradability, and non-irritating properties.10 Polymers

used in FFS can be natural or synthetic (see Tables 1 and 2),

as long as they have in situ gel or viscoelastic properties.

Polymers that have thermo-sensitive properties will

form a solution at room temperature and turn into a gel

when they are exposed to the body temperature,51–56 while

those that have pH-sensitive properties will form a solution

at a certain pH and turn into a gel if the pH of the system

changes.57–62 Viscoelastic polymers start at a thick consis-

tency but can become elastic when placed under pressure

(sprayed) and return to a thick consistency after the pressure

is removed.63–67

Natural and Semisynthetic Polymers
Cellulose

Ethylcellulose forms films that are easily washed

away with water.34 The concentration of ethyl cellulose
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that produces films with excellent characteristics is 5.-

02–5.25% and is generally combined with

Eudragit.40,41 Hydroxypropylmethylcellulose (HPMC)

is reported to have a slow drying time. The optimal

concentration to get excellent film characteristics is

2 %. At these concentrations, HPMC produces clear,

thin, and smooth films.43

Na-CMC is known to have a thixotropic flow rate that

allows it to become thinner when under pressure so that it

is easy to pass through the nozzle and return to initial

consistency after being sprayed.31 The maximum limit of

Na-CMC concentration that can be sprayed is 2.5 %. The

optimal level of Na-CMC that produces films with excel-

lent sticking properties and a constant dose in each spray is

Table 1 Natural and Semisynthetic Polymers Used in Film-Forming Spray Systems

No Polymer Concentration

(% b/v)

API Sprayer Ref

1. Chitosan 0.5–1.5 – ES [25,26]

2. Cyclodextrin derivate (RAMEB) 5 Testosterone Ordinal [68]

3. Ethyl cellulose 0.1–10 Ethanolic extract solution of Psoralea corylifolia seeds,

ketoprofen, fluconazole, voriconazole, and

clotrimazole

Ordinal [35,41–43,45]

4. HPC (Klucel® EF) 5 Testosterone Ordinal [68]

5. HPMC® E5 1–5 Piper nigrum L. oil Ordinal [43]

6. HPMC phthalate (HPMCP® 50) 5 Testosterone Ordinal [68]

7. GG (Kelcogel®) 0.25–0.9 – Ordinal [69,70]

8. Methylcellulose (Methocel® E5) 5 Testosterone Ordinal [68]

9. Na-CMC 0.5–2 Immunoglobulin Ordinal [31]

10. Xanthan gum <0.5 - Ordinal [71]

Table 2 Synthetic Polymers Used in Film-Forming Spray Systems

No Polymer Concentration

(% b/v)

API Sprayer Ref

1. Carbopol® 940 0.05–1 Ketoprofen and oxybutynin Ordinal and MDS [42]

2. Carbopol® 971P 0.25–0.5 Beta-1,3/1,6-glucan Ordinal [79]

3. Eudragit® EPO 5 Ropivacaine MDS [20,32]

4. Eudragit® E100 2–10 Clotrimazole, methylphenidate, ropivacaine and

testosterone

Ordinal and MDS [20,32,34,80]

5. Eudragit® L100-55 5 Testosterone Ordinal [68]

6. Eudragit® RSPO 5 Ropivacaine MDS [20]

7. Eudragit® RS100 5–15 Fluconazole, clotrimazole, methylphenidate, and

testosterone

Ordinal and MDS [34,40,80]

8. Eudragit® RLPO 5–15 Voriconazole, clotrimazole, and dexketoprofen Ordinal and MDS [33,34,41]

9. Eudragit® RL100 5 Ropivacaine MDS [20]

10. Eudragit® S100 9–11 Ethanolic extract solution of Psoralea corylifolia

seeds, ropivacaine and clotrimazole

Ordinal and MDS [20,34,44]

11. Lutrol® F-127 0.05–0.2 Oxybutynin MDS [30]

12. PDDA + SiO2 10 (mM) + 0.2 - Ultrasonic [49]

13. PEO (Polyox® WSR N-10) 5 Testosterone Ordinal [68]

14. Plasdone® S630 5 Testosterone and dexketoprofen MDS [32,33]

15. Poloxamer® 407 0.05–1 Ketoprofen Ordinal [42]

16. PVP (Kollidon® 30) 0.5–5 Ibandronate sodium, testosterone,

dexketoprofen, betamethasone 17-valerate, and

piper nigrum l. Oil

Ordinal and MDS [32,33,43,81,82]

17. PVP (Kollidon® PF12) 5 Dexketoprofen MDS [33]

18. VA (Kollidon® VA64) 5 Testosterone Ordinal [68]
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1.5%. Na-CMC has also been reported to maintain stabi-

lity and release the drug in a controlled manner, thereby

increasing its therapeutic efficacy.31

Chitosan

Aside from being a filmmaker, chitosan also has antimi-

crobial, antioxidant, and mucoadhesive activity, making it

suitable for use in topical drug delivery.72 Chitosan has

a relatively high surface tension.73 The surface tension of

chitosan increases with increasing concentration and mole-

cular weight,26 but these properties make chitosan difficult

to dissolve in water. Surfactants are usually used to

improve the solubility of chitosan.74

In making FFS from chitosan, Tween 80 can be used to

reduce the surface tension.25 The decrease in surface ten-

sion of chitosan goes hand in hand with an increase in the

degree of deacetylation and its concentration, but the trend

is not very significant.25 The use of PEG 400 can also

increase the stability and solubility of drugs in chitosan.75

Chitosan also has good conductivity with an increase in

molecular weight so that it can be delivered using

a electrostatic spray.26 Chitosan viscosity also decreases

with increasing degrees of deacetylation. With these prop-

erties, chitosan can form films with denser droplet densi-

ties with smaller droplet diameters, ranging from 4–27

μm.25 Chitosan is also more hydrophilic at higher degrees

of deacetylation. However, its hydrophilic nature does not

correlate with its permeability to water vapour. The tensile

strength of chitosan will also increase with increasing

degrees of deacetylation, contrary to its elongation.25

Cyclodextrin

Cyclodextrin is known to maintain drug stability from

crystal deformation.76 Cyclodextrin is also reported to

have a small impact on increasing the viscosity of the film-

forming solution, so it is easy to spray.68

Gellan Gum

Gellan gum (GG) has viscoelastic properties so that it is

easily delivered using a spray system. The viscoelastic

nature allows GG to melt in consistency when sprayed

and return to its original texture after being on the sur-

face of the skin. In a spray system, GG is also reported to

be able to encapsulate cells and deliver them via gel

droplets in situ.69,77

GG has thermosensitive properties that are very bene-

ficial in spray systems. Its thermosensitive nature makes it

easy to change shape from solution to gel when contacting

surfaces with temperatures higher than room temperature

(30–40 °C) such as on the skin and eyes.69 Besides, GG is

also sensitive to changes in pH.78 The resulting film has

excellent mucoadhesive properties. Adding NaCl as

a crosslinker can increase its yield stress.70

Low acyl GG is more sensitive to a temperature where

a significant increase in viscosity at ± 35 °C, while high

acyl GG increases thickness at ± 78 °C in a 0.1% NaCl

mixture. Similarly, drug release in low acyl GG is better

than in high acyl GG.70

Xanthan Gum

Based on research conducted by Shilin Wang, the spray-

ability of xanthan gum was strongly influenced by its

viscosity. The addition of surfactants in the xanthan gum

solution decreased the surface tension and reduced the size

of the droplet. Interestingly, the viscosity and flow proper-

ties were not significantly changed. In addition, the spray

angle and coverage area of the xanthan gum solution

decreased with increasing xanthan gum concentration.71

Synthetic Polymers
Carbopol

Carbopol also has thixotropy flow properties.83 Carbopol

itself forms an amorphous hydrogel that is good for open

wounds because it can donate or absorb wound

moisture.79,84 The viscoelastic nature of carbopol allows

an increase in the diffusion coefficient of the drug. The

combination of Carbopol and Poloxamer is said to be

better than using Carbopol alone. At a concentration of

0.05 %, the polymer combination produces a film with

good sprayability (spray angle, drying time, and uniform

content per spray) with an acceptable release of the drug.42

Carbopol is also known to produce gels with characteris-

tics that are more resistant to heating.79

Eudragit

Eudragit is available in various types with different pur-

poses for use. Generally, these synthetic polymers are used

as additives to tablets for modifying drug release.85

However, Eudragit is also known to increase drug permea-

tion in the skin,34,86,87 so that its application in topical

preparations is widely developed.

Eudragit EPO, Eudragit E 100, Eudragit S 100,

Eudragit RL 100, and Eudragit RS 100 produce transparent

and shiny films while Eudragit RSPO and RLPO do not.

Films produced by Eudragit EPO, Eudragit E 100,

Eudragit RL 100, and Eudragit RS 100 cannot be washed

away with water. In contrast, Eudragit S100 provides
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a film that can be removed with water after being applied

to the skin. This is because Eudragit S100 can dissolve

above pH 7. Eudragit S100 also does not cause any skin

irritation.20

In vitro permeability tests showed that Eudragit RS

produced a thick film when sprayed on a silicone mem-

brane. This was likely due to the crystallisation of methyl-

phenidate, which may have reduced permeation.88

However, after being measured, the level of methylpheni-

date penetration was greater with the Eudragit RS film

compared to Eudragit E.80 In addition, films with

Eudragit L100 have been reported to be unable to prevent

the crystallisation of testosterone.68

Eudragit RS 100 has been reported to have good spray-

ability, adhesiveness, and flexibility. However, use above

a concentration of 15% can reduce the ability to wash with

water, whereas Eudragit RLPO produces better films at

a level of 10.05% in a mixture with ethyl cellulose 5.02 %.40

Lutrol

Lutrol F-127 has film characteristics and spray patterns

similar to Carbopol 940 but produces a more uniform dose

of the drug in each spray, with a smaller standard devia-

tion. Lutrol F-127 also produces films with better drug

release compared to Carbopol 940. No skin irritation has

been reported.30

Plasdone

Research conducted by Lu et al32 shows that Plasdone can

increase testosterone permeation better than other poly-

mers. The best testosterone permeation sequence was

Plasdone > Eudragit EPO > PVP K30 > Eudragit RL.

This was due to the nature of the polymer, which can

inhibit the crystallisation of testosterone, thereby increas-

ing its flux.88,89

Kollidon

Kollidon is a synthetic polymer that is also widely used in

the pharmaceutical world. There are several types of

Kollidon with different characteristics appropriate for

solid, semisolid, and liquid preparations. In liquid and

semisolid forms, Kollidon can increase solubility and per-

meability, and control drug release.90

Kollidon® 30 has been reported to form transparent, thin,

and well-dispersed films. During 28 days of storage, the pH

of Kollidon® 30 remained stable without significant

changes.43 Kollidon® 30 and Kollidon® VA64 have the abil-

ity to act as antinucleants that can inhibit testosterone

crystallisation.68 Drug permeation in the skin has also been

reported to be increased with the use of Kollidon® 30 films.81

Excipients Used in Film-Forming
Sprays
Besides polymers, other excipients are also added for the

purpose of improving the quality of the preparation and its

therapeutic efficiency. The following is a list of excipients

(Table 3) commonly used in film-forming spray systems.

Crosslinkers
The use of crosslinkers can affect the elasticity, viscosity,

solubility, glass transition, and film stiffness of the

polymer.91 The use of NaCl as a crosslinker in gellan

gum also affects the gel’s sensitivity to temperature, so

that film formation is better and faster. NaCl also increases

cell encapsulation in gellan gum.69

Permeation Enhancers
Eutectic blends are often used as enhancers to drug

permeation.34,40,41,81 One of the most potent eutectic

blends is a mixture of camphor and menthol.92–95

Camphor and menthol form a hydrophobic mixture, so it

is suitable as a penetration enhancer for drugs that are also

hydrophobic. However, camphor and menthol can cause

leaching and the formation of pores in the skin.40 A warm

feeling followed by a cold feeling that builds slowly is

characteristic of a mixture of camphor and menthol.40

The eutectic mixture of camphor and menthol signifi-

cantly increases the permeation of the antifungals fluconazole,

clotrimazole, and voriconazole in a Franz diffusion cell using

nylon membranes.34,40,41 Because it has hydrophobic proper-

ties, camphor and menthol can increase drug permeation

through interactions with the lipids of the stratum corneum.93

Research conducted by Lu et al32 showed that the order

of permeation enhancers that is the best for increasing

testosterone permeation is azone > isopropyl myristate

(IPM) > propylene glycol (PG) > N-methyl-2-pyrrolidone

(NMP). Furthermore, the results of a study by Lu et al33

showed that dexketoprofen permeation was better using

lauryl lactate (LA) > IPM > azone > PG as permeation

enhancers. This indicates that the penetration enhancing

ability of these compounds varies for each drug. However,

azone is very suitable for highly hydrophilic drugs. The

combination between azone and PG improves the penetra-

tion ability of azone.96,97
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Plasticisers and Stabilising Agents
In the film formation, the plasticiser maintains elasticity

and prevents cracking of the film. Plasticisers can also

maintain the stability of active substances25,26,79 and

increase the permeation of drugs. Polyethylene glycol

(PEG) and propylene glycol (PG) are reported to have

a role in increasing the permeation of antifungal drugs.

Apart from being a plasticiser, PG also has a role as

a solubiliser, which is also useful in carrying drugs

through the skin.41,98 PG has a significant effect on the

viscosity of the film-forming solution, so the concentration

needs to be considered (see Table 3).68,99 The use of PG in

a mixture with water and ethanol does not have a good

effect as a mixed solvent in preventing the crystallisation

of testosterone.68 The effective PG concentration for

increasing drug permeation is below 5 %.34,100

PEG 400 can also increase the volume per spray of

a film-forming solution. The amount per spray increases

with increasing PEG 400 concentrations. The covered

spray area also increases with increasing PEG 400 levels.82

This is associated with a decrease in vapour pressure due to

the presence of PEG as a non-volatile solvent.101

Solvents
The solvents used in the FFS system include both volatile

and non-volatile solvents. The aim is to balance the film

drying rate. Films that dry out too quickly and form

a hard film make it difficult for drugs to escape and

penetrate. The active substance is usually dissolved to

saturation in the solvent to facilitate the film drying

process.40–42

Evaluation of Film-Forming Sprays
pH
The pH value is measured and adjusted to improve the

stability of the active substance or make it suitable for

the area of application. For skin pH ranging from 4–6,102

the pH of diabetic wounds ranges from 6.5–8,103 whereas

faster healing time for burns occurs below pH 7.32.104 The

pH adjustment of the preparation aims to prevent irritation

and changes in the physiological condition of the wound in

the healing process. Besides, the pH value of the dosage

can also affect drug permeation through the skin based on

the degree of ionisation.105,106

Table 3 Excipient Commonly Used in Film-Forming Sprays

No Excipient Function Concentration

(% b/v or v/v)

Sprayer Ref

1. Azone Permeation enhancer 1–5 MDS [32,33]

2. Camphor:menthol (1:1) Permeation enhancer 4–10 Ordinal [34,40,41,81]

3. Cyclomethicone Co-solvent 0.5 MDS [30]

4. Dimethyl ether Propellant 39–59.8 MDS [80]

5. Ethanol Volatile solvent 7.5–50 MDS [80,82]

6. Ethanol:acetone (8:2) Solvent Ad. 100 Ordinal [40–42]

7. Ethanol:acetone:methylal (2:1:2) Solvent Ad. 100 MDS [30]

8. Ethanol:PG:water (4:1:1) Solvent Ad. 100 Ordinal [68]

9. Ethanol:water (1:1) Solvent Ad. 100 Ordinal [43]

10. Glycerol Stabilising agent and plasticiser 10–30 Ordinal and electrospray [25,26,79]

11. Hydrofluoroalkane Propellant 76.7–87.2 MDS [82]

12. IPA Volatile solvent 30 MDS [80]

13. IPA:water (8:2) Solvent 90 Ordinal [81]

14. IPA:ethanol (1:1) Solvent Ad. 100 MDS [20]

15. IPM Permeation enhancer 2.5–5 MDS [32,33,82]

16. LA Permeation enhancer 5 MDS [33]

17. Myristyl lactate Penetration enhancer 0.5 MDS [30]

18. NaCl Cross-linker 0.1–0.5 (Molar) Ordinal [69]

19. NMP Permeation enhancer 5 MDS [32]

20. PEG-200 Plasticiser 0.25 Ordinal [44]

21. PEG-400 Plasticiser 0.45–10 Ordinal [34,41,43,82]

22. PG Plasticiser and permeation enhancer 0.25–9 Ordinal and MDS [32–34,42,43,68,80,81]

23. Tween 80 Surfactant 5 Electrospray [25,26]
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Viscosity
Each type and concentration variation of the polymer will

result in a different viscosity. The viscosity of the film-

forming solution will affect its sprayability, so this is an

important parameter, especially in MDS.107–109 Increasing

the concentration of the film-forming solution can reduce

the coverage area of the spray.26

Tonicity
The application of film-forming solution to certain parts of

the body such as wound and eye mucosa requires the

tonicity adjustment of the film-forming solution. Non-

isotonic preparations can cause mucosal irritation and

eye pain. For this reason, the tonicity of the preparations

needs to be calculated and adjusted using the Kahar

method. The following equation is used to determine the

isotonic concentration of the materials.110

Cb ¼ Ci

1:92 ∑ CnxΔTfnð Þ
h i (1)

where Cb is the isotonic concentration of the material, Ci

is the initial concentration of the material, and ∑ (Cn

x ΔTfn) is the sum of the multiplication between the

concentration and the value of the freezing point depres-

sion of each ingredient.

Rheological Properties
Flow testing aims to determine whether a compound is

thixotropic or not. A mixture can easily pass through the

sprayer nozzle repeatedly if it has these flow properties.

This flowing property allows thinning of the film-forming

solution as it shifts along past the nozzle (stressed) and

returns to its original viscosity after being sprayed (stress

is lost).31,111,112 The hysteresis circle, ie the area covered

by the ascending and descending curves, is characteristic

for thixotropic behaviour (see Figure 3).113

The nature of this flow can be determined using

a rheometer in rotation model with a logarithmic increase in

the shear rate of 1–900 s−1 and back again from 900–10 s−1.

This test is carried out at room temperature and the storage

temperature of the film-forming solution.31

Testing the flow properties using the oscillation time

sweep and amplitude sweep method in various variations

of excipient concentration and the temperature range can

also be done to find out how the effect of excipient and

temperature in the change in gel consistency.79

Bioadhesive Strength of the Film
Measurement of the bioadhesive strength of the film can

be done by attaching a film to the surface of the mouse

skin (2 x 5 cm). Then, the skin is hydrated with 0.5 mL

distilled water. The film is allowed to interact with the

tissue surface for 5 minutes.114 The total force (F) to

detach the film from the surface of the skin is recorded.

The bioadhesive strength (Fb) is calculated per unit area

(A) of the film.115,116

Fb ¼ F
A

(2)

Tensile Strength and Elongation of the

Film
Tensile strength (TS) is the ability of the film to resist

applied pressure.117 TS testing aims to determine whether

the film formed is resistant to abrasion and flexible so that

it can follow the movement of the skin without

cracking.118 TS can be calculated using the equation

below.26

Figure 3 Thixotropic in pseudoplastic, plastic, and dilatan systems.

Notes: Reprinted from Journal of Controlled Release, 136(2), Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations:88–98, Copyright 2009, with

permission from Elsevier.113
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TS ¼ Fm

LxW
(3)

where Fm is the maximum pressure that can be held by the

film before tearing, L is the thickness of the film, and W is

the initial width of the film.26 After the film is stretched,

elongation (EB), which describes its elasticity, can be

calculated using the following equation.

EB ¼ lmax � l0
l0

� 100% (4)

where lmax is the length of the film before the film is torn

when pulled and l0 is the initial length of the film.26

Water Washability
The ease of film wetting is assessed in the dried film. The

film is washed with water and assessed in ordinal scale, ie

easily washed, moderately washed, and poorly

washed.34,40 The ease of sprinkling with water will be

useful if the film-forming solutions contact with sensitive

areas in the body such as eyes and mouth.

Fluid Affinity
This test is carried out to see how the ability of the film

formed to absorb moisture from the wound or provide

moisture to the wound. An adequate supply of moisture

to the injury will speed healing, but excess moisture can

cause erosion of the wound tissue.119–121 The testing pro-

cedure follows the EU standard EN 13726–1: 2002.79

Occlusion Potential or Water Vapor

Permeability of the Film
The permeability of the film to wound fluid is also vital to

determine because it affects the moisture of the wound.

Excessive humidity will trigger the growth of microorgan-

isms and lead to infection.122 This test is done by covering

the mouth of a glass beaker containing 50 mL of water

with filter paper. One of the papers is sprayed with a film-

forming solution and allowed to form a film. The beaker is

then stored at room temperature and humidity. The perme-

ability of the film to water is determined based on the

reduced water weight in the beaker.20 The assessment is

determined using the following formula.

F ¼ A� B
A

� 100 (5)

where F is the occlusivity factor and A is the reduction in

water weight in the glass beaker covered with the filter

paper without a film. In contrast, B value is the reduction

in water weight in the glass beaker covered with the filter

paper coated by the film. The smaller the occlusivity factor

value, the better the film permeability.20

In a study conducted by Zhong et al,26 the water

permeability of the film was determined by considering

the surface area and thickness of the film. Also, the dif-

ference in pressure inside the cup and outside the container

was specified. Water vapour permeability (WVP) is calcu-

lated using the following equation.

WVP ¼ mxL
AxtxΔP

(6)

where m is the mass of water lost in the cup (g), L is the

thickness of the film (mm), A is the permeation area (m2),

t is the time of permeation (days), and ΔP is the difference

in water vapour pressure inside and outside the

cup.26,123,124

In addition, the release of moisture content from the film

can be evaluated by comparing the initial weighed of film

(2.0 x 2.0 cm2) (W1) and the weight of the film after a day of

storage (W2). The moisture loss and moisture uptake can be

calculated by using the following equations.115,125,126

Moisture loss %ð Þ ¼ W1 �W2

W1
� 100% (7)

Moisture uptake %ð Þ ¼ W2 �W1

W2
� 100% (8)

Surface Morphology of the Film
This test is carried out to determine the microscopic shape,

surface roughness, and homogeneity of the film using

scanning electron microscopy (SEM) or transmission elec-

tron microscopy (TEM).26,82,127,128

Film Formation/Drying/Evaporation Time
The drying time of the film is measured to determine how

quickly the film forms after the solution is sprayed. Under

some conditions, the solution is sprayed on the surface of

the glass and then allowed to dry at room temperature.81 In

other studies, a mixture of activated silica gel-dye is

applied to the surface of the glass plate to provide

absorption.30

Drying time can also be observed directly by applying

a film-forming solution to the skin. To find out if the film

has dried, a glass plate is placed against the film without

being pressed. If there is no water adhesion to the glass,

the film is said to have dried.34 This method is more

representative of actual conditions because the skin has
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pores and body heat, so the drying time may be different

from using glass plates in the film drying time test.

Stickiness
The dry film is pressed gently using cotton wool. The

viscosity of the film is assessed by the amount of cotton

wool fibres attached to the film. The film adhesiveness is

considered high if the attached fibre is thick, medium if the

attached fibre is thin, and low if it is little or no attached

fibre.20,34 Stickiness is tested to find out whether the film

will become easily attached to clothing or other objects, so

it needs attention when on the move.

Spraying Force
This test is carried out to find out howmuch pressure is needed

to spray the film-forming solution.31 The tool that can be used

is TA.XT Plus texture analyser (Stable Micro Systems).31

Spray Angle, Pattern, and Droplet Size

Distribution
Paper soaked with indicator reagents is used, which makes

it easy to observe the spray patterns that are formed.81 This

depends on the type of solvent and the pH of the film-

forming solution. Using a solvent-sensitive paper will

clarify the pattern and the spray droplet size distribution.

The diameter of the pattern is then measured to determine

the area covered and the spray angle.

Spray angle θð Þ ¼ tan�1 l=r

� �
(9)

where Ɩ is the distance of the paper surface from the nozzle

and r is the radius of the circle. The distance of the nozzle

from the paper is generally around 15 cm.81 The higher the

spray angle, the more difficult is it for the film-forming

solution to spread when sprayed.26 An illustration of the

spray pattern measurement can be seen in Figure 4.

To measure the covered area, the spray pattern is

scanned at 600x600 dpi (Konica Minolta scanner, bizhub

c3350). The image is then converted to a binary image

using ImageJ software. Then, the percentage of the cov-

ered area is calculated using the following equation.69

% coverage ¼ Area covered black pixelð Þ
Area original white pixelð Þ � 100% (10)

The particle analysis plugin (ImageJ software) is used to

determine the size of the droplets.69 Spraytec® by Malvern

(Malvern, UK) can also be used, which works on the

principle of laser diffraction.20 Droplet diameter is

measured in units of mm, then D10 %, D50% and D90%

are determined. The relative span factor (RSF) is then

calculated to determine the uniformity of the droplet size

distribution using the following equation.69

RSF ¼ D90% � D10%

D50%
(11)

Drug Content per Spray and Uniformity
The dose uniformity of each spray is determined by measur-

ing the weight or volume of each spray, which is then used to

obtain the amount of active substance based on its concen-

tration in the film-forming solution. The level of the active

substance can also be determined by collecting the sprayed

solution, then measuring it instrumentally.81 To determine

how much spray volume comes out, the film-forming solu-

tion coming out of the nozzle should not be weighed, but

rather the weight of the film-forming solution remaining in

the sprayer should be determined. Because the droplets that

come out of the spray are so small and easily carried by the

wind, not all of it will likely be collected to be weighed. The

following equation is used for measuring spray volume:20

V ¼ Wt �W0

D
(12)

where V is the spray volume, Wt is the weight of the film-

forming solution after spraying, W0 is the weight of the

film-forming solution beforehand, and D is the specific

gravity of the film-forming solution determined using the

pycnometer method.20 This test is critical in the use of

metered-dose sprays. Drug levels are determined at sprays

5, 10, 20, 30, and 50 by collecting sprays, then measuring

them instrumentally.32

Potential Drug Aggregation
Changes in particle size will undoubtedly affect sprayabil-

ity. Some methods to determine the potential for aggrega-

tion of a drug are zeta potential and size exclusion

chromatography (SEC).31

In vitro Drug Penetration/Release Study
In this test, cellulose membranes (pore size 0.45 µm),

nylon membranes (pore size 0.22 mm) or silicone mem-

branes are generally used as compartment separators using

Franz diffusion cells. The medium used is phosphate buf-

fer pH 7.4. After the compartment system is ready, the

film-forming solution is put into the donor compartment.

The solution that diffuses through cells is taken at certain
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time intervals and then measured using an instrument. The

same volume of fluid is replaced after samples are

collected.34,80,81,126

Ex vivo Skin Permeation Study
Drug permeation can be tested on the abdominal skin of

mice or rabbits using Franz diffusion cells. The skin is

cleaned of all attached fat tissue still using a cotton swab

that has been soaked in propanol or isopropanol, then

washed with normal saline solution. Diffusion media

include phosphate buffer pH 7.4 or acetate pH 6.0. On

the receptor compartment side, medium flow is achieved

using flow-through cells connected to silica tubes at speeds

of 0.3 mL-0.6 mL/hr. After the compartment system is

ready, the film-forming solution is placed in the donor

compartment. Aliquots are then taken from the receptor

compartment at specific time intervals, and then the drug

levels are measured using an instrument. New diffusion

medium is added at the same time, replacing aliquots that

are taken to maintain sink conditions.31,32,34,41,68,81,115

This compartment system can be seen in Figure 5.

In addition to themethods previously mentioned, the fluor-

escence method is also useful in observing the extent to which

the drug penetrates the skin layer. Samples that contain fluor-

escence markers can be observed microscopically.31

Permeation Data Analysis
The amount of drug that passes through the membrane per

unit area to the receptor compartment per unit time is called

flux. Flux is expressed in units of mass/area/time.41,129 If

the dose of the drug is a finite dose, the steady-state flux can

be calculated using the following equation.

Jss ¼ Q
Axtð Þ (13)

where Q is the number of drugs that penetrate at time t and

A is the area of the membrane exposed to the film-forming

solution. The units of Jss is quantity/cm2/min. The per-

meation coefficient (Kp) can also be calculated using the

following equation.115,126

Kp ¼ Jss
C

(14)

where C is the drug concentration in the film-forming

solution placed in the donor compartment. The objective

in determining the permeation coefficient is to determine

the effectiveness of permeation enhancing agents for

Figure 4 Measurement of spray angle and observation of spray patterns.

Figure 5 Illustration of ex-vivo permeation testing.
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increasing the permeation of drugs. This can be deter-

mined using the enhancement ratio (ER).41,116

ER ¼ Kp with penetration enhancer

Kp without penetration enhancer
(15)

The higher the ER value, the better the effect of penetra-

tion enhancers in increasing drug penetration.

In vivo Skin Irritation Test
The film-forming solution is applied to the skin of test

animals such as mice and rabbits after being shaved.

Irritation, inflammation, erythema, oedema, papule forma-

tion, flakiness, and dryness are observed 24 hours – 7 days

after application.41,81,115 Scores for rating irritation can be

seen in Table 4.

Stability Study
Characteristics commonly tested are changes in particle size,

chemical and 3D structures, levels, and therapeutic

activity of active substances after storage under various

conditions.31,126,130 In some cases, thermal analysis is also

conducted to find out whether or not recrystallisation of meta-

stable active substances occurs. The polymer used is an anti-

nucleant, which can maintain the drug in the initial crystalline

form.68 In several studies, the content of the drug per spray and

its spray pattern as ametered-dose spraywill be tested again. It

is essential to guarantee the dose during the storage period.30

Applications of Film-Forming Sprays
Several FFS applications can be found on the market.

Most products are intended for the handling and treatment

of wounds. Common injuries that can be treated can be

incised wounds such as surgical or sharp object contact,

burns, and diabetic wounds. Here are some products that

use the FFS system.

Author Perspective
In fact, many types of polymers can be used and developed in

FFS systems (Table 5). Polymers that have in situ film-

forming (pH- and thermo-sensitive) or viscoelastic properties

are highly suitable for use. Some polymers that have thermos

and/or pH-sensitive properties and are potentially utilised in

FFS systems include alginate, carrageenan, prosopis gum,

gelatin, Pluronic F127, PLGA, PDMA, poly-caprolactone,

poly-(N-isopropyl acrylamide), and β-glycerophosphate.
These polymers can control drug release for topical or

Table 4 Skin Irritation Scale

Grading Description of Irritant Response

0 There is no reaction

+ A weak positive reaction (characterised by moderate

erythema on the part where the drug is applied)

++ A moderate positive reaction (characterised by erythema

which may spread in the application part of the drug)

+++ A strongly positive reaction (strong, characterised by

erythema which may be accompanied by oedema)

Notes:Reprinted fromActa Pharmaceutica Sinica B, 3(6), LeeCH,Moturi V, LeeY. LuW,

Luo H, Wu Y, Zhu Z, Wang H. Preparation and characterization of a metered dose

transdermal spray for testosterone: 392–399, Copyright 2013, with permission from

Elsevier.32

Table 5 The Product of FFS

Trade Names Manufacturer Polymer Application

Cavilon® 3MTM Health Care Acrylate terpolymer and

polyphenylmethylsiloxane

Skin protector from irritation

OpSite® Smith & Nephew

Healthcare

Acrylic polymer Wound cover and protector

Cutimed® PROTECT Essity Unknown Wound cover and protector

SKIN-PREP* Protective

Dressing

Smith & Nephew

Healthcare

Unknown Wound cover and protector

No-Sting Skin Barrier Film

Spray

Safe n’ SimpleTM Diglycol/CHDM/isophthalates/SIP copolymer Sensitive-skin protector

Sensi-Care® ConvaTec Siloxane copolymers Adhesive-releaser

SurePrep® Rapid Dry Medline Industries, Inc. Unknown Damaged or intact skin

protector
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transdermal purposes for 13 days to 2 months. Some of these

polymers can also be used as nanomedicine delivery

systems.56,122–134

Among the natural polymers, chitosan has excellent

characteristics as a polymer in FFS because, in addition

to forming a film in situ, chitosan has been shown to

have antimicrobial, antioxidant, anti-inflammatory, antitu-

mor, tissue regeneration inductor, and wound healing

properties. Chitosan is also known to be compatible

with many drugs and in the body because it is biodegrad-

able. Chitosan derivatives have also been developed to

increase the solubility or enhance the effectiveness of

drugs.55,131–143

Conclusion
FFS can be a promising drug delivery system with various

benefits. Natural or synthetic polymers can be used as drug

matrices and film formers following the need for increased

stability and therapeutic effectiveness of the active sub-

stance. Sprayers help form droplets with better and more

uniform distribution and dosage of drugs. Each sprayer

also has critical and specific testing specifications and

parameters.

Abbreviations
API, active pharmaceutical ingredient; Eq, equation; ES,

electrostatic spray; FFS, film-forming spray; HPMC,

hydroxypropylmethylcellulose; HPC, hydroxypropylcellu-

lose; IPA, isopropyl alcohol; IPM, isopropyl myristate;

GG, gellan gum; LA, lauryl lactate; Na-CMC, sodium

carboxymethylcellulose; NaCl, sodium chloride; NMP,

N-methyl-2-pyrrolidone; MDS, metered dose spray;

PDDA, poly(diallyldimethylammonium chloride);

PDMA, poly(N, N-dimethylaminoethyl methacrylate);

PEO, poly(ethylene oxide); PG, propylene glycol; PVA,

polyvinyl alcohol; PVP, polyvinyl pyrrolidone; SiO2, sili-

con dioxide; VA, vinyl acetate.
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